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Abstract
Objective—To assess semen parameters and couple fecundity as measured by time-to-pregnancy
(TTP).

Design—Observational prospective cohort with longitudinal measurement of TTP.

Setting—16 Michigan/Texas counties

Participants—501 couples discontinuing contraception were followed for one year while trying
to conceive; 473 (94%) men provided one semen sample and 80% provided two samples.

Interventions—None

Main Outcome Measures—Using prospectively measured TTP, fecundability odds ratios
(FORs) and 95% confidence intervals (CIs) were estimated for 36 individual semen quality
parameters accounting for repeated semen samples, time off contraception, abstinence, enrollment
site, and couples’ ages, body mass indices (BMI), and serum cotinine concentrations.

Results—In adjusted models, semen quality parameters were associated with significantly
shorter TTP as measured by FORs >1: percent motility, strict and traditional morphology, sperm
head width, elongation factor, and acrosome area. Significantly longer TTPs or FORs <1 were
observed for morphologic categories amorphous and round sperm heads neck/midpiece
abnormalities. No semen quality parameters achieved significance when simultaneously modeling
all other significant semen parameters and covariates, except for percent coiled tail when adjusting
for sperm concentration (FOR=0.99; 95% CI 0.99, 1.00). Male age was consistently associated
with reduced couple fecundity (FOR=0.96; 95% CI 0.93–0.99) reflecting a longer TTP across all
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combined models. Female but not male BMI also conferred a longer TTP (FOR=0.98; 95% CI
0.96–0.99).

Conclusions—Several semen measures were significantly associated with TTP when modeled
individually, but not jointly and in the context of relevant couple based covariates.
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Introduction
Semen quality is believed to be informative about male fecundity, which is defined as men’s
biologic capacity for reproduction irrespective of pregnancy intentions (1). Semen analysis
remains the clinical standard for assessing male fecundity and related impairments including
hormone production (2), and key components such as sperm concentration, motility and
morphology are reported to be capable of classifying men by fertility potential (3). The
World Health Organization publishes reference values for semen parameters as derived from
a compilation of largely retrospective research that represents men from various countries
(4, 5). However, the predictive value of these reference value parameters has long been
debated with no single or set of semen parameters being highly predictive of male fertility
(6–8). To this end, authors have noted the need for inclusion of the female partner for
etiologic and prediction models (9), along with the development of new biomolecular or
methodologic (e.g., sperm energy index, omics) approaches beyond functional tests for
assessing and predicting male fecundity (10, 11).

A valuable literature suggests that semen quality is important for pregnancy, though most
research relies upon samples of couples seeking infertility treatment or pregnant women
(12–14). Noticeably absent are prospective cohorts with the preconception recruitment of
couples of unknown fertility status (15). Only two previous studies utilized prospective
cohort designs with preconception enrollment of couples in which semen quality was
assessed in relation to TTP (16, 17). Unique strengths of this design are the inclusion of all
couples trying for pregnancy and not just those achieving a recognized pregnancy, and the
ability to assess semen quality in the context of couples’ demographics and lifestyle
consistent with the couple dependent nature of reproduction. Bonde and colleagues (1998)
first assessed the association between semen quality and the probability of pregnancy within
six months of observation for 430 Danish couples planning their first pregnancies who were
recruited from trade-unions (16). While no significant associations were observed between
semen volume and motility, sperm concentration up to 40×106/mL and percent normal
morphology (10% to 60%) were independently associated with the probability of pregnancy.
The findings were corroborated using computer-assisted semen analysis (CASA) techniques
(18). Zinaman and colleagues (2000) recruited a convenience sample of 210 U.S. couples
who were either discontinuing or off conception for <3 months for purposes of becoming
pregnant. Using prospectively measured TTP for up to 12 months, both sperm count and
percentage of normal sperm were associated with couple fecundity (17). Statistical analyses
for both studies included attention to couples’ ages, body mass indices and cigarette
smoking histories. At least one study reported no association between semen quality
parameters and TTP in either fresh samples or after density gradient separation among fertile
men (19). We designed the Longitudinal Investigation of Fertility and the Environment
(LIFE) Study to fully explore a spectrum of environmental and lifestyle factors and couple
fecundity.
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Materials and Methods
Design and Study Population

