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1. Introduction
Anxiety and depressive disorders are the most common of all psychiatric disorders;
however, current human and animal research has yet to provide a clear understanding of the
neural mechanisms underlying their etiology. Demographic analyses illustrate not only their
widespread prevalence, but also pervasive sex differences in these affective disorders. In
fact, approximately 18% of the adult American population suffers from an anxiety-related
disorder and another 7% from major depressive disorder each year (Kessler et al., 2005b).
Further, females are more than twice as likely as males to be afflicted by mood disorders
(Kessler et al., 2005a, Bekker and van Mens-Verhulst, 2007). These sex differences are
observed, not only in the U.S., but are also documented worldwide (Seedat et al., 2009).
This sex disparity indicates a potential role for gonadal hormones in the etiology of anxiety
and depressive disorders. In fact, studies have revealed that women are more likely to
experience mood disturbances, anxiety, and depression during times of hormonal flux, such
as puberty, menopause, perimenstrual and post-partum periods (Ahokas et al., 2001, Parker
and Brotchie, 2004, Douma et al., 2005, Solomon and Herman, 2009). While hormonal flux
in females appears to increase the likelihood of experiencing mood disturbances, clinical and
preclinical studies in males suggest that testosterone yields protective benefits against
anxiety and depression. These beneficial effects may stem from both organizational and
activational effects of testosterone. The possible underlying neurobiological mechanisms
that mediate such protective effects, including the brain sites, biochemical factors, and
molecular pathways involved are discussed herein. Understanding the influence of hormones
on neurobiological systems that regulate anxiety and depressive behavior will increase our
capacity to develop new drug targets to treat various mental illnesses in both men and
women.
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2. The influence of testosterone on anxiety and depressive behaviors in
men and women

The relationship between testosterone levels, anxiety disorders, and major depressive
disorder in humans is evident in males with hypogonadism, a condition in which reduced
functional activity of the gonads results in decreased levels of testosterone. Hypogonadal
men exhibit a significantly higher prevalence of anxiety disorders and major depressive
disorder, compared to those with normal physiological levels of androgens (Shores et al.,
2004, Zarrouf et al., 2009). Similarly, men treated with androgen-depleting drugs for
prostate cancer have a greater likelihood of developing an anxiety disorder or major
depressive disorder (DiBlasio et al., 2008). Moreover, hypogonadal men with human
immunodeficiency virus are more likely to experience depressive moods, an effect reversed
by testosterone administration (Rabkin et al., 2000). Collectively, several reports suggest
that testosterone-replacement therapy in hypogonadal men greatly improves mood,
alleviates anxiety, and mitigates symptoms of depression (Wang et al., 1996, Pope et al.,
2003, Kanayama et al., 2007, Zarrouf et al., 2009). However, this is not the case in all
clinical studies. For example, one study reports that testosterone-replacement therapy in
androgen-deficient men did not significantly alleviate symptoms of major depressive
disorder, compared to placebo-treated controls (Seidman et al., 2001). Another study
revealed that testosterone administration in elderly men with low levels of testosterone and
mild cognitive impairments also did not improve symptoms of depression (Kenny et al.,
2004). However, despite a few inconsistent reports, the majority of studies support the case
that testosterone yields beneficial effects on mood in men, especially in those with lower
than normal levels. Other important considerations in these discrepancies may include
differences in age, degree of hypogonadism, and also the timing, dose, duration, and route of
androgen replacement. In fact, studies indicate that route of administration may be an
important factor, with transdermal application being more effective in improving mood than
hormone injections (Zarrouf et al., 2009). Another major consideration is whether the
individual tested had previously experienced a depressive episode or had never suffered
from an affective disorder (Pope et al., 2003, Zarrouf et al., 2009). In general, testosterone
appears to be most effective in alleviating symptoms of anxiety and/or depression in older
hypogonadal men, but risk factors must also be assessed. For example, testosterone therapy
also involves a potential increased risk of cardiovascular complications, sleep apnea,
polycythemia, and prostate cancer (Surampudi et al., 2012). Therefore, additional studies are
required in order to know more about when and how testosterone therapy may be effective
in treating anxiety and mood disorders despite potential risks involved.

While the clinical studies of testosterone therapy in women are more limited, some evidence
supports anxiolytic and antidepressant roles for testosterone. Administration of a low dose of
testosterone in women with treatment-resistant major depressive disorder significantly
improved ratings of depression, compared to placebo-treated subjects (Miller et al., 2009).
In addition, surgical removal of the ovaries increased mood disturbances and depression,
compared to placebo-treated controls, an effect reversed by testosterone (Shifren et al.,
2000). Another study in women found that a single administration of testosterone reduced
anxiety in the fear-potentiated startle response, compared to placebo-treated controls
(Hermans et al., 2006). Furthermore, transdermal application of testosterone in women
experiencing age-related declines in androgens resulted in substantially improved mood and
psychological well-being, compared to placebo-treated individuals (Goldstat et al., 2003).
However, some reports have noted that too much testosterone can also negatively impact
mood in women and can even contribute to the onset of major depressive disorder (Rohr,
2002). Additional clinical studies in women are necessary in order to reveal whether, and
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under what conditions, testosterone alleviates symptoms of anxiety and major depressive
disorder.

Additional information can be obtained from examining mood and behavior in both men and
women during times of testosterone flux, often due to age-related declines or circadian
function. In adolescent males, but not females, decline in salivary testosterone throughout
the day due to circadian flux, is correlated with an increase in anxiety- and depressive- like
measures (Granger et al., 2003). Lower salivary levels of testosterone are also observed in
individuals with anxiety disorders and major depressive disorder. In fact, women with major
depressive disorder or a type of anxiety disorder, including generalized anxiety, social
phobia, or agoraphobia express lower levels of salivary testosterone, compared to
emotionally healthy women (Giltay, 2012). Socially anxious men also display a significant
drop in testosterone levels after being defeated in a competition, an effect not observed in
non-anxious men (Maner et al., 2008). In addition, both women and men taking a serotonin
reuptake inhibitor (SSRI) for major depressive disorder have higher levels of salivary
testosterone, compared to depressed individuals not taking SSRI medication (Giltay, 2012).
Also, in more senior men and women, lower levels of testosterone are associated with an
increased prevalence of major depressive disorder (Barrett-Connor et al., 1999, Morsink et
al., 2007).

Clinical evidence suggests that testosterone has anxiolytic and antidepressant benefits, with
the potential to promote improved mood and mental health in both women and men.
However, the neurobiological mechanisms underlying the protective effects of testosterone
in males and females remain poorly understood. In addition, given testosterone’s disparate
routes of action, it is not clear whether actions of androgens at androgen receptors or
conversion to estrogen are responsible for these effects. Human imaging studies that
examine possible sites in the brain are necessary to better understand how testosterone and
its metabolites and receptors may mediate central effects on mood in both men and women.
Animal studies are also required to corroborate findings in human studies, establish causal
relationships, and elucidate possible neural and molecular mechanisms underlying
testosterone’s benefits. Below, we first provide a background summarizing the biosynthesis
of testosterone and its metabolites. Then we present the genomic and nongenomic molecular
actions of testosterone. Lastly, we provide a comprehensive review of the animal models
and experiments that begin to elucidate the brain sites and neurobiological mechanisms by
which testosterone exerts its generally beneficial effects on anxiety and depression.

3. Molecular mechanisms of testosterone
3.1 Steroidogenesis, biosynthesis, and metabolism

Testosterone is often referred to as a male hormone, in part because males have about ten
times higher concentrations of testosterone compared to women, although women are
actually more sensitive to testosterone (reviewed in Durdiakova et al., 2011). The gonads
and adrenal cortex are the primary sources of testosterone in most vertebrate species of both
sexes. Peripheral testosterone can cross the blood brain barrier and have a number of effects
on the brain. In addition, small amounts of steroids, including testosterone, are synthesized
de novo from cholesterol or steroidal precursors in the brain, and are referred to as
neurosteroids (Baulieu et al., 2001, Melcangi et al., 2008) and are discussed in more detail
below.

