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Abstract

Objective—Studies to evaluate clinical screening tests often face the problem that the “gold
standard” diagnostic approach is costly and/or invasive. It is therefore common to verify only a
subset of negative screening tests using the gold standard method. However, under-sampling the
screen-negatives can lead to substantial overestimation of the sensitivity and underestimation of
the specificity of the diagnostic test. Our objective was to develop a simple and accurate statistical
method to address this “verification bias”.

Study Design and Setting—We developed a weighted generalized estimating equation
approach to estimate, in a single model, the accuracy (e.g., sensitivity/specificity) of multiple
assays as well as simultaneously compare results between assays while addressing verification
bias. This approach can be implemented using standard statistical software. Simulations were
conducted to assess the proposed method. An example is provided using a cervical cancer
screening trial that compared the accuracy of human papillomavirus and Pap tests, with
histological data as the gold standard.

Results—The proposed approach performed well in estimating and comparing the accuracy of
multiple assays in the presence of verification bias.

Conclusion—The proposed approach is an easy to apply and accurate method for addressing
verification bias in studies of multiple screening methods.

Keywords

clinical screening tests; sensitivity; specificity; weighted generalized estimating equations;
verification bias

1. Introduction

The most accurate clinical methods to diagnose a disease or its precursor state are often not
practical for routine screening purposes in the general population. Biopsy and histology, for
example, are the gold standard for the diagnosis of many types of cancer, liver fibrosis, and
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renal disease, but can cause pain as well as infection and bleeding, which on rare occasions
may result in significant physical harm. The high cost of certain types of testing may also
make them impractical for routine use. Therefore, screening tests that are less invasive and/
or less expensive than the gold standard methods are commonly employed in disease
surveillance and to triage patients for more definitive testing. However, the sensitivity,
specificity, positive (PPV) and negative (NPV) predictive value of these screening tests must
first be established by comparing them to a gold standard.

If the disease is uncommon, only a small subset of those negative using a screening test will
have the disease. It may therefore be unethical and/or inefficient to request that every subject
undergo a more expensive and invasive gold standard procedure for verification of their
disease status. Instead, a representative sample of screen-negatives might be selected to be
verified with the gold standard. However, this results in over-representation of subjects with
positive screening tests in the sample and may bias estimates of sensitivity and specificity
(i.e., verification bias) (1-2).

Several statistical methods to correct for verification bias have been proposed. Begg and
Greenes (3), for example, developed a bias-correction procedure that assumes that the
disease prevalence estimated in the subset of screen-negative individuals who undergo
verification applies to all screen-negatives. Empirical methods such as bootstrapping (4) are
commonly employed to estimate the confidence intervals (Cls) for these bias-corrected
estimates of sensitivity and specificity. Zhou (5) allowed for a more general verification
selection procedure and developed a maximum likelihood (ML) approach to estimate
sensitivity and specificity as well as corresponding Cls. Neither of these approaches,
however, can be used to directly compare the performance of different assays.

To date, a few statistical methods able to directly compare two or more diagnostic tests
while addressing verification bias have been reported. The McNemar test can be used to
compare two screening tests when only a subset of subjects who are negative on both tests
undergo disease verification (6). Zhou developed a non-parametric ML method for
comparing sensitivity and specificity (7-8), as well as an ML approach to compare PPVs
and NPVs (9). Alonzo (10) proposed a ML estimator for relative sensitivity and relative
specificity that addresses verification bias. However, the complexity of these ML methods
and the computational difficulty in implementing them with standard software has restricted
their use.

The limited use of these methods is reflected in recent studies of cervical cancer screening
assays. Our review of 15 recent comparative cervical screening trials which performed
colposcopy (gold standard) in a subset of screen-negatives (11-25), only one study used
Zhou’s likelihood method (7) to compare the sensitivity and specificity of the assays (Table
1). A simple and easily implemented statistical method is therefore needed to estimate and
compare the performance of screening assays while accounting for verification bias.