The LIFE Study utilized a prospective cohort design to enroll 501 couples discontinuing
contraception for purposes of becoming pregnant from 16-targeted counties in Michigan and
Texas. State-specific sampling frameworks were needed for recruiting purposes, given the
absence of uniform registries for identifying couples planning pregnancy. Specifically, we
utilized the Texas fishing/hunting license registry and a commercial marketing database for
Michigan. Introductory letters were sent to the target population followed by telephone
screening with each partner within two weeks. Few differences were observed with regard to
socio-demographic or reproductive characteristics by site (20). Given the limited empirical
evidence regarding the determinants of couple fecundity from a population perspective, the
cohort was designed to be inclusive and only excluded couples with clinically diagnosed
infertility. Inclusion criteria were: 1) females aged 18–40 and males aged ≥18 years; 2) in a
committed relationship; 3) females’ menstrual cycles between 21–42 days; 4) no injectable
contraceptives within past year; 5) planning a pregnancy and off contraception for <2
months; and an 6) ability to communicate in English or Spanish.

Data Collection and Operational Definitions
Research assistants traveled to couples’ homes and completed baseline in-person interviews
that were conducted separately with each partner of the couple, followed by anthropometric
assessments to measure height (cm), weight (kg) and hip and waist circumferences (cm)
(21). Baseline urine samples were tested to ensure women were not pregnant. Women
recorded menstruation and sexual intercourse in daily journals and used the Clearblue®
Easy home urinary-based fertility monitor (Swiss Precision Diagnostics, formerly Unipath).
This monitor tracks the rise in estrone-3-glucuronide (E3G), a metabolite of estrogen, and
luteinizing hormone (LH), and displays a low, high or peak fertility prompt for timing
intercourse relative to ovulation. The monitor is reported to be 99% accurate in detecting the
LH surge compared with vaginal ultrasonology (22). We used the monitor date for menses
along with daily journal information to establish menstrual cycles and TTP. Women also
were trained in the accurate use of the Clearblue® Easy home pregnancy test, which is
sensitive for detecting 25 mIU/L of human chorionic gonadotropin (hCG). Each partner of
the couple was remunerated $75 for complete participation. Human subjects’ approval was
received from all collaborating institutions, and all study participants gave informed consent
before data collection.

Semen Collection
Male partners were asked to collect a baseline sample and another the following month
irrespective of pregnancy status. Men collected samples via masturbation without the use of
any lubricant following two days of abstinence using home collection kits that comprised an
insulated shipping container (Hamilton Research, Beverly, MA) for maintaining sperm
integrity (23), a glass specimen jar with an attached temperature data logger (I-Button,
Maxim Integrated, Jan Jose, CA), a sperm migration straw filled with hyaluronic acid and
plugged at one end, and packing materials (Vitrotubes #3520, VitroCom Inc., Mt. Lakes,
NJ) (24). Couples were instructed to freeze insulation packs, refrigerate migration straws
and to keep the remainder of the kit at room temperature. After collection, the male placed
the open end of the migration straw into the semen as a global marker of motility at
specimen collection, and recorded the date of last ejaculation and any spillage on labels.
Semen was shipped via prepaid overnight service, and analyses were conducted the next day
consistent with the survival of some sperm past 24 hours and the integrity of chromatin
structure (25, 26).
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Andrology Analysis
All semen samples were received at the National Institute for Occupational Safety and
Health’s andrology laboratory. An aliquot was placed in a 20μm deep chamber slide (Leja,
Luzemestraat, Netherlands), and sperm motility was assessed using the HTM-IVOS
(Hamilton Thorne, Beverly, MA) computer assisted semen analysis system (CASA). Sperm
concentration was also measured using the IVOS system and the IDENT™ stain.
Microscope slides were prepared for sperm morphometry and morphology assessment. An
aliquot of the whole semen was diluted in TNE buffer with glycerol and frozen for the
sperm chromatin stability assay (SCSA®) analysis (27). Sperm viability was determined by
hypo-osmotic swelling (HOS assay). The sperm migration straw was removed from the
semen and viewed under the microscope. The distance traveled by the vanguard sperm was
measured to the nearest mm. Sperm morphometry was conducted using the IVOS METRIX
system. A contract laboratory (Fertility Solutions Inc, Cleveland, OH) assessed sperm
morphology on the prepared slides from the first specimen. Both the traditional with
differential classification and strict morphology assessments were performed on each slide
(28, 29). SCSA® was measured on the first specimen according to the methods of Evenson
(27). 100 μl of whole semen was diluted into 900 μl TNE buffer and kept frozen at −70°C
until analysis.