Cholesterol is the precursor of all steroid hormones, including testosterone (reviewed in
Ghayee and Auchus, 2007). The rate-limiting step of steroid synthesis is the transport of
cholesterol from the cytoplasm to the inner mitochondrial membrane, where steroidogenic
enzymes reside (reviewed in, Sierralta et al., 2005, Abdulkarimi et al., 2012, Miller, 2013).
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A protein complex called the transduceosome forms at the outer mitochondrial membrane of
gonadal and adrenal cells. The transduceosome includes steroidogenic acute regulatory
protein (StAR), as well as protein kinase A (PKA), and several other mitochondrial and
cytosolic proteins. The process is initiated by the binding of luteinizing hormone (LH) or
chorionic gonadotropin (CG; hCG in humans) to their G-protein-coupled receptors, which
results in cAMP activating PKA, which in turn phosphorylates and thereby activates StAR.
StAR passes through the outer mitochondrial membrane, carrying cholesterol in its hollow,
hydrophobic C-terminus, and attaches to the inner mitochondrial membrane, where the
cholesterol side-chain cleavage enzyme desmolase is located.

Figure 1 shows the series of reactions, beginning with the cleavage of a side-chain of
carbons by the enzyme desmolase to form pregnenolone, an obligatory C21 steroid and
prohormone to all other steroids. Pregnenolone can then be further processed either in the
mitochondrion or the endoplasmic reticulum. Next, 17α-hydroxylase converts pregnenolone
to 17α-hydroxypregnenolone, and, in the adrenal cortex 17,20 lyase catalyzes the
conversion to dehydroepiandrosterone (DHEA), which circulates throughout the body,
primarily in the more stable sulfated form (DHEA-S). However, small amounts of DHEA
are also produced in the testes and ovaries (Traish et al., 2011). DHEA is also synthesized in
the brain as a “neurosteroid” (Baulieu and Robel, 1998; see section 3.3, below regarding
neurosteroids). From DHEA, 3β-hydroxysteroid dehydrogenase (3β-HSD) produces
androstenedione, which is then converted to testosterone by17β-hydroxysteroid
dehydrogenase (17β-HSD). Testosterone has a number of biosynthetic pathways and
disparate routes of metabolism that determine its precise molecular mechanism of action.
For example, the cytochrome P450 enzyme, 5α-reductase, can then reduce testosterone to a
more potent androgen, dihydrotestosterone (DHT), which can be metabolized by aldo-keto
reductase (AKR1C2) to 5α-androstane-3α,17β-diol (abbreviated 3α-diol) or by AKR1C1 to
5α-androstane-3β, 17β–diol (3β-diol). 3α-diol binds with relatively low affinity to the
androgen receptor (Cunningham et al., 1979), but acts as a neurosteroid agonist at the
GABAA receptor (Frye et al., 1996). Neurosteroids, including androstenediol, can act as
allosteric modulators by increasing either the duration or the frequency of chloride channel
opening in the GABAA receptor (Rupprecht, 2003, Reddy and Jian, 2010). Neuroactive
steroids may initiate these effects by binding to discrete sites on the GABAA receptor
(Rupprecht, 2003). 3β-diol exerts most of its effects via the estrogen receptor β (ERβ) (Pak
et al., 2005). Conversely, the P450 enzyme aromatase can aromatize testosterone to
estradiol. Given the many routes and disparate actions of testosterone and its metabolites, it
is important to determine which biochemical factors, associated steroid receptors, and
molecular pathways mediate the anxiolytic and antidepressant effects of testosterone.

3.2 Testosterone’s effects on neurotransmitters implicated in mood disorders
Neuroactive steroids affect neurotransmitters, neuronal excitability, and have been
implicated in mood disorders (Rupprecht et al., 2001, Dubrovsky, 2005, Eser et al., 2006).
Neuroactive steroids exert modulatory effects on a number of neurotransmitters and/or their
associated receptors, including γ-aminobutyric acid (GABA), dopamine, and serotonin (5-
HT) and may underlie some of testosterone’s protective benefits. These are briefly presented
here and then mentioned when appropriate in subsequent sections.

Testosterone has been shown to affect a number of monoamines implicated in mental
illness. In relation to depression, testosterone can enhance dopamine release in the
mesolimbic system (Alderson and Baum, 1981), which may protect against depression-
induced anhedonia and the associated decrease in dopamine activity in reward-related brain
pathways. Additionally, intra-nasal administration of testosterone in intact male rodents
increased dopamine and 5-HT release in the neostriatum and nucleus accumbens (de Souza
Silva et al., 2009), while GNX reduced basal levels of dopamine in the nucleus accumbens
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and septum (Alderson and Baum, 1981). The molecular mechanism underlying this
relationship is unclear; however, there is evidence of hormonal control of dopamine release
from studies examining hormone-neurotransmitter interactions in the MPOA in a model of
male rat sexual behavior. Here, GNX was found to reduce extracellular dopamine but
increase intracellular dopamine, suggesting that GNX impairs dopamine release, rather than
synthesis (reviewed in Hull and Dominguez, 2006). While estradiol replacement in GNX
rodents restored basal levels of dopamine within the MPOA, the addition of DHT was
necessary to recover female-stimulated dopamine release (reviewed in Hull and Dominguez,
2006). Other studies found that estradiol acts in part through nitric oxide to increase
extracellular dopamine levels. Specifically, estradiol up-regulates neuronal nitric oxide
synthase (nNOS), resulting in increased production of nitric oxide, which in turn stimulates
dopamine release (Hull and Dominguez, 2006, Sato et al., 2007). Testosterone may also
affect serotonin function, which is clearly implicated in anti-depressant treatment.
Electrophysiological recordings from the dorsal raphe nucleus serotonin-containing neurons
showed that administration of testosterone or estradiol increased the firing rates of these
neurons (Robichaud and Debonnel, 2005). Testosterone metabolites may also interact with
serotonin receptors. For example, estradiol antagonizes the serotonin 5-HT3 receptor, which
is a ligand-gated ion channel (Rupprecht, 2003). Conversely, 5-HT reuptake inhibitors can
increase the production of neuroactive steroids such as pregnenolone, which may contribute
to antidepressant effects (reviewed in Schule et al., 2011). The biochemical mechanisms of
serotonin/testosterone interactions remain poorly understood; however, such interactions
may provide insights into the functions of SSRI antidepressants. Testosterone’s influence on
GABA may mediate some of its anxiolytic properties. Indeed, administration of a GABAA
receptor antagonist blocked the anxiolytic effects of testosterone (Gutierrez-Garcia et al.,
2009). These actions may be similar to that of benzodiazepine drugs with anxiolytic
properties; however, the precise mechanisms involved in testosterone-GABA interactions
are still under investigation. Studies implicating testosterone-GABA interactions are
discussed herein.

3.3 General intracellular genomic actions, non-genomic rapid effects, and specific
molecular mechanisms implicated in affective disorders

Testosterone and its associated metabolites can exert actions through slower genomically
mediated processes, in addition to rapid non-genomic actions. Both kinds of intracellular
effects of steroid hormones in the brain may affect the manifestation of affective disorders
and mediate the antidepressant and anxiolytic benefits of testosterone (Rupprecht et al.,
2001). A brief overview of the general slow genomic effects and rapid actions of
testosterone are reviewed below, along with some putative molecular candidates, which may
mediate the protective benefits of testosterone.

Steroid hormones can have long-lasting genomic effects through actions at intracellular
steroid receptors, often referred to as the “classical” effects of steroids. Testosterone and its
metabolites are lipid-soluble ligands that diffuse across the cell membrane and can interact
with intracellular nuclear receptors (reviewed in Wierman, 2007). Upon reaching their target
sites, androgens bind to the androgen receptor (AR), and estrogens bind to estrogen receptor
alpha (ERα) or beta (ERβ). These intracellular steroid receptor proteins have at least three
functional domains: the ligand-binding domain located near the C-terminus, the DNA-
binding domain located in the central region, and the variable transactivation domain located
near the N-terminus, which mediates transcription. ARs and ERs are classified as
homodimer receptor proteins, which are contained in the cytosol by chaperone proteins
including heat-shock protein Hsp90 in the absence of ligand binding (Nestler et al., 2009).
Ligand binding results in a conformational change, dissociation from chaperone proteins,
and transport to the nucleus. Specifically, the hormone-receptor complex interacts with
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hormone response element DNA sequences (e.g. androgen response elements and estrogen
response elements) located within the promoter region of target genes. Co-activator proteins
are also recruited and assemble into complexes that activate or repress gene expression
through enzymatic actions (e.g. histone acetyl transferase, histone deacetylase, DNA
methyltransferase) that modify chromatin structure (reviewed in Wierman, 2007, Vasudevan
and Pfaff, 2008). Following transcription, the mRNA is transported out of the nucleus and
into the rough endoplasmic reticulum, where it is translated into enzymes or other proteins,
usually in the order of hours (Lodish, 2007). This is the general process by which
testosterone mediates slower genomic effects that proceed over the course of hours to days.
More detailed information regarding the molecular mechanisms of androgens and estrogens
at their receptors can be found in Bennett et al. (2010).

