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Abstract
Secreted and cell surface-localized members of the immunoglobulin superfamily (IgSF) play
central roles in regulating adaptive and innate immune responses, and are prime targets for the
development of protein-based therapeutics. An essential activity of the ectodomains of these
proteins is the specific recognition of cognate ligands, which are often other members of the IgSF.
In this work we provide functional insight for this important class of proteins through the
development of a clustering algorithm that groups together extracellular domains of the IgSF with
similar binding preferences. Information from hidden Markov model-based sequence profiles and
domain structure is calibrated against manually curated protein interaction data to define
functional families of IgSF proteins. The method is able to assign 82% of the 477 extracellular
IgSF protein to a functional family, while the rest are either single proteins with unique function or
proteins that could not be assigned with the current technology. The functional clustering of IgSF
proteins generates hypotheses regarding the identification of new cognate receptor:ligand pairs
and reduces the pool of possible interacting partners to a manageable level for experimental
validation.
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Introduction
The immunoglobulin superfamily is one of the largest domain families in the human
proteome, encompassing over 700 cell surface and soluble proteins1. Members of the IgSF
contain at least one immunoglobulin (Ig) domain, which is a 70–110 residue long β-
sandwich fold, many of which contain a conserved disulfide bond connecting its B and F
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strands. The ancestral function of IgSF proteins is believed to be the mediation of homotypic
cell-cell adhesion2. In vertebrates, IgSF proteins have evolved to play key roles in cell
recognition and adhesion, developmental and morphogenetic processes, and innate and
adaptive immune responses3. In addition to antibodies and T-cell receptors (TCRs), the
human IgSF contains 477 cell-surface or secreted proteins (hereon referred to as
‘extracellular IgSF’, see Supplementary Table 1). Many of these extracellular IgSF proteins
contribute to the immune response through specific cell-to-cell (trans) receptor:ligand
interactions. While some of these IgSF members have been extensively studied, many
remain uncharacterized with regard to interacting ligand(s) and specific function. There is
strong biomedical motivation for defining the receptor:ligand relationships of these
molecules. For example, CD80 and CD86 on antigen presenting cells bind to CD28 or
Cytotoxic T-lymphocyte protein 4 (CTLA-4) on T-cells, triggering co-stimulatory or
inhibitory T-cell responses, respectively4. Orencia™, a soluble version the CTLA-4
ectodomain, engages the CD80/CD86 ligands on antigen-presenting cells, interferes with
their interaction with CD28 and results in blockade of the CD28-based co-stimulation of T-
cells5. This behavior results in global suppression of T cell immunity, making Orencia a
leading therapy for autoimmune diseases such as rheumatoid arthritis. A high affinity
variant, Belatacept, has received FDA approval for the prevention of kidney transplant
rejection6. Furthermore, Ipilimumab, a function blocking mAb targeting CTLA4, results in
systemic immune activation and is the most recently developed therapeutic for the treatment
of late stage melanoma7.

With the long-term goal of systematically defining the entire ensemble of receptor:ligand
interactions involving the extracellular IgSF proteins, we present a computational method to
cluster these proteins into functional families. As the primary function of the IgSF
ectodomains is binding, we define a functional family as a group of IgSF proteins that have
similar binding properties, i.e., the recognition of the same extracellular partner in a similar
fashion (binding site and pose). This clustering generates binding partner predictions that
reduce the number of potential candidate interactions requiring experimental verification. In
addition, the resulting functional families can be analyzed to identify family-specific
physico-chemical features, such as conserved side chain patterns that enable members of the
same family to bind related ligands in a similar manner. This clustering can also reveal
unique structural features that contribute to novel function. These considerations are of the
upmost importance for large-scale structural genomics efforts, as they provide powerful
criteria for identifying and prioritizing those functional families that lack any experimental
characterization, as well as unclustered singletons that have no significant similarity to other
IgSF proteins8. These are the targets that are most likely to benefit from structural analysis.

Functional clustering using sequence or structural similarity is a well-established approach,
but has many subtleties. One complication is that unrelated proteins can have the same
function due to convergent evolution. While this is a rather rare situation, there are several
such documented cases9; 10. Even between proteins with common ancestries, it is difficult to
assert common or related functionalities using clustering methods that are based on pairwise
sequence identity (e.g. BlastClust11 and CD-HIT12). This difficulty arises because most
functionally-related proteins diverged so far over time that their global pairwise sequence
identities are indistinguishable from those of otherwise unrelated proteins13. For instance, in
case of IgSF proteins, the ectodomains of CD80 and the functionally related CD86 share
only 27% sequence identity, whereas CD80 shares greater than 27% sequence identity with
other, functionally unrelated IgSF proteins such as immunoglobulin superfamily DCC
subclass member 4 (IGDC4)14 and neural cell adhesion molecule L1 (L1CAM)15. Thus,
consideration of pairwise sequence comparisons alone does not allow for robust prediction
of functional relatedness.
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Agglomerative clustering methods have been more successful in subfamily identification
than direct sequence comparisons. SCI-PHY16 uses Dirichlet mixture densities to construct
profiles for subtrees, and relative entropy as a distance function for merging subtrees.
Similarly, GEMMA17 uses profile-profile comparison to cluster Gene3D superfamilies into
functional subfamilies (available as ‘FunFams’18 from the CATH-Gene3D database). BAR
+19, ProtoNet20, and TRIBE-MCL21 are large-scale databases that generate protein clusters
based on sequence similarities from BLAST for all proteins in the Uniprot database.

A central challenge to subfamily clustering is the selection of an appropriate cutoff for the
established phylogenetic tree of functional relatedness such that the granularity of the
resulting families is appropriate for the research question at hand. SCI-PHY uses a
minimum-encoding-cost criterion to automatically determine the cutoff. FunFams offers two
subfamily granularities: a coarse FunFams layer that exploits available GO annotation data
to select a protein-family specific cutoff, and a fine FunFams layer using a fixed cutoff that
is based on a training set of six families from the enzyme Structure– Function Linkage
Database22. TRIBE-MCL21 uses Markov cluster (MCL) method to detect natural clusters
based on the distribution of edges. In contrast to these generic purpose clustering
approaches, Rubinstein et. al. used a sequence-based method, termed the Brotherhood
algorithm, that utilizes intermediate sequence information to cluster IgSF proteins into
functionally related families23. Brotherhood method was calibrated empirically using a set
of 14 hand-curated IgSF functional families, but without paying attention if these really
share common ligands.

