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explored the effects of MCP1 on BBB permeability regula-
tion, the exact mechanism, especially the effects of MCP1 
on pericytes, astrocytes, neurons, and basement membrane 
(BM), remain elusive. Here, we review the biochemical and 
biological functions of MCP1 with a focus on its role in 
BBB regulation. Understanding the molecular mechanisms 
underlying MCP1-induced BBB disruption not only broad-
ens our knowledge on chemokines and BBB but also pro-
motes the development of novel therapeutic reagents for 
many CNS diseases.

Chemokines

Chemokines are a superfamily of structurally related 
small basic proteins with strong chemotactic activ-
ity. They function to induce cell-specific migration and 
activation of cells, especially immune cells, in response 
to insults [1–4]. Since the first chemokine was iden-
tified in 1977 [5], many chemokines and chemokine 
receptors have been identified [6]. Based on the num-
ber and position of conserved cysteine on their primary 
sequences, chemokines are divided into 4 sub-types: C, 
CC, CXC, and CXXXC [7–9]. The major functions of 
these chemokines include recruiting leukocytes during 
inflammatory conditions, maintaining ligand homeostasis 
between blood and tissue, and regulating developmental 
processes/disease progression, such as BBB permeabil-
ity and myelination [10–12]. These biological functions 
are mediated through G-protein-coupled receptors [13]. 
Studies on chemokines and their receptors reveal prom-
iscuity: one receptor may have more than one ligand and 
one ligand may have more than one receptor, which adds 
complexity to the studies of chemokines and chemokine 
receptors.

Abstract  The blood–brain barrier (BBB) is a dynamic 
structure that maintains the homeostasis of the brain and 
thus proper neurological functions. BBB compromise has 
been found in many pathological conditions, including 
neuroinflammation. Monocyte chemoattractant protein-1 
(MCP1), a chemokine that is transiently and significantly 
up-regulated during inflammation, is able to disrupt the 
integrity of BBB and modulate the progression of various 
diseases, including excitotoxic injury and hemorrhage. In 
this review, we first introduce the biochemistry and biol-
ogy of MCP1, and then summarize the effects of MCP1 on 
BBB integrity as well as individual BBB components.
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Introduction

Monocyte chemoattractant protein-1 (MCP1, also known 
as CCL2) is a pro-inflammatory mediator, whose up-reg-
ulation is found in many central nervous system (CNS) 
disorders with blood–brain barrier (BBB) breakdown. 
Accumulating evidence suggests that MCP1 is able to 
compromise the integrity of BBB and modulate the pro-
gression of various diseases. Although several studies have 
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MCP1

MCP1, one of the most highly and transiently expressed 
chemokines during inflammation, is a member of the CC 
sub-type chemokines. In the brain, MCP1 is expressed by 
most cell types, including neurons, astrocytes, microglia, 
and brain microvascular endothelial cells (BMECs) [14–
27]. MCP1 is synthesized with a signal peptide in its N-ter-
minus, which is removed during secretion. The secreted 
MCP1 binds to soluble glycosaminoglycans (GAG) and 
GAG immobilized on the cell surface and the extracellu-
lar matrix [28–34]. This interaction is predicted to induce 
dimerization/oligomerization of MCP1, increase its local 
concentration, and promote formation of chemokine gradi-
ents [28, 35, 36].

Although the N-terminus of MCP1 is highly homolo-
gous among different species, the C-terminus is not. 
Human MCP1 has 76 amino acids, whereas mouse MCP1 
has a C-terminal extension with about 50 amino acids. It 
has been shown that the C-terminal extension of mouse 
MCP1 is heavily O-glycosylated [37]. What is the func-
tion of the C-terminal extension of mouse MCP1? We have 
previously been able to show that plasmin cleaves mouse 
MCP1 and removes its C-terminal extension (see “Micro-
glia” for details). Using recombinant wild-type and modi-
fied mouse MCP1, we further show that wild-type mouse 
MCP1 is able to dimerize, and that the mutant without 
C-terminus fails to dimerize [38]. Additionally, the C-ter-
minus alone interacts with neither wild-type nor mutant 
mouse MCP1, suggesting that the highly glycosylated 
C-terminal extension of mouse MCP1 is necessary but not 
sufficient for dimerization. Surprisingly, human MCP1, 
which is highly homologous to the N-terminus of mouse 
MCP1, forms dimer in physiological concentration, and the 
residues crucial for the dimerization have been identified as 
amino acids 6–16 [39]. In agreement with this report, two 
mutant forms of human MCP1, P8A and Y13A, have been 
reported to be unable to dimerize [40].