In addition to the intracellular steroid receptors with slow, genomic effects, there are
membrane-bound androgen and estrogen receptors that exert rapid, nongenomic effects
(reviewed in Cato et al., 2002). These effects can occur within seconds or minutes of
binding to the receptor (Wehling, 1997, Falkenstein et al., 2000). As early as the late 1960s,
estrogen was reported to act within minutes to affect the firing of neurons in the
hypothalamus, septum, and preoptic area of female rats (Lincoln, 1967) and testosterone
similarly increased responsiveness of medial preoptic area (MPOA) neurons to the odor of a
receptive female within minutes (Pfaff and Pfaffmann, 1969). Testosterone and estrogen
may mediate these rapid effects by interacting with a number of membrane-associated
receptors and/or non-receptor proteins. These rapid actions can influence a number of
cellular actions, including changes in intracellular signaling pathways, neuronal membrane
excitability, and plasticity (Yamada, 1979, Kubli-Garfias et al., 1982, Pluciennik et al.,
1996). For example, neurons in the arcuate nucleus of the hypothalamus of ovariectomized
guinea pigs showed increased excitability as a result of estradiol uncoupling μ-opioid
receptors in pro-opiomelanocortin (POMC) neurons and uncoupling GABAB receptors in
dopaminergic neurons (Kelly et al., 2002a). This effect was blocked by inhibitors of several
intracellular effectors, including protein kinase A (PKA), protein kinase C (PKC), and
phospholipase C (PLC) (Kelly et al., 2002a, Kelly et al., 2002b). Estradiol also induced
Ca2+ influx via L-type calcium channels, leading to the activation of the Src/ERK/cyclic
AMP response element binding protein pathway in hippocampal neurons (Wu et al., 2005).
Rapid estrogen effects on extracellular signal regulated kinases (ERKs) were also found in
rat cerebral cortex explants (Setalo et al., 2005). In vivo activation of ERK phosphorylation
by estrogen administered into the lateral ventricle was also observed within 5 minutes in
hippocampal neurons (Kuroki et al., 2000) and in many brain regions within 20 minutes
after subcutaneous administration (Bryant et al., 2005). Other kinases that are rapidly
activated by estrogen include the serine–threonine kinase Akt and cyclic AMP response
element binding protein (CREB), which are activated in the same population of cortical
neurons (Mannella and Brinton, 2006). Estrogen can also rapidly affect ion channels. As
noted above, estrogen rapidly increased Ca2+ influx in hippocampal neurons (Wu et al.,
2005). K+ channels can also be rapidly regulated in numerous types of neurons in the
hypothalamus via G-coupled protein receptors and cAMP-induced phosphorylation (Kelly et
al., 1999, Kelly et al., 2003).

In addition, these non-genomic actions can enhance the classical genomic effects of
testosterone and estrogen (reviewed in Vasudevan and Pfaff, 2008). For example, PKA-
mediated phosphorylation of ERα at its DNA binding domain may increase dimerization
and, thereby, transcription (Chen et al., 1999). In addition, dendritic spine growth in
hippocampal neurons may be increased via estrogen-induced PKA and pCREB actions
(Murphy and Segal, 1997, Segal and Murphy, 1998). Finally, in caudomedial nidopallium
(NCM), the songbird analog of the mammalian auditory association cortex, locally produced
estradiol is both necessary and sufficient for song-stimulated MAPK-dependent gene
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expression in awake birds (Tremere et al., 2009). Those authors observed that social
interactions can increase estradiol levels in the NCM (Remage-Healey et al., 2008), and that
the NCM is part of a “social behavioral network,” in which steroid hormones may directly
influence sensory processing.

Both testosterone and estradiol can exert non-genomic actions in the cell by activating a
number of intracellular signaling pathways, notably the mitogen-activated protein kinase
(MAPK) pathway. Once activated, MAPK phosphorylates target substrates such as 3′-5′-
cyclic adenosine monophosphate response element binding protein (CREB) (Song et al.,
2002, Cheng et al., 2007). The MAPK-ERK(extracellular signal-regulated kinase)-CREB
signal transduction pathway is of particular interest, given that it can be stimulated in
response to androgens and has been implicated in the pathophysiology of depression (Liu et
al., 2004, Shen et al., 2004). This may be one potential mechanism whereby androgens
promote antidepressant actions; however, the activation of this pathway can result from a
number of disparate molecular mechanisms. For instance, this pathway can be activated
through membrane-associated receptors for androgen, estrogen, or progesterone, which
interact with the SH2 and SH3 domains of the c-Src kinase, an important upstream
component of the MAPK cascade (Migliaccio et al., 2000, Boonyaratanakornkit et al., 2001,
Kousteni et al., 2001). Specifically, Src kinase activates Shc, promoting the Shc/Grb2/SOS
complex, facilitating activation of the monomeric GTPase, Ras, and finally activating the
Raf/MEK/ERK pathway (Cheng et al., 2007). Src kinase can also stimulate membrane-
bound epidermal growth factor (EGF), which activates a tyrosine kinase EGF receptor that
can activate the MAP kinase pathway (Cheng et al., 2007). Alternatively, testosterone can
associate with membrane-bound AR, which interacts with a Gq-protein, producing
phospholipase C, which then cleaves the phospholipid phosphatidylinositol 4,5-bisphosphate
(PIP2) into inositol trisphosphate (IP3) and diacylglycerol (DAG) (as reveiwed in, Rahman
and Christian, 2007). This process initiates a cascade of events that leads to an increase in
intracellular calcium, inhibition of inhibitory K+- ATP channels (leading to depolarization),
and activation of ERK kinases (Rahman and Christian, 2007, Loss et al., 2011).
Testosterone and its associated metabolites may activate one or more of these MAPK-ERK
pathways in brain regions mediating mood and emotion, in turn influencing the onset,
outcome, and/or treatment of affective disorders. Recently, our lab has implicated this
pathway in the antidepressant actions of testosterone in the hippocampus of male rats and is
presented below in further detail.

4. Origins of sex differences in anxiety and depression: organizational and
activational effects

In both human and animal models, there are many factors, such as environment, age, and
genetic sex, that contribute to sex differences in anxiety and depressive disorders. Sex
differentiation of mammals begins with the fertilization of an oocyte with either an X or Y
chromosome-bearing sperm. Y chromosomes usually carry the SRY (Sex-determining
Region of the Y chromosome) gene, which activates the SOX1 gene, which in turn causes
the primitive gonads to develop into testes. The testes secrete testosterone and anti-
Müllerian hormone (AMH), which causes the Müllerian ducts to degenerate, rather than
develop into oviducts and uterus. X-bearing sperm result in automatic development of the
gonads as ovaries, due to genes on the X chromosome including DAX1, WNT4, and FOXL2
(Kousta et al., 2010). Occasionally, the SRY gene is translocated onto an X chromosome or
an autosome during development of the sperm, resulting in a phenotypic male. Conversely,
XY individuals lacking the SRY gene develop as phenotypic females. However, these
individuals have some different characteristics compared to typical XY males and XX
females (De Vries et al., 2002, Pfaff, 2010).
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Organizational effects of hormones occur during critical periods of development when
exposure to gonadal hormones can cause permanent sex differences. Activational effects are
acute and transient effects that occur throughout life(Cooke et al., 1998). The organizational
actions of gonadal hormones are highly evident when female rodents are exposed to
neonatal testosterone (Arnold and Gorski, 1984, Simerly, 2002, Morris et al., 2004). A
single testosterone treatment on the day of birth is sufficient to masculinize the brain and
behavior of female mice and rats (Guillamon et al., 1988, Mong et al., 1999, Murray et al.,
2009, Hisasue et al., 2010).

For most male rodents, masculinization of brain areas that control sexual behavior is caused
primarily by estradiol, produced from testosterone by the enzyme aromatase. This is referred
to as the aromatization hypothesis. Actions via estrogen receptor α (ERα) masculinize brain
circuits, whereas actions via ERβ defeminize circuits (Kudwa et al., 2006). Female rodents
are protected from their mother’s and their own estrogen by alpha-fetoprotein, which binds
to estrogens and prevents them from entering neurons to masculinize them. However,
androgens are the masculinizing and defeminizing hormones for primates and guinea pigs
(Goy and McEwn, 1980). Although many studies concerning organizational sex differences
have focused on sex behavior in rodents (Phoenix et al., 1959, Handa et al., 1985), there is
recent support for a role of organizational effects of sex hormones partially underlying sex
differences in emotionality in rodents (Goel and Bale, 2008, Seney et al., 2012).