A related field to functional clustering is functional annotation, where a sequence of
unknown function is explored using information of amino acid sequence, phylogeny,
genomic context, protein-protein interaction networks, protein structure, microarray
expression data or a combination of these data types. Clustering is one of the approaches
that guides transfer of functional annotation (PANNZER24, BAR+19). Conversely functional
annotation can be used to guide functional clustering (FunFams). A recent large scale
critical assessment of protein function annotation (CAFA)24 evaluated 54 functional
annotation algorithms, using Gene Ontology (GO) terms as performance benchmarks. A
phylogenomics-based method, SIFTER25, shows promise by taking a reconciled phylogeny
for a protein family and using a statistical model of function evolution that accounts for
lineage-specific rate variation to incorporate annotations throughout an evolutionary tree.
However, the current algorithm transfers rather generic GO annotations, which are usually
not specific enough for identifying trans-cellular binding partners. For instance, the most
specific GO molecular function annotation currently available for CD80 and CD86 is
‘coreceptor activity’, which does not provide ligand information to generate experimental
hypothesis and would be indistinguishable from many of the hundreds of secreted, cell
surface IgSF proteins.

We present a method for functional clustering that differs from the usual sequence similarity
methods. First, we assessed the sequence similarity between two proteins by comparing their
respective sequence profile-based hidden Markov models (HMMs)26. This amplifies signals
from the conserved (and often functionally more important) portions of the sequences and
downplays the role of less conserved segments. Second, and most importantly, we
introduced a novel approach to calibrate profile similarity among functionally related
proteins using the available experimental protein-protein interaction data. We compiled a
training set of IgSF pairs that share the same experimentally verified ligands from the
STRING protein interaction database27, and used it to guide the optimal grouping of
candidate proteins. Furthermore, in our similarity measure of IgSF proteins, we can directly
include other empirical information about the specific functions of these proteins. For
instance, previous studies of IgSF domain activity in cell adhesion have identified the N-
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terminal IgSF domain as the domain most frequently involved in binding
interactions28; 29; 30. We have included this information as a criterion in our similarity
measure, so that IgSF pairs that share sequence homology at the N-terminus are considered
more functionally similar than those that share homology over disparate segments of their
sequences. Finally, we reduce erroneous linkages in our clustering by hierarchically
clustering our IgSF pair distances into a graph tree31.

The method, Protein Interactions Calibrated hidden Markov model Tree (PICTree) was
applied to the subproteome of 477 extracellular human IgSF proteins, resulting in the
assignment of 390 to respective functional families. The resulting functional groups can
serve as a starting platform to form hypothesis about possible new receptor-ligand
interactions. We discuss one such case for the VSIG8 and the cortical thymocyte marker in
Xenopus (CTX) family of proteins. The method can be readily adapted to handle other
classes of proteins, and can be easily updated to include additional empirical information
about the binding modes of proteins.

Results and Discussion
Functional clustering of all known 477 human IgSF proteins

Positive and negative training sets for the calibration profile similarity were prepared from
the STRING database27, a web resource for protein-protein interactions that integrates meta
information from experiments, computational methods, and text-mining. The positive
training set contained 55 manually curated non-redundant IgSF pairs, each binding at least
one common trans-binding ligand according to STRING (Table 1). As an example, high-
quality protein-protein interaction records in STRING identified both CD80 and CD86 as
binding partners to CD28 and CTLA-4. These interactions were further manually verified to
be cell-to-cell, trans-binding interactions. CD80/CD86 [common ligand: CD28 and
CTLA-4] and CD28/CTLA-4 [common ligand: CD80 and CD86] hence constitute two
common ligand IgSF pairs in our positive training set.

We also extracted a ‘negative’ training set of 36,066 non-redundant IgSF pairs that are not
known to bind any common ligand. This negative training set is an approximation of the true
negative set, because it is not possible to definitively establish that two IgSFs do not share
any common ligand. This is because (i) there is an enormous number of possible common
ligands to check; (ii) such binding experiments might not have been performed; (iii)
negative binding results are not recorded in protein interaction databases; (iv) the existence
of false negatives - even when two proteins were reported not to interact, subsequent
experiments could prove otherwise. As an example of this latter issue, myelin-associated
glycoprotein was reported to be unable to bind fibronectin32; however, a subsequent paper
reported otherwise33. For these reasons, our negative training set includes IgSF pairs that, in
the future, could be shown to share common ligands when more experimental data become
available.

We generated a PICTree clustering for the 477 IgSF proteins from our dissimilarity matrix
computed (see Methods). We define a measure, h-value, which is the node-to-node distance
between two IGSF proteins within the graph tree, to characterize functional similarity. The
distributions of h-values within PICTree for the 55 IgSF pairs in our positive and the 36,066
pairs in our negative training set are well separated (Fig. 1). Out of the 55 positive common-
ligand IgSF pairs, 50 have h values less than 0.2, while the remaining five outliers (Table 1,
in bold) have h values between 0.402 to 2.925. In contrast, the negative dataset has h
ranging from 0 to 21.02, with 95% of them between 0.5–5.0. Overall, h values for the full
set of 477 IgSF proteins studied ranged from 0 to 28.6. To determine an optimal cutoff for
delineating functional families, we plotted the sensitivity and specificity of our predictions
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as a function of various h cutoffs (Fig. 2). We aimed to identify an optimal cutoff that
achieves greater than 90% sensitivity, while maximizing the specificity. The optimal trade-
off is achieved at h = 0.192, corresponding to a sensitivity of 90.9% and a specificity of
99.2% with an upper bound on the false discovery rate at 0.8%. Fig. 3 shows the
performance of the PICTree method on positive training set at the selected cutoff.

The methodology was applied to assign all 477 human extracellular IgSF proteins into
functional groups. IgSF pairs with pairwise PICTree node-to-node distance h less than the
cutoff hc = 0.192 are assigned to the same functional family. We predict 390 IgSFs to share
common ligand(s) with at least one other IgSF protein (Fig. 4 and Supplemental Table 2),
forming 83 functionally-related clusters; while 87 IgSFs remained unclustered singletons.
Our positive training set of 55 common-ligand IgSF pairs is distributed across 26 different
clusters. A detailed list of the clusters is available in Supplementary Table 2.

Figure 5(a) shows the distribution of the cluster size from PICTree. Fifty-three out of the 83
multi-member clusters are between 2 to 4 members. The three largest clusters are dominated
by members from gene clusters: Cluster 3 (30 out of 34 members from the Leukocyte
Receptor Complex34); Cluster 18 (20 out of 20 members from the Pregnancy-Specific
Glycoprotein gene cluster35;), and Cluster 10 (7 out of 17 members from the Butyrophilin
gene cluster36). Figure 5(b) shows the variance of extracellular segment sequence length
amongst cluster members as a function of cluster size. The lack of correlation between
length variance and cluster size suggests that IgSFs with different domain architectures are
capable of binding the same ligand using a common N-terminal domain. For instance, T-cell
immunoglobulin and ITIM domain protein (TIGIT)37, which has one single Ig-V domain,
shares the same ligand (PVR) with the nectins, which extracellular segment comprise of a
single N-terminal Ig-V domain and two proximal Ig-C domains. Hence, a large length
variance is not necessary indicative of functional mis-assignment.