The SCSA® procedure was conducted on a Coulter Epics Elite Flow Cytometer using
SCSA® (SCSA diagnostics, Brookings, SD) software. For budgetary reasons, an
abbreviated semen analysis was conducted on the second sample, viz., volume,
concentration and motility. We assessed 36 parameters including 5 general characteristics
(volume, straw distance, sperm concentration, total count, hypo-osmotic swollen), 8 motility
measures, 6 sperm head measures, 15 morphology measures, and 2 sperm chromatin
stability assay measures. An established laboratory quality assurance plan and quality
control was in place (30).

Statistical Analysis
We explored and quantified the distributions for the 36 semen quality parameters as medians
and interquartile ranges (IQRs). Semen parameters were empirically assessed for
skewedness and all were left in their original scale, given their use as covariates not
outcomes requiring normality assumptions, and recognizing that some parameters were
either counts or percent measurements. Socio-demographic comparisons of male
participants and semen collection and appearance characteristics by site were made to ensure
no systematic differences. We also assessed the comparability of the two semen samples to
identify any significant differences using the nonparametric Wilcoxon rank sum test.

The relation between semen parameters and couple fecundity as measured by TTP was
extensively assessed. Couples achieving pregnancy within the first few weeks following
enrollment or before a fully observed menstrual cycle were defined as having a TTP=0 to
differentiate them from couples with at least one fully observed menstrual cycle. Couples
not achieving pregnancy within 12 months were censored as a TTP >12 consistent with the
clinical definition of infertility (31). We have no information on medical care seeking
behavior or outcome for couples not achieving pregnancy within 12 months. TTP was
defined as the total number of menstrual cycles required for pregnancy, with cycles defined
as day one to day one followed by at least two days of bleeding using the combined
information from the daily journals and fertility monitor (32). A priori, we included
covariates reported to be determinants of couple fecundity or TTP: male age (years), the
difference of the male and female’s age given the correlation between partners’ ages, male
and female body mass indices (weight in kg/ height in m2), abstinence time (# days), male
and female smoking as quantified by serum cotinine concentrations, and enrollment site
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(Texas as referent) as a proxy for any residual confounding (33–44). We did not adjust for
sexual intercourse, which may be an intermediate on the pathway or an independent
predictor but not a confounder, and given the lack of any significant associations between
frequency of either intercourse or ejaculation by the WHO semen quality parameters, i.e.,
volume, count, concentration, percent motility or normal morphology (data not shown). We
also did not adjust for caffeine, given the limited available data suggesting an adverse
relation as recently reviewed to preserve precision (45) coupled with the number of
covariates already in models. Serum cotinine concentrations were quantified using an
established protocol (46), and were log transformed and standardized by their standard
deviations and reported as ng/g serum.

Cox proportional hazards models for discrete survival time were implemented to assess
semen parameters and fecundability adjusting for left truncation or time off contraception
and accounting for the use of both semen samples in the models. Missing data for each
semen sample were imputed using the Markov Chain Monte Carlo methods under the
missing at random assumption to minimize any bias associated with missing data (47). Ten
imputations were run (PROC MI) and results were combined (PROC MIANALYZE) using
SAS (version 9.2, SAS Institute, Inc., Cary, North Carolina). Summary statistics included
fecundability odds ratios (FORs) that estimate the odds of becoming pregnant each cycle
conditional on not becoming pregnant in the previous cycle and 95% confidence intervals
(CIs) (48). FORs <1.0 denote a reduction in fecundity or a longer TTP, while FORs >1.0
denote enhanced fecundity or a shorter TTP. Separate models were run for each semen
parameter consistent with our aim to fully explore the many facets of semen quality relative
to TTP. Finally, we utilized multivariable models to assess the combined effects of all
significant semen parameters identified from individual adjusted FORs and relevant
covariates to more closely model couples’ trying attempts. Specifically, we ran six
multivariable models because some semen parameters are derived from others (i.e., volume,
concentration and total count) or from varying methods (i.e., WHO normal or Strict) to
avoid collinearity. To facilitate clinical interpretation, we also ran models for sperm
concentration and total count where we rescaled the parameters by their standard deviation
(SD) rather than keeping in the original scale (x106/mL). The linearity and proportional
hazards assumptions were verified in all models.