Being able to form a dimer does not necessarily mean 
it functions as a dimer. The next question is whether 
MCP1 functions as a monomer or dimer. Zhang and Rol-
lins showed that chemical crosslinked human MCP1 dimer 
was functional in attracting monocytes in vitro [39]. Fur-
thermore, a mutant form of MCP1, 7ND, which lacks resi-
dues 2–8, has been shown to inhibit the function of wild-
type MCP1 but not crosslinked MCP1 [39], suggesting that 
7ND is a dominant-negative mutant and that MCP1 func-
tions as a dimer. P8A mutant MCP1, on the other hand, has 
a binding affinity for CCR2 similar to wild-type MCP1 and 
induces calcium influx and chemotaxis at the same level as 
wild-type MCP1 [40], suggesting that MCP1 works as a 
monomer. Additionally, 7ND MCP1 has also been shown 
to function as a competitive inhibitor of monomeric MCP1 

[40]. Consistent with the monomer theory, we have pre-
viously been able to demonstrate that, compared to full-
length mouse MCP1, the mutant variant without C-termi-
nus, which cannot form a dimer, more efficiently activates 
Rac1 and promotes the formation of lamellipodia [38].

MCP1 exerts its biological functions by binding to its 
high affinity receptor, CCR2, which is mainly expressed 
by microglia, astrocytes, and BMECs in the brain [41, 42]. 
Although MCP1 has only one high affinity receptor, CCR2 
has four more ligands (CCL7, CCL8, CCL12, and CCL13) 
besides MCP1 [43–45]. In rodents, only one CCR2 iso-
form is found, whereas two alternatively spliced CCR2 iso-
forms with different C-terminus [46] are found in human, 
denoted CCR2A and CCR2B. CCR2B is mainly expressed 
on monocytes and activated NK cells, whereas mononu-
clear cells and vascular smooth muscle cells predominately 
express CCR2A [47].

MCP1 AND BBB

The BBB is the largest CNS barrier, and sustains brain 
homeostasis and thus proper neurological functions. At 
the BBB, specialized endothelial cells (BMECs), astro-
cytes, pericytes, basement membrane (BM), neurons, and 
microglia can be found [48]. The BMECs connect to each 
other via a complex network of tight junctions, which cre-
ate the primary barrier and prevent paracellular transport 
across endothelial cells. These cells deposit a layer of BM 
(endothelial BM), in which pericytes are embedded. Astro-
cytes, which wrap BMECs and pericytes with their endfeet, 
deposit another layer of BM (parenchymal BM). These two 
layers of BM are not distinguishable except at the post-cap-
illary venules, where a cerebrospinal fluid-drained perivas-
cular space separates them. Neurons and microglia, which 
exist in the parenchyma, have direct contact with astrocytes 
and BMECs. The above-mentioned cells together with both 
endothelial and parenchymal BM are necessary for an intact 
barrier of the BBB [49]. Perturbation of BBB has been 
found in many neurological conditions, including trauma 
[50, 51], brain tumors [52, 53], stroke [54–56], and neurode-
generative diseases [57–61], and BBB breakdown is one of 
the hallmarks that accompany the progression of these dis-
eases. Recently, BBB compromise has been found to play a 
causative role in the onset of Alzheimer’s disease [57] and 
amyotrophic lateral sclerosis [62]. A large number of mol-
ecules have been reported to affect the permeability of BBB, 
such as MCP1, TNF-α, IL-1β, IL-10, and IFN-γ [63–71]. 
Here, we focus on the effect of MCP1 on BBB integrity.