2. Methods

2.1. Overview

Subjects who did not undergo the gold standard procedure to verify their disease status can
be viewed as having missing data (7, 26). Therefore, methods for incomplete data can be
adapted to correct for verification bias. Weighted generalized estimating equation models, a
direct extension of the generalized estimating equation approach, were proposed for the
analysis of correlated categorical data with missing data and censoring (27-29). Herein we
propose a similar method to compare screening assays when the majority of the screen
negatives are not verified and have missing gold standard case status. Specifically, we
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propose incorporating a weight determined by the inverse of the probability of a subject
undergoing the gold standard procedure. This approach allows for simultaneous estimation
of (i) sensitivity and specificity, (ii) PPV and NPV, (iii) differences in these parameters
between multiple screening tests, and iv) 95% Cls for these parameters. Moreover, the
proposed statistical approach can be readily implemented with commonly available
software.

2.2. Weighted Generalized Estimating Equation Models to Address Verification Bias

Consider a study to assess and compare two screening tests (e.g., Pap and HPV DNA tests).
Let Tjj denote the test result for the it person (i= 1,..., N) with the ji" test (j=1,2) where Tjj =
1 for a positive test result and 0 otherwise. We model Pj; = P(Tjj =1) by

logitP;j=[o+061 test;+B2Y;+B3Yitest; (1)

where test;j is an indicator variable equal to 0 for j=1 and 1 for j=2 and Y; = 1 if the it person
has disease and 0 otherwise. Since each subject contributes two test results, the results can
be correlated. A generalized estimating equation analysis can be used to account for the
correlation (30) with either an independent or exchangeable working correlation structure. If
all subjects undergo the gold standard test to verify their diagnoses, then no weighting is
necessary. However, if only a random sample of subjects with negative results in both
screening tests undergo the gold standard test, then a weighted generalized estimating
equation analysis should be used in which the subjects in the random sample are given a
weight equal to the inverse of the sampling fraction and the others given a weight of 1 in the
estimation procedure. For example, if 10% of screen-negative subjects undergo the gold
standard testing to verify their diagnoses, these subjects receive a weight of 10 (i.e., each
subject in this subset is representative of 10 screen-negative subjects). The sensitivity,
specificity and the diagnostic likelihood ratios (DLR) for each test along with their 95% Cls
can then be directly estimated from model (1). In addition, model (1) allows for direct
comparison of the sensitivity and the specificity between any two tests as described further
in Appendix A.

To estimate predictive values, we model /4 = P(Y; = 1) by log it s = th + Oytestj + T + 65
Tijtestj (2). This model also allows direct comparison of PPVs and NPVs for different
methods. When all subjects with at least one test positive are referred for diagnostic
verification by the gold standard, the PPV can be estimated from the verified subjects
without any adjustment. The NPV, however, needs to be estimated with the proper weight
incorporated.

Odds ratios of sensitivity, specificity, PPV or NPV between the two tests provided in models
(1-2) are less intuitive measures than the relative sensitivity, relative false positive fraction
(FPF) or specificity and relative predictive values. We therefore also consider using a log
link for Pjj and 24 (models (3-5)). Model convergence may be difficult to achieve with the
log link because log(P) and log(p) are less than 0. We therefore adopted a modified Poisson
regression model, the validity of which has recently been demonstrated for correlated binary
data (31).

Appendix A describes details of each model. These models can also be generalized to
incorporate more than two test results.

J Clin Epidemiol. Author manuscript; available in PMC 2015 March 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Xue et al.

Page 4

2.3. Addressing Testing Non-Compliance and Inadequate Test

Results

The above models can also be used to account for potential subject non-compliance in
undergoing tests and inadequate test results, whether among screen-positives or screen
negatives. For example, in practice, not every subject who is referred for diagnostic
verification using the gold standard assay will be compliant with that referral and some
subjects who are tested may not have an adequate test result. Therefore, verification bias can
also occur due to non-compliance and missing data even if all subjects are referred for gold
standard testing. For example, in Mayrand (24), the sampling fraction for a study subject
depended not only on her Pap and HPV test results, but also on the screening arm to which
she was randomly assigned as missing due to non-compliance and inadequate results
differed by screening arms.