Results
A semen sample was returned from 473 (94%) participating men, of which 378 (80%)
provided a second sample. No significant differences were observed between the two
samples. Five (1%) men were determined to be azoospermic for both samples. A description
of the cohort by research site is presented in Table 1, and reflects that overall approximately
12% of participants were non-white, 11% were without a college education, 11% had no
health insurance, and 42% of men had never fathered pregnancies. On average, male
partners were 31.8±4.9 years of age with a BMI of 29.8±5.6. Female BMI was the only
variate that differed significantly by enrollment site, with a higher mean BMI for Michigan
than Texas women (29.3 ±8.6 and 27.2 ±6.8, respectively).

The distributions for semen quality endpoints for the LIFE Cohort are presented in Table 2.
Semen characteristics quantified in both samples per individual (volume, concentration, total
count and strict morphology) and were similar. Distributions for volume, concentration, total
count, and morphology (strict) were generally similar to those reported by WHO (4). Sperm
motility and viability measures (HOS) were next day measurements and are not directly
comparable with WHO values, nor were any of our remaining parameters that are not
reported by WHO.
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Table 3 presents the unadjusted and adjusted FORs modeled separately for each semen
quality parameter excluding the five azoospermic men from the analysis consistent with our
exploratory approach. Of note is the identification of 12 semen parameters that were
associated with enhanced (FORs >1.0; shorter TTP) and 6 with diminished (FORs <1.0;
longer TTP) couple fecundity, when adjusting for potential confounders. Many FORs and
CIs were close to one reflecting our study’s statistical power. Semen parameters associated
with a shorter TTP included: sperm head width (FOR 2.54; 95% CI 1.42, 4.57); acrosome
head area (FOR 1.03; 95% CI 1.01, 1.05; elongation factor (FOR 1.03; 95% CI 1.01, 1.06);
% normal morphology - strict criteria (FOR 1.03; 95% CI 1.01, 1.04); % normal
morphology – traditional criteria (FOR 1.02 95% CI 1.01, 1.04); % motility on day after
collection (FOR 1.02; 95% CI 1.01, 1.02); straight line velocity (FOR 1.01; 95% CI 1.00,
1.02); % hypo-osmotic (FOR 1.01; 95% CI 1.00, 1.02); sperm path linearity (FOR 1.01;
95% CI 1.00, 1.02); straightness (FOR 1.01; 95% CI 1.00, 1.01); sperm concentration (FOR
1.00; 95% CI 1.00, 1.01); and total sperm count (FOR 1.00; 95% CI 1.00, 1.00). FORs for
the latter two rescaled parameters were 1.19 (1.06, 1.34) and 1.20 (1.06, 1.36), respectively.
Semen quality parameters associated with diminished fecundity or a longer TTP included (in
descending order of magnitude): % round head (FOR 0.89; 95% CI 0.81, 0.98); %
amorphous head (FOR 0.98; 95% CI 0.97, 0.99); % neck/midpiece abnormalities (FOR
0.99; 95% CI 0.97, 1.00), % coiled tails (FOR 0.98; 95% CI 0.97, 1.00); % high DNA
stainability (FOR 0.97; 95% CI 0.95, 1.00); and % DNA fragmentation index (FOR 0.98;
95% CI 0.97, 1.00).

Table 4 presents the FORs when modeling semen parameters significant in adjusted models
of individual endpoints except when a parameter is a composite of others (i.e., elongation
factor) or a relatively similar measure (i.e., sperm concentration and total sperm count; strict
or traditional criteria). Percent coiled tail was the only semen parameter to be significantly
associated with fecundity before rounding (FOR 0.99; 95% CI 0.98, 1.00). Moreover, older
male age was associated with reduced fecundity (FORs <1.0) across all models, and female
but not male BMI reflected a similar negative pattern in 4/6 models.