Comparison with other clustering algorithms
We compared PICTree to three other subfamily clustering methods, SCI-PHY16,
FunFams18, and BAR+19. For SCI-PHY, we used both versions 1.0 and 3.0 (‘SCIPHY1’
and SCIPHY3) and three different algorithms (MUSCLE38, CLUSTALW39, and MAFFT40)
to generate the required input multiple sequence alignments (MSAs). Performances were
benchmarked against the positive set of 55 common-ligand IgSF pairs and the negative set
of 36,066 pairs with no known common ligand. Since FunFams assignments are domain-
based, IgSF sequences were scanned against the CATH Ig superfamily to download
FunFams assignment for the Ig domains only. To provide a fair comparison, performance
was measured on a smaller, ‘Ig-only’ subset involving only IgSF pairs with only Ig domains
in their extracellular segments (see Methods).

The performances of all clustering schemes are shown in Table 2. Interestingly the
performance of SCI-PHY 1.0 is significantly better than that of SCI-PHY 3.0. Both versions
showed a strong dependence on the choice of generating the input MSA, however SCI-PHY
3.0 provided extreme results by clustering the IgSFs into either one single family (Table 2a:
SCIPHY3_with MAFFT or MUSCLE inputs) or into mostly singletons (SCIPHY3_with
CLUSTALW input). The older version, SCI-PHY 1.0 gave a more consistent performance,
with comparable specificity to PICTree. It was unclear what caused the discrepancy in
performance between the two SCI-PHY versions – although one documented difference
between the two versions is the switch from SAM-HMM41 in version 1.0 to HMMER42 in
version 3.0. BAR+ has slightly superior specificity over PICTree, but has poor sensitivity
(50.91% for ‘all’ and 15% for ‘ig-only’ test sets). A key reason could be that clusters in the
BAR+ database are based on the entire length of proteins, whereas our current PICTree
clustering is based on the extracellular segment of proteins, because we are interested in
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extracellular binding function. Overall, PICTree has the best sensitivity amongst all methods
tested for both ‘all’ and ‘Ig-only’ benchmarks (excluding the single-cluster results of
SCIPHY3_MAFFT and SCIPHY3_MUSCLE).

We next compared our PICTree clustering results to that from the Brotherhood
algorithm23(Fig. 6). Of the 14 functional families assigned by the Brotherhood algorithm,
PICTree obtained the same assignments for two families (TIM, semaphorins); and further
divided nine families (B7/ butyrophilin, SLAM, nectin/nectin-like, PGFR, SIGLEC, CD28,
MHC-II, CTX, CEACAM/PSG) into subclusters or as singletons. This subdivision is not
surprising because PICTree uses a more stringent cutoff hc based on IgSF pairs binding
identical ligands. For instance, the Brotherhood algorithm assigned CD80 and CD86 to the
same family as the butyrophilins, whereas PICTree considers CD80 and CD86 as a separate
family, in line with the experimental observation that CD80 and CD86 share the same
binding partners, CD28 and CTLA4, while butyrophilins do not bind CD28 or CTLA4.

In the remaining cases, PICTree either combined or added new members to the Brotherhood
families. For instance, KIR and LIR were combined in the PICTree clustering along with
newly added members. The joining of KIR and LIR families by PICTree made sense
because KIR and LIR families both contain MHC-I binding proteins. The new members
LAIR1, LAIR2, FCAR, OSCAR, GPVI, and NCTR1 are all co-located with KIR and LIR
on the leukocyte receptor complex (LRC) on chromosome 19q13.4 in human, sharing
ancient homology with KIR and LIR that likely arisen from gene duplication, although their
known ligands do not include MHC-I34. In another example, the MHC-I family was also
assigned new members HMR1, ZAGL1, ZA2G, HFE, MICA, MICB, FCGRN. Of these,
HMR1 is shown to have antigen-presenting activity43. Finally, PICTree assigned to the B7/
butyrophilin family a new member, selection and upkeep of intraepithelial T-cells protein 1
homolog (SKIT1). Mouse SKIT1 is expressed in thymus and skin epithelia and is essential
for positive selection of Vγ5+Vδ1+ T cells44, although the exact mechanism of its interaction
with T cell is not known.

Node-to-node distances within PICTree are a better discriminator of functional similarity
than pairwise sequence identity

A key issue is the accuracy of PICTree in quantifying functional relationships between
proteins compared to the performance of traditional approaches based on pairwise sequence
identity. The pairwise sequence identities of the 55 verified common-ligand pairs range
between 20.5–93.5%. In contrast, their PICTree h values have a tight range between 0–
2.925, out of a possible observed range of 0-28.6 (Fig. 7). If we omit the five pairs that were
not properly assigned by PICTree (red circles in Fig. 7 and bold in Table 1), the remaining
50 verified common-ligand IgSF pairs (black circles) have an even tighter range of h (0–
0.192), even though their sequence identities are widely distributed between 26–94%. This
observation suggests that PICTree node-to-node distance is a more discriminating predictor
of common-binding functionality.

We illustrate this practical advantage of PICTree’s by estimating the number of testable
IgSF:X interactions (ntest) generated by PICTree and pairwise sequence identity clustering
results respectively. We first note that the exact number of known trans-binding IgSF:X
interactions for all 477 IgSFs is currently not known – our manually curated list of 175
IgSF:X interactions is intended for training (see Methods) and represents just a small, high-
quality subset of all reported interactions that could potentially be screened. Second, a poor
clustering method that over-merges functional families could result in multiple known
ligands within a cluster. To get an upper estimate of ntest, we consider here an extreme case
where for each non-redundant IgSF pair (i,j) in a cluster, there is a known unique ligand for i
that we need to test against j. The number of testable ligand-receptor interactions is then
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estimated by  where Ncluster is the number of mulit-member
clusters generated (i.e. excluding singletons), and N(i,j)redundant,c the number of non-
redundant IgSF pairs in cluster c.