2.4. Simulation Studies

We used simulations to evaluate the performance of our proposed method. We generated a
sample of 5,000 subjects with a disease prevalence of 5%, two correlated binary screening
tests (32) with a range of possible values for sensitivity and specificity, and a gold standard
diagnostic test with 100% accuracy (see details in Appendix B). In the first scenario, all
individuals positive in either or both of the screening tests and a randomly selected 10% of
individuals who tested negative in both screening tests were assumed to have their disease
status verified by the gold standard. Models (1)—(5) were applied to each simulated data set
using an independent working correlation.

We next considered the real-world situation in which not only do we lack complete gold
standard test results for screen-negative patients but also from the screen-positive patients
who were referred for the gold standard test but either failed to comply or had inadequate
test results. Specifically, in each simulated data set, we assumed 10% of subjects with
negative results in both screening tests, 90% of those who had positive results in only the
first screening test, 80% of those who had positive results in only the second screening test
and all the subjects with positive results on both screening tests, had undergone diagnostic
verification and had adequate gold standard test results. Log link models (3)—(5) were
applied to each simulated dataset.

These models were fit using both a weighted and un-weighted generalized estimating
equation approach. The latter approach was evaluated as the basis for comparison since it
provides results that are unadjusted for verification bias, and when used for comparing two
screening tests, is equivalent to McNemar’s test (33). Thus, our results help to highlight the
possible limitations of the McNemar test when comparing screening tests in the presence of
verification bias (20, 21).

The simulation was repeated 500 times. The performance of each method was summarized
according to % bias and % coverage for sensitivity, specificity, PPV, NPV and DLR and
empirical power or empirical type | error when comparing two tests.

2.5. Cervical Cancer Screening Example

The Canadian Cervical Cancer Screening Trial (CCCaST) was designed to compare HPV
DNA testing and Pap tests as stand-alone screening assays for the detection of cervical pre-
cancer and cancer among women ages 30-69 years who presented for routine screening
(24). A total of 10,154 women were randomly assigned 1:1 to a “focus on Pap” or a “focus
on HPV” screening arm: the women received a Pap test first and HPV test next in the former
group whereas the women received a HPV test first and Pap next in the latter group (34).
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Coloposcopy was recommended for a random sample of 10% of participants who had a
normal Pap and negative HPV test from each screening arm and all women who were
positive in either or both assays. A histological diagnosis of pre-cancer/cancer in these
specimens was considered the gold standard diagnosis. For the women with a positive Pap
and/or HPV test result who failed to comply with their referral to colposcopy, we assumed
this was unrelated to their unobserved disease status.

Within each arm, the investigators calculated corrected estimates of sensitivity and
specificity using Begg and Green’s (3) method and 95% ClIs with Zhou’s method (5). Since
test performance was similar in both arms of the study, the data were combined to obtain
overall estimates of sensitivity, specificity, PPV and NPV. However, 95% CIs were not
provided since Zhou’s (5) method cannot be readily applied with variable compliance rates
across screening arms. A z-test was used to test the difference in sensitivity and specificity
between the HPV and Pap tests with the Pap test performance estimated using only data
from the “focus on Pap” arm and the HPV test performance estimated using only data from
the “focus on HPV” arm. Although this statistical approach was inefficient given that
women in each arm underwent both HPV and Pap tests, existing methods could not be used
to readily combine data across the arms and directly assess the significance of any
differences between the HPV versus Pap tests.

We re-analyzed the CCCaST data using the proposed method to demonstrate how the new
method can: (i) be used to efficiently summarize data across different study arms, and (ii)
address non-compliance with referral to the gold-standard test and other sources of missing
data, which are additional forms of verification bias.

Results using a logit link function (Tables 2) show that the proposed method provides valid
point and interval estimates for sensitivity, specificity, PPV, NPV, and DLR as well as for
ORs comparing the performance between two screening tests as measured by % bias and %
coverage; the proposed method also provides valid statistical inferences for comparing the
two tests since the empirical significance level does not exceed 5%. Similar results were
observed using a log-link function (Table 3) where RRs instead of ORs were used for
comparing the performance of the two screening tests. As mentioned previously, the major
advantage to using the log link rather than logit function is that relative sensitivity and
specificity (or FPF) are easier to interpret than ORs. We thus recommend using the logit link
if the statistical comparison between tests is of primary interest but the log link if the
magnitude of the difference between tests is of primary interest.