Discussion
In the most comprehensive analysis of semen quality parameters and couple fecundity
analyzed to date, we found that semen quality parameters were both positively and
negatively associated with couple fecundity in expected directions when modeled separately
resulting in shorter and longer TTP, respectively. Our findings reflected that select
parameters characterizing sperm motility, head and morphology (i.e., strict and traditional
criteria) were associated with a shorter time to pregnancy, though all FORs were small in
magnitude even when rescaling two key parameters - sperm concentration and total count by
their SDs. One notable exception was the strong positive association between sperm head
width (μm) and TTP, conferring an approximately 2.5-fold reduction in TTP per unit
increase in sperm head width. To our knowledge, sperm head width has received little
investigation in relation to couple fecundity or TTP. Also of note is that among four other
morphologic sperm characteristics associated with a longer TTP, the largest effect was
observed between percent round headed sperm and TTP, reflecting an 11% increase in TTP
per every percent increase reflecting diminished fecundity. Both the DNA fragmentation
index and high DNA stainability were negatively associated with TTP, though the point and
interval estimates were close to one. However, in combined models accounting for the
simultaneous effect of several semen parameters and covariates, only percent coiled tail was
significantly associated with diminished fecundability before rounding (FOR 0.99; 95% CI
0.98, 1.00). The absence of strong semen parameter effects in our multivariate models may
suggest the biologically inherent programming of male fecundity to compensate for
deficiencies in one or more semen parameters relative to couple fecundity or our inability to
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empirically characterize the fertilizing capabilities of semen endpoints. Conversely, male
age was consistently associated with an approximately 4% reduction in fecundability per
increasing year and female BMI about a 2% reduction per increasing unit in most models.

Comparison of our findings with the two previous prospective cohort studies with
preconception enrollment of couples requires caution for a number of reasons. While we
corroborated a positive relation between morphology (strict and traditional) and fecundity
similar to the earlier studies (16, 17), these parameters were not retained in models inclusive
of other semen parameters. Similarly, total sperm count also was associated, though the
point and interval estimates were essentially one after rounding suggesting little impact on
fecundity after accounting for couple factors. Our findings are based upon all semen samples
per participant, whereas one earlier study had one sample (16) while the other study
averaged semen values across samples (17). Another key difference is the 12-month follow-
up period in the LIFE Study, which is comparable to only one (17) previous study. Another
important consideration is the low sperm concentration reported for the Danish population
(49, 50).

Findings from the LIFE Study are strengthened by several unique features including the
largest number of semen quality parameters explored to date in relation to TTP, the
enrollment of couples prior to conception with prospective daily follow-up through 12
months of trying, and the measurement of BMI and cotinine for both partners. Use of the
fertility monitor provided all couples with a standardized prompt for timing intercourse,
while capturing longitudinal menses data for measuring TTP. Use of digital pregnancy kits
permitted the sensitive detection of hCG pregnancies. In addition, we modeled data from all
semen samples while addressing the inherent correlation of repeated samples.

Our findings support past research focusing on age, BMI and smoking when assessing
couple fecundity. For example, our finding that older paternal age is significantly and
negatively associated with TTP underscores the importance of biology for couple fecundity,
and corroborates previous research reporting a decline in fecundity with age (51, 52)
including male age beginning at approximately 30 years of age and a 50% lower probability
of pregnancy for men >35 years of age even after controlling for female age (35, 38).
Evidence suggests that male age more so than BMI may be associated with semen quality
(41, 53), a finding we corroborated in our combined models. Age related effects on male
fecundity are diverse and may reflect genetic (54), hormonal (55) or sexual dysfunction (56)
aberrations. In research that assessed couples’ BMIs, female rather than male BMI appeared
to exert more of an effect on TTP (36), a finding we corroborate. A recent systematic review
concluded that there was no evidence for an association between increased BMI and semen
parameters (57). A clearer understanding of couples’ characteristics including lifestyle and
fecundity is lacking despite the diagnostic importance of semen analysis, and most likely
accounts for the absence of evidence-based guidance on lifestyle and male fertility (58, 59).