Beginning in puberty, the predominant circulating gonadal hormones include estrogen and
progesterone in females and testosterone in males. Puberty constitutes a second period of
such organizational effects of steroid hormones (reviewed in Schulz et al., 2009). For
example, castration shortly before puberty results in decreased sexual, aggressive, and
territorial behaviors in male Syrian hamsters (Schulz et al., 2004, Schulz and Sisk, 2006,
Schulz et al., 2009). Those males are also more sensitive to adult injections of estrogen and
progesterone, showing shorter latencies to assume lordosis, compared to males castrated in
adulthood. Pubertal hormones also promote the development of territorial scent marking in
male tree shrews (Eichmann and Holst, 1999), as well as inter-male aggression in mice
(Shrenker et al., 1985) and gerbils (Lumia et al., 1976). Prepubertal castration also increases
the anxiogenic effect of a novel environment; such males show less ambulation in an open
field (Brand and Slob, 1988) and also less male-male social interaction (Primus and Kellogg,
1990). Those behavioral effects may have resulted in part from changes in cell proliferation
and/or survival in several brain areas. Prepubertal gonadectomy (GNX) abolished the sex
differences in the acquisition of new neurons (bromodeoxyuridine, BrdU, immunoreactive)
in the anteroventral periventricular nucleus (AVPV), which is larger in females, and in the
sexually dimorphic nucleus of the preoptic area (SDN) and medial amygdala (MeA), both of
which are larger in males (Ahmed et al., 2008). Ahmed et al. reported that only gonadally
intact females acquired significantly more new neurons during puberty in the AVPV, and
only intact males acquired more new neurons in the SDN and MeA. These new neurons
increased the sex differences already present in those brain areas. The AVPV plays an
important role in neural regulation of gonadotrophin secretion and luteinizing hormone
surges (Sakuma, 2009, Semaan and Kauffman, 2010).; The functions of the SDN are not
clear; lesions restricted to the SDN impaired copulation only in sexually naïve male rats, not
in experienced males (De Jonge et al., 1989). However, lesions of the SDN did increase the
display of lordosis in male rats (Hennessey et al., 1986). Therefore, the SDN may be more
important for defeminization, rather than masculinization, of behavior. The MeA is part of a
social/sexual/emotional network. The neuropeptide substance P (SP) is important for pain
perception and may promote depressive-like behavior in guinea pig pups separated from
their mothers and also in humans (Kramer et al., 1998). SP is released in the MeA of male
rats in response to restraint stress and placement on an elevated plus maze (Ebner et al.,
2004). Therefore, the pubertal changes in hormones can enhance the sex differences in
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neuroanatomy and behavior that were initially organized perinatally, and these changes may
affect moods.

The influence of these gonadal hormones in adulthood, traditionally known as activational
effects (Arnold and Breedlove, 1985, Williams, 1986) or hormonally modulated responses
(McCarthy and Konkle, 2005), may also activate sex differences in many biological
processes. Various animal models and methods can be utilized to distinguish between
organizational and activational effects of hormones that may ameliorate the display of
anxiety- and depressive-like behaviors. Common animal models utilize GNX in conjunction
with hormone vs. vehicle replacement, performed either before or after critical periods of
reproductive development. Testosterone may also be administered to gonadally intact
subjects to determine if increasing testosterone above basal levels can improve measures of
anxiety- and/or depressive-like behavior.

5. The influence of testosterone on anxiety- and depressive-like behaviors
in animal models
5.1 The influence of testosterone on anxiety- and depressive-like measures in male animal
models

Modeling affective disorders in animals is challenging, due to the subjective nature of many
symptoms. Additionally, only a subset of symptoms (such as homeostatic changes,
anhedonia, and psychomotor behaviors) can be objectively measured in rodents and most of
the current behavioral tests used were initially developed for the rapid screening of
antidepressant compounds. Two widely used tests for depression include the forced swim
and the tail suspension tests (Cryan et al., 2002, Nestler et al., 2002a, Nestler et al., 2002b).
The forced swim test, also known as the Porsolt test, involves placing a rat or mouse in a
tank filled with water and measuring the amount of time the animal is immobile (Borsini and
Meli, 1988, Lucki, 1997, Porsolt, 2000). In the tail suspension test, mice are suspended by
their tails and the time it takes them to become immobile is measured. In both tests, acute
antidepressant treatments decrease immobility. Another major class of tests for depression-
related behaviors includes measures of anhedonia. The most frequent tests involve
examining an animal’s interest in pleasurable activities such as preference for a sucrose
solution or engaging in social activity (reviewed in (Nestler and Hyman, 2010)). Behavioral
tests commonly used to detect anxiety include the elevated plus maze, light dark box, and
open field test. Anxiety-like behaviors are assessed based on the animal’s willingness to
explore a novel environment rather than avoid open exposure (reviewed in (Nestler and
Hyman, 2010).

Several activational effects of testosterone have been observed in measures of anxiety-like
behavior in adult male rodents. Specifically, GNX in adult male rodents results in increased
anxiety-like behaviors in a battery of behavioral tests, such as the elevated plus maze, open
field test, and defensive probe-burying, compared to sham-operated controls (Slob et al.,
1981, Adler et al., 1999, Frye and Seliga, 2001, Fernandez-Guasti and Martinez-Mota, 2003,
2005, Morsink et al., 2007), effects that were reversed by testosterone replacement (Slob et
al., 1981, Adler et al., 1999, Frye and Seliga, 2001, Fernandez-Guasti and Martinez-Mota,
2005). In our recent work we have demonstrated that physiological levels of testosterone
replacement in adult GNX male, but not female rats, have protective effects against the
development of anxiety-like behaviors in a model of chronic social isolation (Carrier and
Kabbaj, 2012d). Indeed, testosterone replacements were equally as effective as
administration of the typical tricyclic antidepressant imipramine in alleviating anxiety-like
behaviors induced by two-weeks of chronic social isolation. Testosterone administration in
intact adult male rodents also reduces anxiety-like behavior in the elevated plus maze test,
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compared to controls (Bitran et al., 1993). Similarly, in intact aged male rodents with lower
levels of testosterone, administration of testosterone reduces anxiety-like behavior in the
open field test and light-dark box test, compared to vehicle-treated controls (Frye et al.,
2008). These data therefore support the hypothesis that the activational effects of
testosterone can reduce behavioral measures of anxiety in male rodents.

Testosterone can also influence anxiety-like behaviors through organizational mechanisms.
Perinatal and pubertal exposure to testosterone organizes adult behaviors in rodents by
acting either upon ARs or on ERs following aromatization to estrogen. In contrast to the
anxiolytic effects of androgens in adulthood, organizational effects of gonadal steroids may
be anxiogenic, at least in some animal models. A study comparing wild-type and AR-
deficient (Tfm, testicular feminization, due to a mutation of the gene for ARs) male rats that
were GNX on the day of birth found that GNX decreased the incidence of anxiety-like
behaviors in both groups, compared to sham-operated controls, with no differences between
wild-type (WT) and AR-deficient rats (Zuloaga et al., 2011a). The lack of a difference
between intact WT and AR-deficient males suggests that ARs do not mediate the anxiogenic
effect, but rather that aromatization to estrogen confers the effect. Thus, testosterone or its
estrogenic metabolites may act during development to increase adult anxiety-like behaviors
in the open field, novel object exposure, light-dark box, and elevated plus maze. In line with
these findings, an additional study found that GNX in neonatal male rats resulted in
decreased measures of anxiety-like behavior in an elevated plus maze test during adulthood,
compared to sham-operated controls (Lucion et al., 1996). Thus, in contrast to its anxiolytic
effects in adulthood, testosterone during organizational periods may increase anxiety-like
behavior. On the contrary, two additional studies from the same lab as above showed that
Tfm males were more anxious in the light-dark and novel object tests, compared to wild
type (WT) males (Zuloaga et al., 2008, Zuloaga et al., 2011b). Similarly, Tfm males and WT
females showed greater increases in corticosterone in response to a novel object, compared
to WT males (Zuloaga et al., 2008, Zuloaga et al., 2011b). Therefore, neonatal testosterone
can have anxiolytic, as well as anxiogenic effects in adulthood. As noted above, prepubertal
GNX also increased anxiety-like behavior in an open field and in male-male social
interactions in hamsters (reviewed in Schulz et al., 2009). Future studies regarding the
organizational effects of testosterone and its metabolites with respect to the manifestation of
anxiety-like behaviors in adulthood will be needed to elucidate their contributing roles and
the molecular mechanisms involved.