It has been shown that injection of recombinant mouse 
MCP1 into the brain disrupts BBB integrity [65–67, 71, 
72]. We have previously been able to further demonstrate 
that plasmin-mediated truncation of MCP1 is indispensable 
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for MCP1-induced BBB compromise [71]. Consistent with 
our report, tPA, which converts inactive plasminogen to 
active plasmin, has been found to promote BBB disruption 
and subsequent peripheral blood mononuclear cell (PBMC) 
infiltration [73]. Additionally, BBB compromise and 
PBMC infiltration have also been found in mice deficient 
for plasminogen activator inhibitor-1 [74], suggesting that 
the effect of MCP1 on BBB is dependent on plasmin activ-
ity. MCP1, however, failed to compromise BBB integrity 
in CCR2−/− mice [67], suggesting that the effect of MCP1 
on BBB also depends on CCR2. The next question then 
becomes how exactly MCP1-CCR2 axis affects the integ-
rity of BBB. The roles of MCP1-CCR2 on individual BBB 
components are summarized below.

BMECs

The capillary endothelium in the brain is 50–100 times 
tighter than that in the periphery [75]. Compared with 
peripheral endothelial cells, BMECs are characterized by 
the presence of more mitochondria, less pinocytotic activ-
ity, lack of fenestrations, and the presence of tight junctions 
[76–79]. BMECs connect to one another forming an imper-
meable monolayer. In the interendothelial space, specific 
structures, including adherens junctions and tight junc-
tions, are present [68, 77, 80, 81]. Although both adherens 
and tight junctions act to limit paracellular permeability of 
endothelial cells [82], tight junctions are the primary struc-
ture that maintains the impermeability of BBB [83]. In the 
tight junctions, many tight junction proteins are expressed. 
There are two types of tight junction proteins: transmem-
brane ones, such as occludin and claudin-1, -5, and -11, and 
cytoplasmic accessory proteins, such as zonula occluden-1, 
-2, and -3 (ZO-1, -2, and -3) and cingulin [84, 85]. The 
transmembrane proteins, especially occludin, function to 
seal gaps between adjacent cells [86–89]. Occludin, a 60- to 
65-kD transmembrane protein with its N- and C-terminus 
in the cytoplasm, has been shown to maintain the integrity 
of BBB [90–93]. There is also evidence showing that the 
phosphorylation state of occludin regulates BBB integrity 
by affecting its membrane association [94–100]. Cytoplas-
mic accessory proteins, on the other hand, link transmem-
brane proteins to cortical actin-based cytoskeleton [86–89]. 
ZO-1, the first identified accessory protein [101] that links 
occludin to actin cytoskeleton [102], plays a critical role in 
regulating BBB permeability. Dissociation of ZO-1 from 
the tight junctions has been shown to accompany the dis-
ruption of BBB [70, 71, 103–105]. In addition, ZO-1 has 
been detected in the nucleus and shown to co-localize with 
transcription factors in some conditions [106–109], sug-
gesting its potential role as a signaling molecule.

BMECs as the major barrier of BBB have been under 
extensive investigations. Accumulating evidence shows 