Careful interpretation of the LIFE Study’s findings is needed in light of important
considerations including its a priori exploratory approach for assessing the spectrum of
semen parameters relative to TTP. Given the reported limited predictability of traditional
semen parameters, sperm function or DNA tests for fertility (7, 8, 60), we assessed a
spectrum of parameters without controlling for multiple comparisons to more completely
assess semen quality and couple fecundity. As such, we cannot eliminate false positive
findings and further recognize the need for development of novel models suitable for the
analysis of mixtures including semen quality biomarkers. While our findings are believed to
be internally valid, the external validity or generalizability of our findings to other
populations is limited and await corroboration. While the aim of the LIFE Study was to
assess persistent environmental chemicals in the context of lifestyle and human fecundity
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including semen quality, it is important to note that such chemical exposure is widespread
with ubiquitous exposure through diet, inhalation and other routes for contemporary
populations (61, 62). Moreover, the geometric mean chemical concentrations in the Life
Study were usually lower than those quantified for U.S. men participating in the nationally
representative NHANES biomonitoring survey (63). Another study limitation is the use of
24-hour semen quality analysis, which is not ideal for time sensitive endpoints such as
motility and viability. To globally assess motility at the time of collection, men placed a
glass straw into their specimen as described above. This step allowed us to assess the
presence of motile sperm at collection. We recognize that 24-hour analysis may account for
the lack of any significant motility associations in final analyses. Still, it is important to keep
in mind that while efficiency is reduced by use of the 24-hour semen analysis, we have no
evidence supporting the introduction of bias. This reflects not only the blinding of laboratory
staff to fecundity status, but the absence of empirical evidence supporting a systematic
difference in the integrity of semen samples collected in the home by couples’ TTP. Still, the
24-hour analysis is suitable for research but not clinical purposes, and the findings should be
interpreted as such. Of note is the successful use of at home semen collection in another
study, which formally assessed the impact of overnight semen analysis relative to analysis
within 1.5 hours with no observed differences for (non-motility) various semen endpoints
(64, 65). Lastly, the success of the LIFE Study underscores the willingness of men from
disparate geographic areas to collect semen for research purposes underscoring the utility
and feasibility of population based research focusing on male and couple fecundity.

Given that human semen quality is reported to be poorer in relation to other species (66), it
is essential to identify not only etiologic determinants but also biomarkers predictive of male
fecundity. Overcoming these critical data gaps is important for determining whether male
fecundity is declining as reported for contemporary birth cohorts (67, 68) and in
understanding the reported geographical differences in both semen quality (49, 69–74) and
TTP (75–77), and its ultimate impact on population fecundity. Novel research paradigms for
untargeted and targeted investigation of environmental influences on human fecundity and
fertility, such as the exposome paradigm (78, 79), may offer promise for elucidating the
biomarker of male fecundity and its role in couple fecundity.
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Table 1

Comparison of male partners by enrollment site, LIFE Study (n=473).

Characteristic Michigan (n=104) Texas (n=397)

n (%) n (%)

Nonwhite race 11 (10.8) 49 (12.5)

≤High school education 10 (9.7) 34 (8.6)

No health insurance 10 (9.6) 33 (8.3)

Female partner’s parity:

 Never pregnant 39 (37.5) 171 (43.4)

 Pregnant, no previous births 13 (12.5) 40 (10.2)

 Pregnant, previous births 52 (50.0) 183 (46.5)

Never fathered pregnancy prior to study entry 42 (40.4) 173 (43.7)

Current smoker 19 (18.6) 65 (16.6)

Mean (±SD) Mean (±SD)

Male age (in years) 31.9 (4.7) 31.7 (4.9)

Female age (in years) 30.3 (4.3) 29.9 (4.1)

Male body mass index (kg/m2) 29.7 (5.3) 29.8 (5.6)

Female body mass index (kg/m2)* 29.3 (8.6) 27.2 (6.8)

*
p <0.01
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Table 2

Distribution of semen quality endpoints, LIFE Study.

Semen Endpoints Total (n=473)

Mean (SD) Centiles (5th, 95th)

General Semen Characteristics:

Volume (mL)

 1st sample 3.4 (1.7) (1.0, 6.8)

 2nd sample 3.4 (1.5) (1.3, 6.1)

Motility (%)a

 1st sample 12.2 (12.5) (0.0, 40.0)

 2nd sample 12.5 (12.5) (0.0, 41.0)

Straw (mm distance sperm traveled)

 1st sample 10.5 (6.2) (3.3, 22.6)

Sperm concentration (x106/mL)

 1st sample 73.8 (56.4) (9.6, 189.0)

 2nd sample 74.9 (58.4) (10.9, 194.6)

Total sperm count (x 106/mL)

 1st sample 231.2 (187.7) (23.9, 596.5)

 2nd sample 238.1 (205.0) (29.1, 691.9)

Hypo-osmotic swollen (%)a

 1st sample 67.1 (10.1) (49.1, 80.8)

 2nd sample 65.4 (11.1) (45.4, 80.3)

Sperm Motility:a

Average path velocity (μm/sec)

 1st sample 67.1 (10.1) (49.1, 80.8)

 2nd sample 65.4 (11.1) (45.4, 80.3)

Straight line velocity (μm/sec)

 1st sample 27.1 (11.0) (0, 42.8)

 2nd sample 27.8 (10.7) (0, 42.8)

Curvilinear velocity (μm/sec)

 1st sample 62.2 (23.1) (0, 90.3)