Activational effects of testosterone contribute, not only to anxiolytic behaviors in rodents,
but also to antidepressive-like behaviors. Similarly to hypogonadal men, rodents with low
testosterone levels can exhibit increased depressive-like behaviors. In fact, depressive-like
behaviors, including behavioral despair and anhedonia following GNX and vehicle, as
opposed to testosterone, replacements in male rats, are well documented (Wainwright et al.,
2011, Carrier and Kabbaj, 2012c, a, Herrera-Perez et al., 2012). Previously, we have
demonstrated that GNX in adult male rats increased depressive-like measures in the forced
swim test and in the sucrose preference test, a measure of anhedonia, compared to GNX
males treated with low or high doses of testosterone. Interestingly, both the low,
physiological levels, as well as the high, extraphysiological levels of testosterone
replacements were equally effective in reducing depressive-like symptoms that were seen in
GNX male rats receiving placebo replacements, and the behaviors of the testosterone-treated
males were similar to those of intact sham controls. These effects were found to be mediated
by estradiol, but not dihydrotestosterone, in the forced swim test (Carrier and Kabbaj,
2012b), suggesting that aromatization of testosterone to estradiol may be critical for the
antidepressant effects of testosterone. In a related study, we investigated the protective
effects of testosterone following chronic social isolation, a model used to induce a
depressive-like state. Indeed, physiological levels of testosterone replacements had
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antidepressant effects in both the sucrose preference and novelty-induced hypophagia tests
(Carrier and Kabbaj, 2012b). Another study reported that GNX in male rats increased
submissive/depressive behavior in response to social defeat, compared to sham-operated
controls - an effect partially reversed by administration of testosterone or DHT (Solomon et
al., 2009). Injections of testosterone, DHT, or 3 α-diol to intact adult male rodents dose-
dependently decreased depressive-like behavior in the forced swim test, compared to
vehicle-treated controls (Buddenberg et al., 2009). Similarly, administration of testosterone,
DHT, or 3α-diol to intact aged male rodents also decreased depressive-like behavior in the
forced swim test, compared to vehicle-treated controls (Frye and Walf, 2009). Since similar
antidepressant-like effects are observed following administration of testosterone, DHT, and
3 α-diol, it is possible that actions at androgen receptors and/or GABAA receptors are
involved. As previously stated, 3 α-diol is a metabolite of DHT and binds with relatively
low affinity to the androgen receptor (Cunningham et al., 1979), but acts as an agonist at the
GABAA receptor (Frye et al., 1996). Testosterone, on the other hand, can act through a
number of disparate actions that can stimulate estrogen receptors, androgen receptors, or
GABAA receptors. Conversely, socially defeated males often display decreased levels of
testosterone and increased depressive-like behavior following defeat (Schuurman, 1980).
Together, these data support a role for the activational effects of testosterone administration
in reducing depressive-like behaviors in male animal models.

Organizational effects of testosterone may also contribute to antidepressive-like behaviors
later in life, as suggested from animal models. In fact, newborn rat pups treated with the AR
antagonist, flutamide, displayed increased depressive-like behavior in the forced swim test
and sucrose preference test later in life, relative to vehicle-treated controls (Zhang et al.,
2010). Overall, a large body of accumulating evidence supports antidepressant and
anxiolytic properties of testosterone in adult males, although there are contradictory findings
regarding the anxiogenic vs. anxiolytic organizational effects of androgen (See table 1).

5.2 The influence of testosterone on anxiety- and depressive-like measures in female
animal models

Preclinical research has generated inconsistent results with regard to an anxiolytic and
antidepressant role of testosterone in female rodents. Many studies provide supporting
evidence for a beneficial role of testosterone, while others report no effect. Further, it is
unclear which of testosterone’s disparate routes of action may be involved. As previously
mentioned, effects resulting from testosterone, DHT, or 3α-diol could be mediated by
androgen or non-androgen mediated events. In intact adult female rodents, injections of
testosterone, DHT, or 3α-diol reduced anxiety-like behavior in the open field test and
elevated plus maze, compared to vehicle-treated controls (Frye and Lacey, 2001). Similarly,
testosterone administration in intact female rodents also decreased anxiety-like behavior in a
defensive burying task through an androgen-mediated effect, compared to vehicle-treated
controls (Gutierrez-Garcia et al., 2009). Interestingly, following two weeks of chronic social
isolation to induce anxiety-like behaviors, we observed that the anxiolytic and
antidepressant effects of testosterone administration were limited to male rats. We have
shown anxiolytic and antidepressant effects of physiological levels of testosterone
replacement in GNX male rats, but no effect of these same replacements in ovariectomized
(OVX) female rats in the light-dark box, elevated plus maze, sucrose preference, and
novelty-induced hypophagia tests (Carrier and Kabbaj, 2012d). These data suggest that
physiological levels of testosterone in male rats have protective effects against the
development of anxiety-like behaviors in an anxiety and depression model; however, female
rats may not experience the same anxiolytic and antidepressant benefits of testosterone.
Perhaps organizational sex differences prevent physiological levels of testosterone from
producing behavioral outcomes in some OVX female rats. Higher doses may be needed in
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females to observe an anti-anxiety affect. It is important to note that the majority of studies
reporting beneficial effects of testosterone used intact females. Thus, the dose and
reproductive status are important parameters to consider and likely contribute to the
discrepancies reported for effects of testosterone administration in adult female rodents.

Similar to effects in males, testosterone also appears to decrease depressant-like behavior in
female rodents, although the mechanism of action remains unclear. Indeed, administration of
estradiol to intact female rodents decreased depressive-like effects in the forced swim test,
an effect that was similar to the effect of fluoxetine in female rats (Estrada-Camarena et al.,
2003). However, administration of testosterone, DHT, or 3α-diol to intact aged female
rodents also had antidepressant-like effects in the forced swim test, compared to oil vehicle-
treated controls (Frye and Walf, 2009), suggesting that activation of androgen receptors or
GABAA receptors may mediate some antidepressive effects of testosterone (see table 1).
The potential brain sites where testosterone may be acting to exert its anxiolytic and
antidepressant effects are discussed below.

6. Potential brain sites mediating testosterone’s effects on anxiety and
depression: parallels between human and animal studies

Several brain regions have been implicated in the pathophysiology of anxiety and depressive
disorders. In humans, a number of anxiety disorders are associated with structural and
functional abnormalities within the amygdala, prefrontal cortex, hippocampus, and
hypothalamus (Shin and Liberzon, 2010). In animal models, more discrete sub-regions of
these brain sites and others have also been implicated in anxiety and depressive-like
behavior. Mice specifically bred for high anxiety behavior exhibit more expression of stress-
induced c-Fos immunoreactivity within the central, medial, and basolateral regions of the
amygdala, medial prefrontal cortex, anterior cingulate cortex, hippocampus, septum, and
several hypothalamic nuclei including the medial preoptic area, lateral hypothalamus, and
paraventricular nucleus, compared to wild type mice and those bred for low anxiety
behavior (reviewed in Singewald, 2007). Also, anxiogenic stimuli induce neuronal Fos
activity in the medial prefrontal cortex, lateral septum, bed nucleus of the stria terminalis
(BNST), locus coeruleus, periaqueductal gray (PAG), and several nuclei within the
amygdala and the hypothalamus in normal rodents (reviewed in Singewald, 2007).
Depression is commonly associated with dysregulation of the mesolimbic system, the
hypothalamic-pituitary-adrenal (HPA) axis, hypothalamic areas, hippocampus, and medial
prefrontal cortex (reviewed in Nestler et al., 2002a, Krishnan and Nestler, 2008). In post-
mortem tissue of depressed individuals, a decrease in volume of the hippocampus is
observed, compared to healthy individuals (reviewed in Nestler et al., 2002a). Neuroimaging
studies and post-mortem tissue analysis of depressed individuals also reveal both structural
and functional abnormalities in the prefrontal cortex, cingulate cortex, hippocampus,
striatum, amygdala, and thalamus (reviewed in Nestler et al., 2002a). Testosterone and its
associated actions have been shown to have a number of neurobiological effects in several
areas implicated in affective disorders, particularly the amygdala, BNST, and hippocampus
as discussed below.