When no clustering is performed (i.e. all 477 IgSFs are in a single super-cluster), there are
74,710 non-redundant IgSF pairs (Fig. 7, brown crosses) and hence ntest = 74,710. If
pairwise sequence identity is used as the metric for functional relatedness, an identity of ≥
26% is required to correctly capture the 50 verified common-ligand IgSF pairs to attain
90.2% sensitivity. Clustering by sequence identity at this criterion will result in 6,338 non-
redundant, clustered IgSF pairs (Fig. 7, brown crosses above blue dashed line) for
experimental verification. In contrast, a PICTree node-to-node distance cutoff of hc = 0.192
captures the same 50 verified common-ligand pairs but predicts a more manageable ntest
=1,072 (Fig. 7, brown crosses left of green dashed-dotted line). This number is comparable
to a recently reported large scale screen involving ~1000 ligand-receptor interactions that
resulted in the identification of poliovirus receptor (PVR), and PVR-like proteins 2 and 3 as
binding partners for TIGIT37.

PICTree method can predict novel functional assignments: the case of VSIG8 protein
The clustering of IgSF members into functional families allows us to generate hypotheses
regarding previously uncharacterized ligand-receptor interactions. If at least one member of
a family has a known ligand or distinct binding feature, one can speculate that the other
family members share this feature. VSIG8 (V-set containing and immunoglobulin domain
containing protein 8) provides one such example. VSIG8 is a 414-residue transmembrane
protein found in stratified epithelia of hair follicle, nail and oral cavity45; 46, with no trivial
relationship to other IGSFs. The PICTree method assigned VSIG8 to Cluster No. 4 (see
Supplementary Table 2) in which all other constituents are known members of the CTX
gene family (Fig. 8). As with VSIG8, all other members of this PICTree cluster are single-
pass membrane proteins with two extracellular Ig domains. Coxsackievirus and adenovirus
receptor (CXAR) and endothelial cell-selective adhesion molecule (ESAM) are found in
cellular tight junctions: CXAR is an essential component of tight junctions in simple
epithelial cells, but is not found in stratified epithelia; whereas ESAM is selectively
expressed in cultured human and murine vascular endothelial cells47. In addition, it has been
shown that along with ESAM47 and CXAR48, two additional Cluster 4 members, adipocyte
adhesion molecule (ACAM)49 and immunoglobulin superfamily member 11 (IGS11)50, also
mediate cell-cell adhesion through homophilic dimerization. We therefore propose that
VSIG8 is the counterpart to CXAR, serving the analogous function of maintaining tight
junctions in stratified epithelia through homophilic trans-dimerization.

Analysis of five mis-annotated IgSF pairs
It is important to examine the five common-ligand IgSF pairs in the positive training set that
PICTree clustering failed to predict correctly (Table 1, bold). The first two pairs, contactin-2
(CNTN2)/neural cell adhesion molecule 1 (NCAM1) [common ligand: neurocan (NCAN)],
and L1CAM / NCAM1 [common ligand: neurocan], involved neural cell adhesion proteins
critical for neuronal development. NCAM1 and L1CAM can bind both the chondroitin
sulphate chains and the core protein of NCAN51, whereas CNTN2 only binds to the NCAN
core protein52. For NCAM1 and L1CAM, their chondroitin sulphate binding sites are both
located on Ig domains (second Ig domain for NCAM1 53 and first Ig for L1CAM54). Both
binding sites involve strands C and G, although the NCAM1’s binding site is more
extensive. Hence evidence points to L1CAM and NCAM1 binding chrodroitin sulphate
chains on NCAN via similar mode. On the other hand, the core-NCAN-binding sites on
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CNTN2, and NCAM1 are unknown, so there is not enough evidence to ascertain if CNTN2
and NCAM1 bind core NCAN protein via the same mode.

The remaining three common-ligand IgSF pairs that escaped PICTree prediction are:
CD226-PVRL3 [common ligand: PVR and PVRL2], CD226-T-cell-activated increased late
expression protein (TACT) [common ligand: PVR], and PVRL3-TACT [common ligand:
PVR], all belong to the nectin/nectin-related family23. While PVRL3, TACT and CD226 all
bind to PVR via their N-terminal variable Ig domain 55; 56; 57, there is no further
biochemical or structural information to pinpoint the exact PVR-binding patches.

Altogether, in four out of the five cases, further binding site information is required to
definitively establish if the IgSF pairs bind via common binding mechanisms, before we can
conclude whether these cases as true or false negatives. Given the large sequence
dissimilarities computed from PICTree, it would be of interest to further elucidate the
binding mechanisms in these four cases to confirm that they indeed bind via similar modes.

Large clusters most likely have several shared ligands
Our clustering yielded several large clusters with upwards of 10 members (Fig. 4). While it
has been experimentally established that some of these clusters do indeed bind the same
common ligand (e.g. all killer-cell immunoglobulin-like receptors (KIRs) and leukocyte
immunoglobulin-like receptors (LIRs) bind to major histocompatibility complex (MHC)-I,
and the sialic acid binding Ig-like lectins (SIGLECs) all bind sialic-acids), it is more likely
that members of large clusters have several ligands that are shared among different members
of the clusters and the cluster is formed by transitivity criteria. For instance, in the contactin-
NCAM family, our common-ligand dataset (Table 1) showed that contactin 2 (CNTN2)
shared a common ligand, neuronal cell adhesion molecule (NRCAM), with neurofascin
(NFASC), whereas CNTN2 shared a different common ligand, NCAN, with L1CAM.
Because of this situation, the identity of an IgSF’s ligand cannot be unambiguously deduced
from the clustering results, however the clustering nonetheless drastically reduces the search
field for cognate ligands from a unfeasibly large number of combinations to a handful of
candidates that are experimentally tractable.

Success of N-terminal alignment criterion
While there is a preponderance of data supporting the claim that trans-binding receptor-
ligand interaction frequently involves the N-terminal domain, there are some notable
exceptions, such as NCAM1 that binds NCAN using its second Ig domain53. In addition, for
secreted proteins, there is no reason to assume that the N-terminal should be more involved
in binding than the rest of the protein. In a few cases this assumption will cause some
functionally related connections to be missed, as they will be assigned to different clusters
when they should really be in the same. A future improvement to the PICTree method would
be to incorporate protein-specific binding site information into the scoring criterion
whenever available.