 2nd sample 63.9 (22.2) (0, 93.7)

Amplitude head displacement (μm)

 1st sample 3.1 (1.5) (0.0, 5.0)

 2nd sample 3.2 (1.5) (0.0, 5.2)

Beat cross frequency (Hz)

 1st sample 19.7 (7.7) (0.0, 28.7)

 2nd sample 20.2 (7.6) (0.0, 28.7)
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Semen Endpoints Total (n=473)

Mean (SD) Centiles (5th, 95th)

Straightness (%)

 1st sample 67.5 (21.6) (0.0, 84)

 2nd sample 68.4 (19.7) (0.0, 84)

Linearity (%)

 1st sample 40.8 (14.2) (0.0, 55)

 2nd sample 41.6 (13.3) (0.0, 56)

Percent Motility (%)

 1st sample 12.2 (12.5) (0.0, 40)

 2nd sample 12.5 (12.5) (0.0, 41)

Sperm Head Measurements:

Length (μm)

 1st sample 4.9 (0.3) (4.4, 5.4)

 2nd sample 4.9 (0.3) (4.4, 5.4)

Area (μm2)

 1st sample 12.2 (0.9) (10.6, 13.7)

 2nd sample 12.2 (0.9) (10.8, 13.8)

Width (μm)

 1st sample 3.2 (0.2) (2.9, 3.4)

 2nd sample 3.2 (0.2) (2.9, 3.4)

Perimeter (μm)

 1st sample 13.2 (0.5) (12.4, 14.1)

 2nd sample 13.2 (0.5) (12.4, 14.1)

Elongation factor (%)

 1st sample 65.8 (5.4) (56.8, 74.5)

 2nd sample 66 (5.4) (57.3, 75.3)

Acrosome area of head (%)

 1st sample 25.6 (5.3) (17.1, 34.5)

 2nd sample 25.9 (4.8) (18.0, 33.9)

Morphologyb:

Strict criteria (%) 20.1 (10) (4.0, 38.0)

WHO Normal (%) 30.4 (12.5) (10.0, 51.0)

Amorphous (%) 30.6 (11.1) (14.5, 49.5)

Round (%) 1.2 (1.6) (0.0, 4.0)

Pyriform (%) 6.3 (6.2) (0.5, 19.5)

Bicephalic (%) 1.2 (1.7) (0.0, 4.5)

Taper (%) 2.8 (2.7) (0.0, 8.0)

Megalo head (%) 2.4 (1.8) (0.5, 6.0)
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Semen Endpoints Total (n=473)

Mean (SD) Centiles (5th, 95th)

Micro head (%) 1.5 (1.2) (0.0, 3.5)

Neck & midpiece abnormalities (%) 26.6 (10) (13.0, 45.5)

Coiled tail (%) 24.2 (11.2) (10.0, 46.5)

Other tail abnormalities (%) 5.2 (4.2) (1.0, 11.5)

Cytoplasmic droplet (%) 10.2 (5.3) (3.0, 19.5)

White blood cell count (# wbc) 1.1 (14) (0.0, 2.0)

Immature sperm (# immature sperm) 6.2 (16.7) (0.0, 18.0)

Sperm Chromatin Stability Assay:

DNA fragmentation index (%) 15.3 (10.4) (5.1, 33.8)

High DNA stainability (%) 7.4 (5.2) (2.0, 19.3)

NOTE: Five men were azoospermic for both samples and were excluded from analysis. Morphology and CASA was not performed for the second
sample.

a
Denotes next day analysis

b
Traditional and strict criteria
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Table 3

Unadjusted and adjusted fecundability odds ratios (FORs) for individual semen quality endpoints, LIFE Study
(n=468).

Semen Endpoint Unadjusted FOR (95% CI) Adjusted FOR (95% CI)a

General Characteristics

 Volume (mL) 1.06 (0.99, 1.13) 1.03 (0.96,1.11)

 Straw distance (mm) 1.01 (0.99, 1.03) 1.01 (0.99, 1.03)

 Sperm concentration (x106/mL)
 Sperm concentration (per 1 SD)

1.0 (1.00, 1.01)**

1.16 (1.05, 1.28)**
1.00 (1.00, 1.01)**

1.19 (1.06, 1.34)**

 Total sperm count (x106/mL)
 Total sperm count (per 1 SD)