The proposed method also yielded unbiased estimates of sensitivity, specificity, PPV, NPV,
DLR and the differences in these parameters between the two screening tests in the real-
world situation in which some subjects are non-compliant with their referral to undergo gold
standard testing (Table 4).

Estimates obtained using the standard generalized estimating equation approach were in
general biased (results reported in Appendix C), since the method does not account for
verification bias. However, when all positive tests were verified, absolute and relative PPV
estimates were unbiased; relative sensitivity and relative FPF estimates obtained using a log-
link function were also valid since each parameter estimate was inflated by the same factor
(35). Furthermore, the standard generalized estimating equation approach achieves similar
levels of empirical power/type | error as the proposed method when comparing sensitivity,
specificity (or FPF) and PPV. This result agrees with Schatzkin et al.’s finding that the
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McNemar test is valid for comparing sensitivity, specificity and PPV when all positive
screening tests are verified (6). However, the McNemar test is no longer valid in the
presence of non-compliance and missing data.

3.2. Cervical Cancer Screening Example

Using an independent working correlation and a log link function (model (4)), our estimates
of sensitivity, specificity, PPV and NPV for HPVV DNA and Pap tests match those of
Mayrand et al (24). We also determined 95% CI for each of these measures, and estimated
DLRs and their 95% Cls. We then compared each performance measure between the
screening tests using all test data from both study arms, whereas the statistical methods in
the original study used only partial data. As shown in Table 5, HPV had significantly better
sensitivity and negative DLR but worse specificity, PPV and positive DLR. We also
provided the estimates of their difference and their Cls. For example, the relative sensitivity
between HPV and PAP is estimated to be 1.72 (Cl: 1.30, 2.29) and relative specificity is
estimated to be 0.97 (ClI: 0.96, 0.98). Cls could not be determined in the original paper using
existing statistical methods. Thus, our method demonstrates that the HPV test is as specific
as the Pap test and can be up to two-fold more sensitive.

4. Discussion

Although methods to directly compare the performance of different screening tests that are
subject to verification bias have been described in the statistical literature, they have not
been widely adopted in cervical cancer screening trials since existing methods, including the
ML methods, are complicated and difficult to implement using standard statistical software.

We have proposed a conceptually simple method based on a weighted generalized
estimating equation approach; an approach originally proposed to address missing data.
Specifically, we generalized this method to estimate and compare the performance of binary
diagnostic tests when only a random subset of screen-negatives undergo diagnostic
verification with a gold standard. The proposed method can also address verification bias
due to the real-world problem that not every subject referred to gold standard testing
actually complies and/or obtains an adequate test result.

Simulation studies showed that the new method can accurately estimate the sensitivity and
specificity, PPV and NPV, DLR of multiple individual assays, calculate the corresponding
95% Cls, and simultaneously determine the differences in performance measures between
any two screening tests examined in the model. Using an example dataset, we also showed
that the proposed method made it possible to combine data from two or more study arms,
which could not be accomplished using prior statistical methods. Lastly, the new approach
can be readily implemented with commonly used statistical software such as SAS, R and
STATA (see Appendix D).