Conclusion
Functional clustering of proteins is an essential tool to form testable hypotheses. In the case
of extracellular IgSF proteins it can provide information about binding preferences and
consequently about their possible role in regulating innate and adaptive immune responses
within the immunological synapse. Sequence identity-based clustering is inherently difficult
in case of exploring a single superfamily such as IgSF proteins that evolved relatively
recently. Given that some known common-ligand IgSF pairs have sequence identities as low
as 26%, the PICTree method presented here provides a highly sensitive approach to scan for
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such hard-to-detect binding pairs. The method was applied to all 477 IgSF proteins of
interest in the human IgSF, of which 390 IgSFs were assigned to a functional family that
binds the same ligand. The potential use of the method is illustrated by the suggested
relationship between VSIG8 and the CTX family of proteins, which could provide
actionable predictions to elucidate VSIG8 function. The method can be readily adapted to
handle other classes of proteins, and can be easily updated to include additional empirical
information about protein binding modes.

Materials and Methods
Dataset of human extracellular IgSF proteins

The set of extracellular human IgSF proteins was previously identified23. Briefly, human
IgSF proteins were identified from the Uniprot database58, retained if they are membrane-
integral or secreted according to predictions by the Phobius program59, and their Interpro60

identifiers correspond to Ig domains. Antibodies and T-cell receptors were excluded, and the
highly polymorphic MHC I/II proteins are represented by only one protein per gene. This
resulted in an IgSF dataset with 477 proteins (Supplementary Table 1).

Since this clustering focuses on the extracellular binding function of IgSF proteins, only
sequences of extracellular protein segments were considered. For integral membrane
proteins, we used the boundaries denoted by the Uniprot annotation line
“Regions:Topological Domain: Extracellular” to extract sequences of the extracellular
fragment. For secreted proteins, we removed the N-terminal signal peptide segment
specified under the Uniprot annotation line “Molecular Processing: Signal peptide”.

Generating PICTree clustering using novel dissimilarity measure and protein interaction
data

Our hidden Markov model-based, hierarchical tree clustering method (‘PICTree’) is detailed
in Fig. 9. In step 1, a hidden Markov model is generated for each input IgSF sequence using
programs from the HHsearch 1.5.1 software package26. Using the buildali.pl script a PSI-
BLAST search was performed for each input sequence against the non-redundant protein
sequence database filtered at 70% sequence identity. The default PSI-BLAST parameters in
HHsearch were calibrated with the intent of detecting “distant homologous relationships”26.
For our specific purpose of functional clustering, we needed a more stringent criteria and
explored different parameter sets for the number of iterations (niter = 1, 8), minimum
sequence identity (idmin= 0%, 20%, 25%, 30%). Using 9 curated sequence families as
benchmark (see Supplementary table 3), we selected the final parameters niter = 1, idmin =
30%, and maximum E-value = 10−4. Each resulting multiple sequence alignment, along with
secondary structure predictions using PSIPRED61, was then converted into a hidden Markov
model using hhmake26. In step 2, all-to-all pairwise alignments of these HMMs were
performed using hhalign26, allowing up to 10 alternative alignments. For each pairwise
alignment, the following metrics of alignment quality provided by HHalign were monitored:
HMM alignment score (Sali), secondary structure agreement score (Sss), alignment length
(Lali), query alignment range (qstart, qend), and template alignment range (tstart, tend). Details
of the metrics are described in Ref 26. Briefly, Sali comprised of the log-sum-of-odds score
for aligning two HMMs, and a correlation score that measures the correlation in column
scores between the two HMMs; Sss sums up the log-odds scores of PSIPRED prediction
agreement between the two protein sequences in each column. Sali and Sss depend on the
alignment length and have no fixed value range. For our 477x477 HMM-HMM alignments
Sali and Sss ranged from −19 to 18378 and −2.7 to 682 respectively. In step 3, these metrics
were used to generate a dissimilarity (or distance) score for each HMM-HMM alignment.
Our IgSF ligand-binding dissimilarity scoring function has three components:
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(1)

The first component, dnormScore = Lali/(Sali + Sss), accounts for the alignment quality per
aligned residue. Our corresponding dnormscore range is −0.22 – 4.42. The second component,
dNali, incorporates the biological propensity for N-terminal domains to be involved in
binding. If the alignment starts at the N-terminus then dNali has a value of 0, otherwise it is
1. The start of the first domain is determined using the Conserved Domain Database62.
Alignment is considered to start at the N-terminal if both qstart and tstart are within 40
residues of the start of the first domain both in the query and template sequences. The third
component, dminlen, is 0 if the alignment length is longer than a minimum alignment length
of 60 residues, and 1 otherwise. A 477-by-477 dissimilarity (‘distance’) matrix was
generated, using the smallest distance d among all alternative alignments for each HMM-
HMM pair. Elements in each row i and column j then underwent the transformation dij′ = dij
− 0.5 (dii+djj). This ensures that all diagonal elements (i.e., self-self alignment distances) are
zero, by offsetting each matrix element dij by the average raw self-alignment score of
proteins i and j. In step 4, using this distance matrix, we performed a hierarchical clustering
of 477 IgSFs using average linkage clustering as implemented in R’s hclust package63. This
ensures that if two proteins A and B are considered similar, then for a third protein C to join
the group it must be similar to both A and B. Finally in step 5, from the resulting tree we
obtained the node-to-node height h for all combinations of IgSF pairs using the distance()
function in BioPERL treeio module64.

To guide the selection of the optimal cutoff in PICTree hierarchical clusters so that the
resulting sub-trees contain IgSF proteins with common ligand binding preferences, we
compiled positive and negative training sets of IgSF pairs that bind (or do not bind) common
ligands from the STRING 9.0 database (downloaded Aug 25 2011) (Fig. 10). The 477 IgSF
proteins were first mapped to human STRING identifiers using BLAST11, requiring a
minimum of 95% sequence identity and 70% coverage of the query sequence. When
multiple IgSF queries are mapped to the same STRING identifier, the STRING identifier
was assigned to the IgSF protein with the highest sequence identity. Conversely, multiple
STRING identifiers can be assigned to the same IgSF protein. For IgSFs returning no hits
with these criteria, we searched the STRING database using their associated Uniprot
accession codes, and assigned matching identifiers to these queries as long as they had not
been previously assigned. This process resulted in the assignment of 463 IgSF proteins to
604 STRING identifiers. We then extracted IgSF:X interactions in STRING where the first
interactor is one of these STRING IgSF identifiers, and the second interactor (X) can be any
protein. Out of the 448,692,034 interactions recorded in STRING, 3,281,414 were human
interactions, and from these 92,326 IgSF:X interactions were extracted. These interactions
were then filtered based on their STRING confidence scores to build the positive and
negative training sets, as described below.