1.0 (1.00, 1.00)**

1.20 (1.06, 1.36)**
1.00 (1.00, 1.00)**

1.20 (1.06, 1.36)**

 Hypo-osmotic swollen (%) 1.02 (1.01, 1.03)** 1.01 (1.00, 1.02)*

Sperm Motilityb

 Average path velocity (μm/sec) 1.01 (1.00, 1.02)* 1.01 (1.00, 1.02)

 Straight line velocity (μm/sec) 1.01 (1.00, 1.02)* 1.01 (1.00, 1.02)*

 Curvilinear velocity (μm/sec) 1.00 (1.00, 1.02)* 1.00 (1.00, 1.01)

 Amplitude head displacement (μm) 1.09 (1.03, 1.16)** 1.07 (1.00, 1.14)

 Beat cross frequency (Hz) 1.01 (1.00, 1.02) 1.01 (1.00, 1.02)

 Straightness (%) 1.01 (1.00, 1.01)** 1.01 (1.00, 1.01)*

 Linearity (%) 1.01 (1.00, 1.01)* 1.01 (1.00, 1.02)*

 Percent Motility (%) 1.02 (1.01, 1.02)** 1.02 (1.01, 1.02)**

Sperm Head Measurements

 Length (μm) 0.84 (0.63, 1.12) 0.74 (0.51, 1.07)

 Area (μm2) 1.15 (1.05, 1.26)** 1.11 (0.99, 1.24)

 Width (μm) 2.73 (1.70, 4.39)** 2.54 (1.42, 4.57)**

 Perimeter (μm) 1.07 (0.91, 1.26) 0.99 (0.81, 1.22)

 Elongation factor (%) 1.03 (1.01, 1.05)** 1.03 (1.01, 1.06)**

 Acrosome area of head (%) 1.03 (1.01, 1.04)** 1.03 (1.01, 1.05)**

Morphologyc

 Strict criteria (%) 1.03 (1.01, 1.04)** 1.03 (1.01, 1.04)**

 Traditional normal (%) 1.02 (1.01, 1.03)** 1.02 (1.01, 1.03)**

 Amorphous (%) 0.98 (0.97, 0.99)** 0.98 (0.97, 0.99)**

 Round (%) 0.90 (0.82, 0.98)* 0.89 (0.81, 0.98)*

 Pyriform (%) 0.98 (0.96, 1.00)* 0.98 (0.96, 1.00)

 Bicephalic (%) 0.93 (0.85, 1.01) 0.93 (0.86, 1.01)

 Taper (%) 0.96 (0.91, 1.00) 0.97 (0.93, 1.01)

 Megalo head (%) 0.96 (0.90, 1.04) 0.96 (0.89, 1.04)
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Semen Endpoint Unadjusted FOR (95% CI) Adjusted FOR (95% CI)a

 Micro head (%) 0.96 (0.86, 1.07) 0.99 (0.89, 1.11)

 Neck & midpiece abnormalities (%) 0.99 (0.98, 1.00)* 0.99 (0.97, 1.00)*

 Coiled tail (%) 0.98 (0.97, 0.99)** 0.98 (0.97, 1.00)**

 Other tail abnormalities (%) 0.98 (0.95, 1.01) 0.98 (0.95, 1.02)

 Cytoplasmic droplet (%) 0.99 (0.96, 1.01) 0.98 (0.96, 1.00)

 White blood cell count (# wbc) 0.99 (0.97, 1.02) 0.99 (0.96, 1.02)

 Immature sperm (# immature sperm) 0.99 (0.97, 1.00) 0.98 (0.97, 1.00)

Sperm Chromatin Stability Assay

 DNA fragmentation index (%) 0.98 (0.97, 1.00)** 0.98 (0.97, 1.00)*

 High DNA stainability (%) 0.98 (0.95, 1.00) 0.97 (0.95, 1.00)*

NOTE: Excludes 5 azoospermic men from analysis. Semen samples were imputed using the MCMC method. All point and interval estimates were
rounded to two decimal places.

a
FORs estimated using repeated measures and adjusted for left truncation to account for time off contraception before enrollment, male age,

difference of couples’ ages, male and female BMI, male and female serum cotinine concentrations, abstinence, and site.

b
Denotes 24-hour motility

c
Traditional and strict criteria – differentials were conducted using the traditional morphology.

*
p≤ 0.05;

**
p ≤ 0.01 before rounding to two decimal places.

SD, denotes standard deviation. The SDs for sperm concentration and total sperm count are 57.44 and 196.13, respectively.
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