An important underlying assumption of the new model is that diagnostic verification
depends only on screening test results and not on any other variables, i.e., the missing at
random assumption. However, verification might sometimes depend on either recorded or
unrecorded variables which are related to disease state (26, 36—-37) so that a separate
regression equation is needed to model the weight(s) (38). While extension of the proposed
approach to address these more sophisticated situations of disease verification is of interest,
the development of a simple and straightforward computational method for this purpose will
be a challenge. Another assumption of our model involves the large sample normal
approximation and, thus, the proposed method may not be appropriate for small studies (39,
40).
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conclusion, we developed a straightforward approach to estimate and compare the
curacy of two or more screening tests in the presence of verification bias, which can be

readily implemented with standard software. The development of this method is timely since

ne

w screening tests for cancer continue to be developed based on DNA methylation, tissue

microRNA expression levels, proteomics, metabolomics, and other not-yet-imagined
molecular assays. The performances of these screening tests need to be examined and

co
ac
co

mpared to existing methods to determine if the new tests significantly improve diagnostic
curacy. We hope that the proposed statistical method will be adopted to facilitate these
mparisons and to improve the efficiency and validity of clinical screening studies.
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Appendix A: Details for Models (1)—(5)

We model Pij = P(Tij =1) by the following regression model:
logitP;j=0Fo+pF1test;+B2Yi+B3Y;test; (1)

where testj = 0 for j = 1 and 1 for j = 2; ; = 1 if the ith person has disease and 0 otherwise
and T;; & Tj, are correlated. The weighted generalized estimating equation method defined
below is used to estimate model (1):

OF;1 0P

—1

N
U(ﬁ):fol(

where V;=A!/?R;(a)AY? and Cow(T;) = Ai¢ and Ri(a) is the working correlation within T; =
(T, Tip), i.e., the two test results from the same subject and ¢ is the dispersion parameter
which is treated as a nuisance parameter here and f; is the sample fraction of disease
verification for the subject in his/her subset, 0 < 1 f; < 1. Either independent or exchangeable
working correlations can be assumed between test results.

Based on Model (1), the sensitivity for the jth test is

eﬂ(H‘(ﬂl +0B3)testj+B2
1++ePot+(B1+B3)test;+ 02

and the corresponding confidence interval can be obtained by first estimating the confidence
interval for /4 + (6, + fB)testj + 5 based on the robust variance estimate for the £s obtained
using the WGEE method and then taking the anti-logit transformation. The specificity for
the jth test is

1
1+eﬁ0+@1 test;

J Clin Epidemiol. Author manuscript; available in PMC 2015 March 01.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Xue et al.

Page 10

and its CI can be obtained similarly as described above.

Direct comparison of the sensitivity and the specificity between any two tests reduces to a
Wald test of the coefficients or a linear function of coefficients in the model: comparison of
the sensitivity of two different screening tests is equivalent to testing the significance of f; +
Ss. The odds ratio of sensitivities of the two tests is €L * /3. Comparison of specificities
between the two tests is equivalent to testing for significance of 5, where the odds ratio of
their specificities is e /L.

The diagnostic likelihood ratio (DLR), the ratio of the likelihood of the observed test result
in the diseased versus non-diseased population, is

eB2tBatest;

Bo+pP1test;
1+eﬂ0+<ﬂl+ﬁ3)testj+gz(1+e o test; )

for a positive test j and is

1+eﬁo+f31 test;
1 _l_eﬁ()'i‘(ﬁ] +[7’3)testj + 52

for a negative test j. Their variance estimates can be obtained using the delta method.
We model g = P(Y; = 1) using the following logistic regression model:

logitp;=0p+61 testj —H92T7jj +63T¢j testj @)

600+(01+93)t68tj+02
Based on model (2), the PPV for the jth test is Ltef0+(01+03)test; 02, which is the same as

1
the crude estimate of PPV. The NPV for the jth test is 1t lot0rtest; - In addition to
estimating the PPV and NPV, the model allows the comparison of PPVs between tests
through testing the significance of &, + & and the comparison between NPVs through
testing the significance of 0.