(i) Positive training set: Common-ligand IgSF pairs—The positive training set was
comprised of IgSF pairs that shared at least one common extracellular, trans-binding partner
(“common-ligand IgSF pairs”). We first extracted 2,440 high quality IgSF:X interactions
with an experimental confidence score (STRING) above 0.5, and an overall confidence
score above 0.7, and filtered these interactions to remove intracellular interactors using
Phobius and signalP59; 65. From the remaining 674 IgSF:X interactions, we identified 510
putative common-ligand IgSF pairs that bind at least one common ligand. For each of these
IgSF pairs, we manually verified the underlying IgSF:X interactions from the original
publications cited in STRING. For a common-ligand pair IgSF1-IgSF2 to be valid, at least
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one of the common ligands must have manually verified IgSF1:X and IgSF2:X interactions.
Conversely, for an IgSF pair to be completely negated, all putative common ligands must be
manually confirmed as invalid. We removed 242 invalid IgSF:X interactions: 129 cis-
associations (IgSF interacting with ligands from the same cell surface); 50 interactions not
supported by the reference cited by STRING (due to incorrect name assignment by STRING
or our identifier mapping), 37 MHC-I:beta-2-microglobulin(B2MG) association (because
MHC-I:B2MG functions as an obligate complex), 7 intracellular interactions, 12 interactions
with antibodies or uncharacterized proteins, and 6 interactions with proteolytic enzymes. We
verified 175 trans-binding IgSF:X interactions, supporting 113 common-ligand IgSF pairs.

From this set, we removed 28 IgSF pairs where evidence exists in literature that they bind
their common ligand(s) via different modes. For instance, both sialic acid-binding Ig-like
lectin 6 (SIGL6) and leptin receptor (LEPR) are verified to bind leptin. The second cytokine
receptor (CK) domain in LEPR is essential for its leptin-binding66, while SIGL6 does not
contain any CK domain, thereby excluding the possibility that it binds leptin in a similar
fashion as LEPR. If there is insufficient information to prove or disprove common binding
modes, the common-ligand IgSF pair is retained in our dataset. We also removed three cases
where the binding is facilitated on the IgSF side through a non-protein moiety. For instance,
both carcinoembryonic antigen-related cell adhesion molecule (CEACAM1) and
intercellular cell adhesion molecule (ICAM1) bind to the dendritic cell specific c-lectin
CD209 via a Lewis-X oligosacchharide. Since the occurrence of such non-protein moieties
is not predictable by sequence alone, we omitted these cases from our training set. Lastly, in
cases where the common ligands are integrins, we required that the common-ligand IgSF
pair bind both the same alpha and beta integrin subunits (e.g. αLβ2), since integrins are
obligate heterodimers and the binding interface typically involves both subunits67. We
removed 14 cases where only one integrin subunit is listed as a common interactor. The
remaining 68 verified common-ligand IgSF pairs were filtered at 70% redundancy, and the
resulting 55 IgSF pairs (Table 1) were retained as our positive training set.

(ii) Negative training set: IgSF pairs with no known common ligand—To
establish a lower bound for our h cutoff, we compiled a negative training set, that is, IgSF
pairs that do not bind any common ligand, with the caveat that it is not possible to
definitively establish that two IgSFs do not share any common ligand (see Results and
Discussion). To approximate a negative dataset, we compiled a list of IgSF pairs that have
no known common ligands in STRING. We first extracted 5164 human IgSF:X interactions
from STRING that have confidence scores greater than zero in either experimental,
database, experiment-homology or database-homology categories. This represents all known
human IgSF:X interactions recorded in STRING, involving 324 IgSF proteins. From these
5164 interactions, we identified 6643 common-ligand pairs, which represent all putative
common-ligand pairs that can be inferred from STRING. We separately generated 52,003
pairwise combinations of the 324 IgSF proteins, and cross-filtered out the 6643 pairs that
could putatively bind common ligands. After removing redundancy at 70% sequence
identity, we are left with 36,066 non-redundant IgSF pairs that are not known to bind any
common ligand (based on current STRING data), which served as our proxy for a negative
training set.

Clustering by other algorithms
(A) SCI-PHY—Multiple sequence alignment (MSA) of sequences of the extracellular
segments of 477 IgSF proteins were performed using CLUSTALW239, MAFFT40, and
MUSCLE38 with default settings. For each MSA method, clustering was performed using
both SCI-PHY 1.0 and 3.0, using default settings.
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(B) FunFams—Each of the 477 IgSF sequences was scanned against the CATH Ig
superfamily (CATH code: 2.60.40.10) using the “Sequence Scan” option from the CATH-
Gene3D database (version 3.5.0, http://gene3d.biochem.ucl.ac.uk/Gene3DScanSvc/
FunfamScan/Simple) to obtain its FunFam assignments. IgSFs with the same FunFams
assignments are considered to be in a functional cluster.

(C) BAR+—We queried the BAR+ database (http://bar.biocomp.unibo.it/bar2.0/index.html)
using Uniprot accession numbers of the 477 IgSF proteins. At the time of manuscript
preparation, two of the IgSF proteins (TRML3_HUMAN and VSIG7_HUMAN) have been
deleted from the latest Uniprot database, so BAR+ returned 475 cluster assignments
(‘cluster-ID’). IgSFs with the same cluster-ID assignments are considered to be in a
functional cluster.

Computing performance measures
We computed the following metrics:

where TP is the number of true positive predicted from the positive training dataset, and TN
is the number of true negatives predicted from the negative training dataset, and The false
discovery rate (FDR) is given by FDR=1−Specificity. For the full training set (‘all’) NPositive
= 55 and NNegative = 36,066.

The representative node-to-node distance distribution of negative training set shown in Fig.
1 is generated by randomly drawing 55 IgSF pairs from the negative training set of 36,066
repeatedly for 36,066 / 55 ≈ 650 times, and computing the mean and standard deviation of
the resulting 650 histograms.

To evaluate the performance of FunFams, we extracted a smaller ‘Ig-only’ set from the full
training set. First, we identified 264 (out of 477) IgSF proteins that have only Ig domain(s)
in their extracellular segments based on domain assignments by CDD62 and Interpro60.
Next, we extracted from the full positive and negative sets only those pairs where both
proteins belong to this subset. For the ‘Ig-only’ benchmarking set, NPositive = 20 (listed in
Table 1) and NNegative = 8,983.

Removing redundancy in IgSF-IgSF pairs within the test datasets
To remove redundant IgSF pairs in our datasets, we first clustered all 477 IgSF proteins at
70% sequence identity using CD-HIT12, resulting in 413 clusters. We then mapped both
IgSFs in each pair to their respective cluster representatives, and group together pairs that
share the same two representatives. Finally, we chose from each group a representative pair
that has the largest PICTree cutoff.