6.1 Amygdala
The amygdala plays a major role in anxiety and fear responses in humans and rodents alike
(reviewed in Rauch et al., 2003, Rodrigues et al., 2009, Ressler, 2010). Hyperactivity of the
amygdala has been reported in people with post-traumatic stress disorder and phobia
disorders (Singewald, 2007, Shin and Liberzon, 2010) and in rodents displaying high levels
of anxiety-like behavior (reviewed in Singewald, 2007). Although human imaging studies
examining potential brain regions involved in the effects of testosterone on anxiety and/or
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depression are extremely limited, a few have found that testosterone can influence the
degree of amygdala activation in relation to fear, with a positive correlation observed
between testosterone levels and amygdala activation in men and a negative correlation in
women (Derntl et al., 2009, van Wingen et al., 2009). More research concerning the role of
the amygdala in testosterone’s influence on anxiety- and depressive-like behavior has been
obtained from rodent models, although findings are complicated and somewhat
contradictory.

Rodents display a high degree of natural variation in exploratory/novelty-seeking behavior
(Kabbaj et al., 2000), which may be used to correlate biological processes with behavioral
phenotypes. For example, male rodents with naturally high defensive burying express more
ARs and vasopressin mRNA in the medial amygdala (MeA) and posterior BNST and less
oxytocin mRNA in the PVN, compared to those with low defensive burying responses
(Linfoot et al., 2009). The high-bury animals also display increased levels of
adrenocorticotropic hormone (ACTH) and corticosterone release in response to stress,
compared to low-bury animals. While the higher expression of ARs in the high-bury animals
appears contradictory to previous findings relating ARs to more anxiolytic behaviors, it has
been suggested that burying behavior in rodents is complex and may reflect active versus
passive stress-coping style (with high-burying behavior reflecting active stress-coping and
vice versa). Thus, even though there is increased behavioral and physiological stress
responsiveness in rodents with high numbers of ARs in the MeA and BNST, those males
may respond more adaptively. Some of these individual differences may stem from
testosterone’s organizational effects on neural circuits mediating stress reactivity, which
ultimately influence anxiety-like behavior. In fact, neonatal GNX results in fewer AR- and
vasopressin-containing cells in the MeA and BNST in adulthood, compared to sham-
operated controls (Bingham and Viau, 2008). Also, testosterone administered on postnatal
days 1–5 reversed this effect, but testosterone administered in adulthood, did not.

The effects of androgens and estrogens on anxiety- and depressive-like behaviors have also
been observed in female rodents. Injection of a 5α-reductase inhibitor into the amygdala of
intact and OVX hormone-primed female rodents increased anxiety-like behavior in the open
field test, elevated plus maze, and defensive freezing tests, and depressive-like behavior in
the forced swim test, compared to vehicle-treated controls (Walf et al., 2006). Therefore,
metabolism of testosterone to DHT, or progesterone to 5 alpha progesterone, in the
amygdala of female rodents may have anxiolytic and antidepressant effects. Aromatization
of testosterone to estradiol may also have anxiolytic effects within the amygdala. Indeed,
injection of estradiol into the amygdala of ovariectomized (OVX) female rats decreased
anxiety-like behavior in the open field, elevated plus maze, and hot plate tasks, compared to
sham-operated controls (Frye and Walf, 2004). In contrast, silencing ERα in the posterior
medial amygdala of intact female rats decreased anxiety-like behavior in a light-dark box
test, compared to controls, suggesting that estrogen in the amygdala may also have
anxiogenic effects (Spiteri et al., 2010). It is not clear in which conditions estrogen in the
amygdala may have anxiolytic vs. anxiogenic effects; perhaps different nuclei or different
receptor subtypes mediate the opposite effects.

6.2 Bed Nucleus of the Stria Terminalis (BNST)
The BNST is implicated in central control of emotion associated with anxiety and stress
responses (Walker et al., 2003) and is also highly sensitive to testosterone changes. In
addition, the central nucleus of the BNST is considered a sexually dimorphic area that is
twice as large in men as in women (Miller et al., 1989, Swaab, 2007). Its lateral and medial
divisions are considered extensions of the central amygdala and medial amygdala,
respectively (Dong et al., 2001a, Dong et al., 2001b). Further, lesions of the BNST reduced,
and stimulation enhanced, anxiety- and stress-related behaviors (Walker et al., 2003,
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Toufexis et al., 2006). The BNST also contains aromatase enzymes (Roselli, 1991), in
addition to ERα, ERβ, and AR (Zhou et al., 1994, Laflamme et al., 1998). GNX in adult
rodents decreased vasopressin mRNA and increased ERα mRNA within the BNST, effects
reversed by testosterone administration (Schulz et al., 2009, Auger et al., 2011). The effects
of castration resulted from increased methlyation at CpG sites in the vasopressin promoter
and decreased methylation in the ERα promoter, establishing an epigenetic influence of
testosterone. However, the specific role of testosterone in the BNST relating to anxiety and
depression is understudied and requires additional focus.

6.3 Hippocampus
The hippocampus has been extensively documented as a critical site involved in anxiety
disorders, major depressive disorder, and stress-induced alterations in the brain. Structural
abnormalities and reduced activity in the hippocampus are observed in individuals with
anxiety-related disorders and major depressive disorder, compared to healthy controls
(Nestler et al., 2002a, Shin et al., 2006, Ferrari et al., 2008, Krishnan and Nestler, 2008,
Hayes et al., 2011). The hippocampus also undergoes various morphological alterations
during depression and anti-depressant treatment (McEwen, 2005, Rodrigues et al., 2009).
Chronic stress causes atrophy of hippocampus cells, impairs neurogenesis (McEwen and
Magarinos, 2001), and produces excitotoxic damage resulting from excess glucocorticoids
(Magarinos and McEwen, 1995a, b). These effects can impair memory, impact HPA axis
negative feedback, and contribute to the manifestation and maintenance of stress-related
depression (Nestler et al., 2002a). Preclinical evidence has found that testosterone acting in
the hippocampus has a number of anxiolytic, antidepressant, and protective cellular actions.
Some of the protective effects of testosterone in the hippocampus may be due to its ability to
lessen the aversive effects of stress and depression and facilitate molecular mechanisms that
favor cell proliferation, growth and/or survival.

It is clear that testosterone has a number of protective effects on hippocampal cell growth
and survival, during both organizational and activational periods. Perinatal androgen
treatment increases neuronal soma size, dendritic length and branching, and also the volume
of the CA3 pyramidal cell layer and the entire CA3 region of the hippocampus (Isgor and
Sengelaub, 1998, 2003). Furthermore, neonatal GNX resulted in decreased hippocampal
spine density in adulthood, an effect reversed with testosterone or DHT treatment (Dawson
et al., 1975, Isgor and Sengelaub, 1998, 2003). These structural changes are associated with
functional changes. In fact, neonatal androgens play an important role in protecting male rats
from the development of depressive-like behaviors, and this protection is correlated with
hippocampal neurogenesis as well as increased hippocampal spine density (Zhang et al.,
2010). It has been suggested that the antidepressant effects of estradiol in females may be
mediated in part by actions at serotonin (5-HT) receptors at the level of the hippocampus
(Estrada-Camarena et al., 2006, Walf and Frye, 2007). In addition, testosterone
administration in stressed tree shrews increased binding of serotonin 1A receptors in the
hippocampus, which are usually down-regulated in response to stress and elevated
corticosterone levels (Flugge et al., 1998). Additionally, mice with a knockout of ERβ have
significantly lower levels of serotonin in the BNST, preoptic area, and hippocampus,
compared to wild type littermates. The organizational effects of testosterone within the
hippocampus, also have important implications regarding depression. Administration of the
AR antagonist flutamide to newborn male rat pups resulted in increased depressive-like
behavior in the forced swim and sucrose preference tests prior to puberty; these behavioral
effects were associated with decreased neurogenesis and dendritic spines in the
hippocampus (Zhang et al., 2010). Overall, the influence of organizational effects of
testosterone within the hippocampus appears to contribute significantly to its protective and
antidepressant properties.
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Activational effects of testosterone in hippocampal cells also produce favorable cellular
outcomes. In GNX adult male rodents, testosterone administration reduced cellular oxidative
damage and morphological alterations in the hippocampus, compared to vehicle-treated
controls (Meydan et al., 2010). In intact female rodents, testosterone, DHT, or 3α-diol
administration following adrenalectomy decreased the number of pyknotic cells undergoing
cell death in the hippocampus, compared to control-treated females (Frye and McCormick,
2000).