To obtain relative sensitivity, relative specificity, the following model:
log Pj="o+1testj+y2Yi+vysYitesti; (3)

is considered in which a log link function is used. The sensitivity for the jth test is then

e+ (71 + 3)test + 12 and the FPF (false positive fraction=1-specificity) for the jth test is
given by 0+ (711l The relative sensitivity comparing the two screening tests is e’ *3 and
the relative false positive fraction is €1, If direct calculation of specificity is preferred, a
model on the agreement between the disease status and the corresponding test result, i.e., a
model on 7;j = P(Y; = Tj;) can be used instead (30):

logm;j="o+1test;+y2Yi+y3Yitesti;  (4)

so that relative specificity is e’l.
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Similarly, a log link can be used for the model of PPV and NPV. We model the test and
disease agreement 7;; = P(Y; = Tj;) as the following

10gﬂ'ij:50+61 test; +0d9 Tij +53Tij test;. (5)

The PPV for the jth test is therefore e®0* (51 + B)testj + &2 and the NPV for the jth test is
e% + diteslj The comparison between PPVs is equivalent to testing the significance of 81 + 83
and the comparison between NPVs is then equivalent to testing the significance of &;.

Appendix B: Simulation of the data

In each simulation, a sample of 5,000 subjects with a disease prevalence of 5% were
generated with two binary screening tests under a range of possible values for sensitivity and
specificity for both tests (sen,, seny, spe;, spey), and a gold standard diagnostic test that was
100% accurate. Specifically, we assume

(T, Ty)|case~Bi var iateBernoulli(1, senq, 1, seng, p1)
and
(T1, T) | control~Bivar iateBernoulli(1, 1—speq, 1, 1—spey, p2)

where p1 and p;, are the correlations between the two screening test results for a case and a
control, respectively. Here we set o = oo = 0.3. Correlated binary variables were generated
from correlated Poisson variables, where the correlated Poisson variables were expressed as
a convolution of independent Poisson random variables (32).

Appendix C: Simulation Results of the Generalized Estimating Equation
Approach without adjustment for verification bias

Table 1a

The performance of the weighted generalized estimating equation approach using a logit
link (models (1)-(2))

1Test1 Comparison

sen, spe; dir+; Bias  dlr—; Bias Ofgen OFepe

2Bjas Cov Bias Cov Bias Cov Power Bias Cov Power

senl=sen2=0.50, spel=0.75, spe,=0.80

41.7 00 -473 0.0 -41.5 113 -26 946 54 228 184 100
sen;=0.50, sen,=0.60, spe;=0.75, spe,=0.80

32.3 04 -474 0.0 -45.2 28.0 334 79.2 76.6 23.0 18.0 100
sen;=0.50, sen,=0.60, spe;=spe,=0.75

33.0 02 -419 0.0 -41.1 15.4 30.7 84.0 74.2 03 95.6 4.4

Test 1 Comparison

ppvy npvy Olpoy Olppy

Bias Cov Bias Cov Bias Cov Power Bias Cov Power

ppvi=ppv,=0.10, npv,=0.96, npv,=0.97
05 976 -34 00 -05 958 4.2 107 482 998
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Test 1 Comparison

ppvy npvy Olppy Olnpy

Bias Cov Bias Cov Bias Cov Power Bias Cov Power

ppv,=0.06, ppv,=0.07, npv,=npv,=0.96
02 994 -13 548 -0.7 954 332 87 918 8.2

Note: Results based on 500 simulated data sets of size=5,000 among whom 10% of negative on both tests and all positive
on any test obtained disease verification and model (1);

1 . -
As several performance measures are calculated for each test and the findings from the two tests are similar, for
simplicity, only the results for test 1 and the comparison between test 1 and 2 are reported (test 2 data not shown).

2Bias(%) = (estimate-true value)/true value *100; Cov(%) =the percent that the estimated CI contained the true parameter;
Power(%)=the percent that the estimated CI does not contain the null value: when the true parameter equals to the null
value, this percent is the empirical type | error rate; when the true parameter does not equal to the null value, this percent is
the empirical power.

Abbreviation: sen1 and sen2, sensitivity of test 1 and 2 respectively; spe1 and spe2, specificity of test 1 and 2 respectively;
orsen, odds of sensitivity of test 1 vs odds of sensitivity of test 2; orspe, odds of specificity of test 1 vs odds of specificity
of test 2; dIr+1 and dlr—1, positive and negative diagnostic likelihood ratio for test 1 respectively; ppv1 and ppv2, positive
predicative value of test 1 and 2 respectively; npv1 and npv2, negative predicative value of test 1 and 2 respectively;
orppv; odds of PPV of test 1 vs odds of PPV of test 2; ormpv, odds of NPV of test 1 vs odds of NPV of test 2.