Calculation of sequence identity
As an alternative predictor of functional similarity, we computed all-to-all pairwise
sequence identities for all 477 IgSF proteins based on their extracellular sequences. Each
IgSF pair is aligned using CLUSTALW39 and the number of identical amino acids is
divided by the shorter of the two sequences to give the sequence identity.
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Highlights

• Most secreted IgSF proteins that mediate immune response have no known
ligand

• Extracellular IgSF proteins are clustered by similar ligand binding preferences

• Function is predicted using protein interaction calibrated sequence profile data

• 82% of the 477 known IgSFs can be assigned to a functional family

• The novel assignment of VSIG8 to CTX family generates hypothesis on VSIG8
function
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Figure 1.
Distribution of PICTree node-to-node distances for the training sets. Green solid bars: node-
to-node distance distribution of the positive dataset of 55 common-ligand IgSF pairs; red
shaded bars: distribution of a representative subset from the negative training set of IgSF
pairs with no known common ligands (see Methods).
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Figure 2.
Specificity (black circles) and sensitivity (red crosses) of the PICTree method at various
node-to-node distance cutoff values.
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Figure 3.
Performance of PICTree method on 55 non-redundant common-ligand IgSF pairs that share
experimentally verified common ligand from the STRING database. An edge between two
IgSF proteins signifies that they share at least one common verified trans-binding ligand.
Green edges denote linkages that can be predicted using PICTree method (true positives);
red edges denote outliers above the chosen height cutoff of hc = 0.192 (false negatives).
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Figure 4.
Clustering of 477 human IgSF proteins into functionally related IgSF clusters using our
PICTree-based method. Of the 477 proteins (denoted as nodes), 390 can be assigned to
functionally related clusters, while 87 remained singletons.
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Figure 5.
Analysis of PICTree cluster sizes. (a) Distribution of PICTree cluster sizes, (b) Variance in
sequence length amongst cluster members against cluster size.
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Figure 6.
PICTree clustering of 14 functional families predicted by Brotherhood algorithm23. A subset
of the PICTree clustering involving the 14 Brotherhood algorithm-predicted families is
shown. Family designations from Brotherhood algorithm are denoted by color: yellow:
Leukocyte immunoglobulin-like receptor (LIR), pink: Killer cell immunoglobulin-like
receptor (KIR), dark blue: CEACAM/PSG, green: B7/butyrophilin, orange: semaphorin,
olive: sialic acid-binding immunoglobulin-type lectins (SIGLEC), light blue: MHC-I,
turquoise: MHC-II, brown: cortical thymocyte marker in Xenopus(CTX), light grey: nectin/
nectin-like, dark grey: T-cell immunoglobulin and mucin domain-containing (TIM), red:
Signaling lymphocytic activation molecule (SLAM), purple: Platelet-derived growth factor
receptor (PGFR), black: CD28.
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Figure 7.
Comparison of PICTree and pairwise sequence identity methods to predict common-ligand
IgSF pairs. Sequence identity is plotted against PICTree node-to-node distances for 55 non-
redundant IgSF protein pairs sharing common binding partners (black and red circles) and
74,710 non-redundant pairwise combinations of other IgSF proteins (brown crosses). Two
optimal cutoff criteria are shown: one for sequence identity (blue dashed line) and one for
PICTree node-to-node distance (green dashed-dotted line).
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Figure 8.
Novel assignment of VSIG8 to the cortical thymocyte marker in Xenopus (CTX) gene
family
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Figure 9.
Flowchart of functional clustering using PICTree.
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Figure 10.
Extracting common-ligand IgSF pairs from STRING.
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Table 1

Positive training set of non-redundant common-ligand binding IgSF pairs, with and corresponding node-to-
node heights (h). Bold: outlying IgSF pairs with h greater than cutoff; Ig-only: pairs where both proteins have
only Ig domain(s) in their extracellular segments (this subset was used for benchmarking with FunFams)

IgSF1 IgSF2 Common Extracellular Interactors h Ig-only

CD226 PVRL3 PVR PVRL2 2.925 X

CD226 TACT PVR 0.410 X

CD28 CTLA4 CD80 CD86 0.071 X

CD80 CD86 CD28 CTLA4 0.100 X

CNTN2 L1CAM NCAN 0.117

CNTN2 NCAM1 NCAN 0.402

CNTN2 NFASC NRCAM 0.117

KI2L4 LIRB2 HLA-G (2) 0.063 X

KI2L1 KI3S1 HLA-C (3) 0.072 X

KI3S1 LIRB2 HLA-C, HLA-A (8) 0.072 X

LIRB1 LIRB2 HLA-A, HLA-C, HLA-F HLA-G 0.019 X

MERTK TYRO3 growth arrest-specific 6 0.192

MERTK UFO growth arrest-specific 6 0.192

TYRO3 UFO growth arrest-specific 6 0.124

CSPG2 PGCA fibulin-1, filbulin-2 0.141

CSPG2 PGCB filbulin-2 0.082

DCC NEO1 Netrin-1 0.074

FCG2A FCG2B C-reactive protein 0.011 X

FCG2A FCGR1 C-reactive protein 0.034 X

FGFR1 FGFR2 fibroblast growth factor 4, keratinocyte growth factor 0.135

FGFR1 FGFR3 fibroblast growth factor 4, keratinocyte growth factor 0.162

FGFR1 FGFR4 fibroblast growth factor 4 0.162

FGFR2 FGFR3 fibroblast growth factor 4, keratinocyte growth factor 0.162

FGFR2 FGFR4 fibroblast growth factor 4 0.162

FGFR3 FGFR4 fibroblast growth factor 4 0.141

HLAF HLAG LIRB1 LIRB2 0.009

ICAM1 ICAM2 MAC-1 (Integrin αMβ2) 0.017 X

ICAM1 ICAM3 LFA-1 (Integrin αLβ2) 0.017 X

ICAM1 ICAM5 LFA-1 (Integrin αLβ2) 0.017 X

ICAM3 ICAM5 LFA-1 (Integrin αLβ2) 0.010 X

L1CAM NCAM1 NCAN 0.402

NRG1 NRG2 Receptor tyrosine-protein kinase erbB-3
Receptor tyrosine-protein kinase erbB-4

0.070

NTRK1 NTRK2 Neurotrophin-3 0.138

NTRK1 NTRK3 Neurotrophin-3 0.129

NTRK2 NTRK3 Neurotrophin-3 0.138

PD1L1 PD1L2 PDCD1 0.060 X

PGCA PGCB Fibulin-2 0.141
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IgSF1 IgSF2 Common Extracellular Interactors h Ig-only