In addition, activational effects of testosterone in the hippocampus produce anxiolytic
effects. For instance, GNX males with replacement of testosterone, DHT, or 3α-diol in the
hippocampus display decreased anxiety-like behavior in the elevated plus maze, open field
test, and defensive freezing tests, compared to GNX without replacement controls (Edinger
and Frye, 2004). Further, in GNX+DHT replaced male rodents, intra-hippocampal
administration of indomethacin, which blocks conversion of DHT to 3α-diol, decreased
DHT’s anxiolytic effects in the elevated plus maze and open field test and increased freezing
behavior, compared to intact males and GNX+DHT replaced males treated with vehicle
(Frye and Edinger, 2004). This suggests that 3α-diol in the hippocampus contributes to
DHT’s anxiolytic effects. As previously stated, 3α-diol binds with relatively low affinity to
the androgen receptor (Cunningham et al., 1979), but acts as a neurosteroid agonist at the
GABAA receptor (Frye et al., 1996). Several studies found that testosterone or its
metabolites enhance the actions of GABA at its ionotropic GABAA receptor in cortical and
hippocampal regions (Bitran et al., 1993, Frye et al., 2008). In addition to neurotransmitter
interactions, androgen receptors may also be involved, since intra-hippocampal
administration of the AR antagonist, flutamide, increased anxiety-like behavior, compared to
intact and DHT-replaced controls (Edinger and Frye, 2006). Thus, it appears that
testosterone within the hippocampus may have protective actions in males through a number
of mechanisms at different points across the lifespan.

While it is clear that testosterone exerts a number of protective effects on cell growth and
survival in the hippocampus, it remains unclear whether testosterone can also stimulate
neurogenesis. Adult neurogenesis involves a population of stem cells that proliferate,
migrate, and differentiate into new neurons within the brain. In mammals, the subgranular
zone in the dentate gyrus sub-region of the hippocampal formation is a critical site for
neurogenesis (Christie and Cameron, 2006) that is highly sensitive to multiple endogenous
and environmental factors, particularly stress and antidepressant treatments (Galea et al.,
2006). Two major components of hippocampal neurogenesis are typically studied: 1) the
number of newly proliferating cells that are produced, and 2) the number of these new cells
that survive to specific time points. Given that adult hippocampal neurogenesis is sexually
dimorphic, such that females exhibit higher cell proliferation than males (Galea and
McEwen, 1999), and the survival of newly proliferated cells is higher in males than in
females (Westenbroek et al., 2004), it is quite predictable that sex hormones influence these
processes. The extent of hormonal regulation of hippocampal neurogenesis on depressive-
like behaviors is still not fully understood.

Studies investigating the effects of GNX on cell proliferation have been inconsistent.
Several studies have found no effect of GNX on cell proliferation in male rats (Spritzer and
Galea, 2007, Buwalda et al., 2010, Carrier and Kabbaj, 2012b); however, a decrease in both
proliferation and survival following GNX has been reported (Wainwright et al., 2011).
Previously, we have shown that three weeks of testosterone supplementation, in the form of
slow release pellet implants, had no effect on hippocampal cell proliferation or survival in
GNX male rats (Carrier and Kabbaj, 2012b). In agreement with our findings, two similar
studies using testosterone implants also found no effect of testosterone on cell proliferation;
however, they did report that GNX decreased cell survival (Benice and Raber, 2010), an
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effect that was reversed with DHT and testosterone, but not estradiol (Spritzer & Galea,
2007). Indirect evidence associates seasonal decreases in testosterone levels with decreased
hippocampal cell survival in male meadow voles during the non-breeding season (Galea and
McEwen, 1999). Overall, there may be an optimal dose of circulating testosterone for
increasing neurogenesis, and supraphysiological surges may even have a negative impact
(Spritzer et al., 2011). However, the effects of testosterone on neurogenesis in the dentate
gyrus of the hippocampus are complicated by a report that the majority of its
neuroprotective effects may be mediated by aromatization to estradiol (Azcoitia et al.,
2001). In contrast, another study provides evidence that testosterone may provide its
beneficial effects via reduction to DHT (Spritzer and Galea, 2007). Specifically, in GNX
rats 30 days of replacement with testosterone or DHT, but not estradiol, enhanced cell
survival without affecting the number of newly proliferating cells. Therefore, it is not clear
whether androgenic or estrogenic metabolites mediate most of the effects of testosterone on
hippocampal cell survival.

Testosterone may act as a neuromodulator or in conjunction with other biochemical factors
to enhance cell proliferation. We investigated the potential protective effects of concomitant
treatment of testosterone and imipramine in rats that were exposed to chronic social isolation
as a stress model. Although we found that testosterone alone did not influence cell
proliferation in socially isolated GNX male rats, when compared to placebo-treated controls,
we found an enhanced neurogenic effect with testosterone and imipramine co-administration
on the number of proliferating cells in the dentate gyrus of the hippocampus, compared to
testosterone or imipramine administration alone or to vehicle controls (Carrier and Kabbaj,
2012d). These data suggest an interesting potential influence of testosterone on
antidepressant activity in male rats (Carrier and Kabbaj, 2012d). Although testosterone
treatment in males has antidepressant activity that is similar to traditional drug treatments,
few studies have investigated the potential interaction between testosterone and
antidepressants. The physiological mechanism of these interactions remains unknown;
however, imipramine, a tricyclic antidepressant that inhibits both 5-hydroxytryptamine and
norepinephrine reuptake, likely interacts with testosterone through the noradrenergic system
(Carrier and Kabbaj, 2012d). Indeed, Martinez-Mota and Fernandez-Guasti (2004) reported
that GNX rats did not respond to the noradrenaline reuptake inhibitor desipramine, and
testosterone supplementation restored its antidepressant activity. Furthermore, in that same
study, testosterone did not influence the antidepressant efficacy of serotonin reuptake
inhibitors such as fluoxetine and clomipramine. While the physiological mechanisms of
testosterone’s actions within the hippocampus remain unknown, the timing, dose, and route
of testosterone administration appear to substantially impact observations regarding the
effects of testosterone on hippocampal neurogenesis and interactions with typical
antidepressants.

Elucidating underlying molecular signaling pathways stimulated by testosterone is crucial in
understanding how testosterone is affecting intra-cellular processes. One potential candidate
is the MAPK/ERK pathway, a major convergence point for signaling pathways activated by
testosterone and its metabolites (Cheng et al., 2007) related to cell growth, differentiation,
and neuronal plasticity (Schafe et al., 2000, Chen et al., 2001, Sweatt, 2001). Recently
proposed theories implicate signaling pathways related to synaptic plasticity as critical to the
molecular mechanisms of antidepressants, with particular focus on the ERK pathway
regarding emotional responses (Malberg et al., 2000, Manji et al., 2001, Einat et al., 2003,
Qi et al., 2008). Chronic stress increases depressive-like behaviors and decreases ERK2 in
the hippocampus, an effect alleviated in part by treatment with fluoxetine (Qi et al., 2008).
Furthermore, chronic administration of lithium or valproate, mood stabilizers used in the
treatment of manic depression, stimulates the MAPK pathway in the rat hippocampus (Einat
et al., 2003). In our previous work, we have shown that mRNA and protein expression of
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ERK2, specifically within the hippocampus, is testosterone dependent (Carrier and Kabbaj,
2012d). GNX adult male rats had reduced ERK2 expression throughout the hippocampal
formation, compared to sham-operated controls. Both physiological and extraphysiological
testosterone replacements in GNX male rats increased ERK2 expression to the level seen in
sham-operated controls. Furthermore, ERK2 expression within the hippocampus mediated
the antidepressant effects of testosterone. In fact, GNX placebo-treated male rats exhibited
depressive-like symptoms in the forced swim test and sucrose preference test, compared to
sham-operated and GNX testosterone-replaced male rats (Carrier and Kabbaj, 2012b).
Furthermore, we induced depressive-like behaviors by inhibiting downstream signaling of
ERK2 activity in the dentate gyrus of testosterone-replaced GNX male rats, using a
dominant negative herpes simplex viral vector construct, whereas over-expression of ERK2
in GNX placebo-treated male rats reversed this effect (Carrier and Kabbaj, 2012b).
Therefore, the testosterone-dependent regulation of ERK2 signaling within the dentate gyrus
area of the hippocampus appears to be an important link between circulating levels of
peripheral testosterone, MAPK expression, and depressive-like behaviors. Overall, studies
agree that testosterone has activational effects through signaling pathways in the
hippocampus/dentate gyrus.