Table 2a

The performance of the generalized estimating equation approach using a log link (models

(3) & (5))

Test 1 Comparison

sen; fpf, dir+, Bias dlr—, Bias Meen It

Bias Cov Bias Cov Bias Cov Power Bias Cov Power

sen;=sen,=0.50, fpfl: 0.25, fpfzz 0.20

413 00 -473 00 -41.5 11.3 -0.8 94.0 6.0 -0.2 100 100
sen;=0.50, sen,=0.60, fpf,=0.25, fpf,=0.20
323 02 142 0.0 -45.0 28.0 03 954 77.0 00 950 100
sen;=0.50, sen,=0.60, fpf;=fpf,=0.25
330 04 126 0.0 -41.1 154 -0.4 934 76.2 00 970 3.0
Test 1 Comparison
ppvy npvy Mooy Mooy

Bias Cov Bias Cov Bias Cov Power Bias Cov Power

ppvi=ppv,=0.10, npv,=0.96, npv,=0.97
-01 980 -35 00 -03 970 3.0 -6.4 80 99.8
ppv,=0.06, ppv,=0.07, npv,;=npv,=0.96
02 996 -14 662 01 96.0 35.6 -05 928 7.2

Abbreviation: fpf1 and fpf, false positive rate positive rate of test 1 and test 2 respectively; rrsen, Ifpf, fppv. Mppv,
relative sensitivity, relative FPF, relative PPV and relative NPV between test 2 and test 1 respectively.
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Table 3a

The performance of the generalized estimating equation approach using a log link in a
general setting (Models (3) & (5))

Test 1 Comparison

seny fpf; dir+, Bias  dlr-, Bias IMeen ¢

Bias Cov Bias Cov Bias Cov Power Bias Cov Power

sen;=sen,=0.50, fpf]_: 0.25, fpf2= 0.20

427 0.0 136 0.0 -39.5 -4.9 36 954 4.6 79 348 100
sen;=0.50, sen,=0.60, fpf;=0.25, fpf,=0.20
349 02 136 0.0 -42.9 19.2 12 954 85.0 80 336 100
sen;=0.50, sen,=0.60, fpf;=fpf,=0.25
349 04 121 0.0 -39.3 9.5 09 940 83.0 57 544 45.6
Test 1 Comparison
ppvy npvy Mooy Mooy

Bias Cov Bias Cov Bias Cov Power Bias Cov Power

ppv1=ppv,=0.10, npv;=0.96, npv,=0.97
20 94 -33 00 -28 956 4.4 -6.3 108 99.8
ppv,=0.06, ppv,=0.07, npv,=npv,=0.96
25 992 -14 708 -17 946 29.4 -0.6 920 8.0

Appendix D: R and SAS program

Define sweight=1/disease verification fraction, program to use for estimating and comparing
test performances are given as follow:

In R:

For sensitivity and FPF and log link function:

geese(Test Testtype+case

+Testtype:case, id=subid,weights=sweight,data=geedata,corstr=“indep”, family
=poisson)

For PPV and NPV

agree<-1l-abs(case-Test)

geese(agree Test+Testtype

+Testtype:Test, id=subid,weights=sweight,data=geedata,corstr=“indep”, famil
y =poisson)

In SAS: For sensitivity and FPF and log link function (similar code for PPV
and NPV)

proc genmod data= descending;

class subid;

model Test=Testtype case Testtype*case/dist=poisson;

repeated subject=subid/corr=indep;

weight sweight;

run;
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Summary of a review of recent large cervical screening studies (over 1,000 women) which conducted

Table 1

colposcopy in only a subset of screening negatives

Number of Studies

Methods used to compare performance between assays

Nine studies (11-19)
Two studies (20-21)
One study (22)
One study (23)
One study (24)
One study (25)

No formal statistical comparison is provided
McNemar Test
Fisher’s Exact Test
Bootstrap method
Two-sampled t-test
Zhou’s likelihood method (7)
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