PGFRA PGFRB Platelet-derived growth factor subunit B 0.086 X

PVRL3 PVRL4 PVRL1 0.107 X

PVRL3 TACT PVR 2.925 X

PVR PVRL2 CD226 PVRL3 0.044 X

ROBO1 ROBO2 Slit homolog 2 protein 0.070

SEM3A SEM3B Neuropilin-1 0.028

SEM3A SEM3C Neuropilin-1 0.021

SEM3A SEM3F Neuropilin-1 0.021

SEM3B SEM3C Neuropilin-1, Neuropilin-2 0.028

SEM3B SEM3F Neuropilin-1, Neuropilin-2 0.028

SEM3C SEM3F Neuropilin-1, Neuropilin-2 0.016

SEM3E SEM4A Neuropilin-2 0.048

SEM4A SEM4D Plexin-D 0.046

SHPS1 SIRPG CD47 0.019 X

UNC5A UNC5B Netrin-1 0.036

UNC5B UNC5C Netrin-1 (2) 0.036

VGFR2 VGFR3 Vascular endothelial growth factor C
Vascular endothelial growth factor D

0.073

WFKN1 WFKN2 Growth/differentiation factor 11 0.019

J Mol Biol. Author manuscript; available in PMC 2015 February 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yap et al. Page 31

Ta
bl

e 
2

C
om

pa
ri

so
n 

of
 P

IC
T

re
e 

ag
ai

ns
t o

th
er

 c
lu

st
er

 m
et

ho
ds

.

(a
) 

N
um

be
r 

of
 c

lu
st

er
s 

ge
ne

ra
te

d.

M
et

ho
d

# 
of

 m
ul

ti
m

em
be

r 
cl

us
te

rs
# 

of
 s

in
gl

et
on

s
to

ta
l

PI
C

T
R

E
E

83
87

17
0

O
R

E
N

G
O

 (
Fu

nF
am

s)
33

36
69

SC
IP

H
Y

1_
C

L
U

ST
A

L
W

85
13

5
22

0

SC
IP

H
Y

1_
M

A
FF

T
11

7
74

19
1

SC
IP

H
Y

1_
M

U
SC

L
E

97
17

4
27

1

SC
IP

H
Y

3_
C

L
U

ST
A

L
W

44
39

9
44

3

SC
IP

H
Y

3_
M

A
FF

T
1

0
1

SC
IP

H
Y

3_
M

U
SC

L
E

1
0

1

B
A

R
+

69
24

5
31

4

(b
) 

P
er

fo
rm

an
ce

 a
ga

in
st

 p
os

it
iv

e 
an

d 
ne

ga
ti

ve
 d

at
a 

se
t

m
et

ho
d

nT
P

nF
N

nP
os

nF
P

nT
N

nN
eg

Se
ns

it
iv

it
y

Sp
ec

if
ic

it
y

B
en

ch
m

ar
k 

se
t :

 a
lla

PI
C

T
R

E
E

50
5

55
28

7
35

77
9

36
06

6
90

.9
1

99
.2

0

SC
IP

H
Y

1_
C

L
U

ST
A

L
W

39
16

55
12

1
35

94
5

36
06

6
70

.9
1

99
.6

6

SC
IP

H
Y

1_
M

A
FF

T
44

11
55

13
3

35
93

3
36

06
6

80
.0

0
99

.6
3

SC
IP

H
Y

1_
M

U
SC

L
E

22
33

55
53

36
01

3
36

06
6

40
.0

0
99

.8
5

SC
IP

H
Y

3_
C

L
U

ST
A

L
W

5
50

55
14

36
05

2
36

06
6

9.
09

99
.9

6

SC
IP

H
Y

3_
M

A
FF

T
55

0
55

36
06

6
0

36
06

6
10

0.
00

0.
00

SC
IP

H
Y

3_
M

U
SC

L
E

55
0

55
36

06
6

0
36

06
6

10
0.

00
0.

00

B
A

R
+

28
27

55
39

36
02

7
36

06
6

50
.9

1
99

.8
9

B
en

ch
m

ar
k 

se
t :

 I
g-

on
ly

b

PI
C

T
R

E
E

17
3

20
12

0
88

63
89

83
85

.0
0

98
.6

6

O
R

E
N

G
O

 (
Fu

nF
am

s)
15

5
20

63
4

83
49

89
83

75
.0

0
92

.9
4

SC
IP

H
Y

1_
C

L
U

ST
A

L
W

11
9

20
43

89
40

89
83

55
.0

0
99

.5
2

SC
IP

H
Y

1_
M

A
FF

T
13

7
20

36
89

47
89

83
65

.0
0

99
.6

0

J Mol Biol. Author manuscript; available in PMC 2015 February 20.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Yap et al. Page 32

(b
) 

P
er

fo
rm

an
ce

 a
ga

in
st

 p
os

it
iv

e 
an

d 
ne

ga
ti

ve
 d

at
a 

se
t

m
et

ho
d

nT
P

nF
N

nP
os

nF
P

nT
N

nN
eg

Se
ns

it
iv

it
y

Sp
ec

if
ic

it
y

SC
IP

H
Y

1_
M

U
SC

L
E

7
13

20
25

89
58

89
83

35
.0

0
99

.7
2

SC
IP

H
Y

3_
C

L
U

ST
A

L
W

0
20

20
0

89
83

89
83

0.
00

10
0.

00

SC
IP

H
Y

3_
M

A
FF

T
20

0
20

89
83

0
89

83
10

0.
00

0.
00

SC
IP

H
Y

3_
M

U
SC

L
E

20
0

20
89

83
0

89
83

10
0.

00
0.

00

B
A

R
+

3
17

20
12

89
71

89
83

15
.0

0
99

.8
7

a al
l: 

B
en

ch
m

ar
k 

co
m

pr
is

es
 o

f 
al

l 5
5 

pa
ir

s 
in

 p
os

iti
ve

 s
et

 a
nd

 3
60

66
 p

ai
rs

 in
 n

eg
at

iv
e 

se
t

b Ig
-o

nl
y:

 B
en

ch
m

ar
k 

in
vo

lv
es

 o
nl

y 
26

4 
Ig

SF
s 

th
at

 h
av

e 
ex

cl
us

iv
el

y 
Ig

 d
om

ai
ns

 in
 th

ei
r 

ex
tr

ac
el

lu
la

r 
se

gm
en

ts
, c

or
re

sp
on

di
ng

 to
 a

 s
ub

se
t o

f 
20

 p
ai

rs
 in

 p
os

iti
ve

 s
et

 a
nd

 8
98

3 
pa

ir
s 

in
 n

eg
at

iv
e 

se
t.

J Mol Biol. Author manuscript; available in PMC 2015 February 20.