7. Testosterone’s attenuating effects on stress response systems
In humans, excess stress has deleterious effects on mental health and often contributes to the
manifestation and maintenance of anxiety-related disorders (Pego et al., 2010) and major
depressive disorder (Holzel et al., 2011). Similarly in animal models, chronic stress
increases anxiety- and depressive-like behaviors (Gronli et al., 2005, Becker et al., 2008,
Kompagne et al., 2008). Moreover, long-term stress has been shown to induce functional
alterations in brain regions implicated in anxiety and/or depressive disorders, including the
hippocampus, amygdala, and prefrontal cortex (reviewed in McEwen, 2005, Rodrigues et
al., 2009), The aversive effects of stress most likely result from over- activation of biological
stress response systems. Stress acutely stimulates the sympathetic adrenomedullary (SAM)
division of the autonomic nervous system, resulting in increased adrenal epinephrine release,
followed by elevated heart rate, blood pressure, and vasoconstriction (Henry, 1992, Pacak,
2004). Stress also activates the hypothalamic-pituitary-adrenal (HPA) axis via the PVN,
which contains the stimulatory peptides corticotrophin releasing hormone (CRH) (Henry,
1992, Pacak, 2004, Papadimitriou and Priftis, 2009). CRH stimulates the release of
adrenocorticotrophic hormone (ACTH) from the anterior pituitary, ultimately promoting the
secretion of adrenal glucocorticoids such as corticosterone/cortisol (cort.) into the
bloodstream (Henry, 1992, Pacak, 2004, Papadimitriou and Priftis, 2009). Over-activation of
the HPA axis with chronic stress, which results in excess glucocorticoids and impaired
negative feedback, has been associated with a number of stress-related mental illnesses,
including anxiety disorders and major depressive disorder (Sapolsky, 2000, Pariante and
Miller, 2001, Varghese and Brown, 2001, Barden, 2004, Parker and Brotchie, 2004,
Gillespie and Nemeroff, 2005). Testosterone may act during development and/or adulthood
to dampen stress responsiveness. For example, women treated with testosterone display a
suppressed stress response compared to controls (Hermans et al., 2007). In addition,
testosterone can counteract the effects of early-life stress, which would otherwise result in
increased stress and anxiety-like responses (Kapoor and Matthews, 2011).

Testosterone can suppress activity of the HPA axis, and there are opposing interactions
between the HPA and hypothalamic-pituitary-gonadal (HPG) axes (reviewed in Viau, 2002).
For example, stress inhibits gonadotrophins, which in turn leads to suppression of
testosterone (Sapolsky, 2004). Conversely, testosterone also can attenuate levels of
glucocorticoids and other stress hormones (Viau and Meaney, 1996). The precise
mechanisms whereby testosterone inhibits the HPA axis remain unclear. GNX in adult male
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rodents increases basal and stress-induced activity of the HPA axis, compared to controls, an
effect reversed by testosterone or DHT replacement (Viau and Meaney, 1991, Handa et al.,
1994, Viau et al., 2003, Viau and Meaney, 2004). However, while T suppresses activation of
the HPA axis, it probably does not do so directly, since CRH neurosecretory cells in the
PVN contain few to no gonadal steroid receptors (Simerly et al., 1990, Schuchard et al.,
1993, Zhou et al., 1994, Shughrue et al., 1997, Laflamme et al., 1998, Viau, 2002). Thus, the
influence of T on stress responses and HPA function is likely to be controlled above the
level of the PVN. Indeed testosterone can act in brain areas up-stream from the PVN, such
as the medial preoptic area (MPOA), to prevent stress responses of the HPA axis (Viau and
Meaney, 1996, Williamson et al., 2010). Levels of testosterone and CRH also appear to be
inversely related. In humans, CRH is often dsyregulated dysregulated in those with an
anxiety disorder or major depression (Heuser et al., 1998, Arborelius et al., 1999, Reul and
Holsboer, 2002b). In animals, males also have lower levels of CRH, compared to females,
an effect reversed by GNX, rescued by DHT replacement, and exacerbated by estradiol
treatment (Haas and George, 1988, Bingaman et al., 1994, Lund et al., 2004). Interestingly,
the CRH promoter contains hormone response elements for both estrogens and androgens
(Vamvakopoulos and Chrousos, 1993, Bao et al., 2006), suggesting a potential way for
gonadal steroids to regulate CRH gene expression. Furthermore, DHT can significantly
increase mRNA expression of CRH receptor 2 (CRH2) in the hippocampus, compared to
vehicle-treated controls (Weiser et al., 2008). CRH2 may promote stress coping(Reul and
Holsboer, 2002a) and knockout or deletion of CRH2 results in increased anxiety and
hyperactive responses to stress (Bale et al., 2000, Kishimoto et al., 2000). Collectively, sex
steroids can influence stress response systems and either enhance or lower stress
responsiveness, depending on the brain region and specific hormone, metabolite, and/or
receptor involved. In this way, sex steroids may influence stress-related anxiety and/or
depressive disorders.

8. Conclusions
Innate sex differences develop under the influence of differential hormonal milieus,
resulting in dimorphisms in brain structure, circuitry, and function. These differences are of
extreme importance to the understanding of anxiety and depression, complex behaviors that
exhibit sex-specific phenotypes. Overall, the studies presented here underscore the
importance of testosterone and its metabolites in mediating patterns of gene expression
within areas of the brain that are fundamental to the etiology of anxiety and depression.
While our work has implicated the MAPK pathway in the hippocampus as an important
mediator of testosterone effects, future studies will elucidate more molecular mechanisms in
the hippocampus and other brain areas underlying the effects of testosterone on these
complex psychological disorders.
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Highlights

• Women are twice as likely as men to suffer from anxiety and depressive
disorders.

• Women’s mood disturbances are more frequent during times of hormonal flux.

• Testosterone has anxiolytic and antidepressant effects in women, men, and
animals.

• Its organizational and/or activational effects may mediate such benefits.

• The hippocampal MAPK pathway may mediate Testosterone’s protective
effects.
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Figure 1. Steroidogenesis
Cholesterol is the precursor of all steroid hormones. The synthesis of testosterone involves a
series of enzymatic steps and can occur through a number of disparate routes. Testosterone
can then be aromatized to estradiol or reduced to dihydrotestosterone by the aromatase 5α-
reductase.
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Figure 2. Testosterone’s genomic and nongenomic effects
Testosterone exerts slower genomic actions by diffusing through the plasma membrane and
binding with intracellular androgen receptors to form complexes. These complexes can then
homodimerize and translocate to the nucleus and act as transcription factors at androgen
response element (ARE) DNA sequences to enhance or repress transcription. Testosterone
can also exert a number of rapid nongenomic effects through actions at membrane bound
receptors (shown as examples, G protein coupled receptor and epidermal growth factor
receptor). Rapid effects of androgens can induce a number of intracellular events such as
stimulation of the MAPK-ERK pathway.

McHenry et al. Page 34

Front Neuroendocrinol. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

McHenry et al. Page 35

Table 1

Summary of some studies that examined anxiety and depression in human and animal models.

Study Sex/Species Age Depression Anxiety

Miner et al, Postgraduate Med,
2013 Hypogonadal Men 52.1 ± 12.3 yrs Symptoms improved with 3

moths of T therapy Not investigated

Giltay et al, Journal of
Psychosomatic Research, 2012

Men 44.9 ± 12.6 yrs No change in salivary T
levels

No change in salivary T
levels

Women 42.8 ± 13.2 yrs Decreased salivary T levels Decreased salivary T levels

Aydogan et al, Endocrine Journal,
2012

Men CHH 21 ± 2.04 yrs Symptoms improved with T
therapy

No improvement with T
therapy

Men controls 23 ± 2.47 yrs N/A N/A

Granger et al, Development and
Psychopathology, 2003

Men adolescent Low salivary T associated
with increased symptoms

Low salivary T associated
with increased symptoms

Women adolescent Low salivary T associated
with increased symptoms

Low salivary T associated
with increased symptoms

Carbone et al, Hormones and
Behavior, 2013

Male rats perinatal/adult Not investigated DEHP increased in adults;
reversed by T

Female rats perinatal/adult Not investigated DEHP had no effect

Carrier and Kabbaj, Biological
Psychiatry, 2012 Male rats adult removing T has depressive-

like effects Not investigated

Hodosy et al, Pharmacology,
Biochemistry, and Behavior, 2012 Male rats 12 weeks N/A Flutamide blocked T

anxiolytic effects

Walf and Frye, Front. Cell
Neurosci, 2012 Male rats Adult Gestational stress increased

symptoms
Gestational stress increased

symptoms

Seney et al, Neurobiology of
Disease, 2012 Female mice neonatal/adult

neonatal T treatment partially
decreased vulnerability to

stress in adults

neonatal T treatment partially
decreased vulnerability to

stress in adults

Carrier and Kabbaj, Hormones and
Behavior, 2012

Male rats adult T replacement in castrated
animals decreased symptoms

T replacement in castrated
animals decreased symptoms

Female rats adult T replacement in castrated
animals had no effect

T replacement in castrated
animals had no effect
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