that MCP1 compromises BBB integrity via redistribution 
of tight junction proteins from cell–cell border (probable 
via endocytosis) and reorganization of actin cytoskeleton 
in BMECs [65–67, 72]. We have previously been able to 
verify these data and further show that these changes are 
dependent on plasmin activity [71]. Mechanistic studies 
reveal that phosphorylation of TJP regulates their func-
tions and locations [95, 96, 110–112]. Stamatovic and col-
leagues further demonstrated that the binding of MCP1 to 
CCR2 activated PKC (specifically PKCα and PKCζ) and 
Rho kinase, resulting in shift of tight junction proteins 
from cell border to intracellular compartments [65, 66]. 
Additionally, this phosphorylation event also promoted 
the interaction between tight junction proteins and actin 
cytoskeleton, resulting in a shift of tight junction proteins 
from Triton X-100 soluble fraction to Triton X-100 insolu-
ble fraction [65–67, 113, 114]. These changes are not lim-
ited to MCP1, because growth factors (PDGF and VEGF) 
also induce phosphorylation and redistribution of tight 
junction proteins [115, 116], suggesting that phosphoryla-
tion of tight junction proteins may be a common mecha-
nism to transport them to different cellular compartments. 
In addition to tight junction protein phosphorylation, the 
activated kinases, especially Rho Kinase, also phosphoryl-
ate myosin light chain phosphatase (MLCP) and inhibit 
its activity. The inhibition of MLCP results in enhanced 
phosphorylation of myosin light chain (MLC), leading to 
increased actin–myosin interaction and thus increased cor-
tical force in endothelial cells [66, 117–119]. In addition, 
we have previously been able to demonstrate that binding 
of MCP1 to CCR2 on BMECs also promotes phosphoryla-
tion of Ezrin/Radixin/Moesin (ERM) proteins on conserved 
Threonine residues (Thr567 for ezrin, Thr564 for radixin, 
and Thr558 for moesin) [71]. ERM proteins are a family 
of highly conserved proteins that act as a linker between 
plasma membrane and actin cytoskeleton. Unphospho-
rylated ERM proteins form intramolecular interactions 
between the N- and C-terminus. When phosphorylated on 
the conserved Threonine residues, they form intermolecu-
lar interactions (N-terminus binding to membrane proteins 
and C-terminus binding to actin cytoskeleton) [120–122]. 
Our data showed that MCP1 treatment led to phosphoryla-
tion of ERM proteins and promoted interaction between 
ZO-1 and phosphorylated ERM proteins [71], indicating 
an important role of ERM proteins in translocation of ZO-1 
upon MCP1 treatment. Occludin, however, did not interact 
with ERM proteins even upon MCP1 treatment [71], indi-
cating different ways of regulation. Taken together, we pro-
posed a mechanism responsible for MCP1-induced BMEC 
and thus BBB changes as shown in Fig. 1. The binding of 
MCP1 to CCR2 activates unknown kinase(s), which phos-
phorylates ERM proteins. The phosphorylated ERM pro-
teins then bind to ZO-1 and actin cytoskeleton. In addition, 
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Rho-associated kinase, which is activated by MCP1, phos-
phorylates MLCP, resulting in decreased phosphatase 
activity. The imbalance of MLCP and MLC kinase activity 
results in over-phosphorylation of MLC, and thus increased 
and prolonged actin–myosin contraction. This contraction 
in turn pulls ZO-1 away from the tight junction complex, 
leading to disruption of BBB integrity. In the BMEC–astro-
cyte co-culture system, Stamatovic and colleagues further 
demonstrated that lack of expression of CCR2 in BMECs 
was sufficient to prevent the leakage of BBB upon MCP1 
treatment [67], suggesting that MCP1-induced BBB com-
promise is dependent on endothelial CCR2.

Astrocytes

The unique properties of BMECs (increased mitochondria 
number, few pinocytotic vesicles, and the presence of tight 
junctions [76–79]) lead to the question: is it due to intrin-
sic characteristics of BMECs or the microenvironment in 
the brain? Stewart and Wiley elegantly demonstrated that 
nonvascularized brain tissue grafted into the coelomic cav-
ity developed capillaries with BMEC properties, whereas 
somite tissue grafted into cerebral ventricles failed to do so 
[123], strongly suggesting that interaction between vascu-
lar tissue and CNS tissue contributes to the properties of 
BMECs. In the brain, astrocytic endfeet together with the 
parenchymal BM establish the glia lamitans, which defines 
the parenchymal border in the CNS [49]. Astrocytic endfeet 
cover more than 99 % of the vascular surface [124, 125], 
suggesting that astrocytes may confer on BMECs those 
unique properties and thus contribute to the impermeabil-
ity of BBB. Janzer and Raff found that astrocytes induced 
tight junction in endothelial cells within the eyes [52], 

indicating that astrocytes can enhance the impermeability 
of endothelial cells lining the capillaries in the eyes. In con-
sistent with these data, the BMEC–astrocyte co-culture sys-
tem showed a higher transendothelial electrical resistance 
(TEER) and less infiltration of tracers across the in vitro 
BBB than BMECs alone [71, 126– 129]. Additionally, the 
temporary focal loss of astrocytes has been found to par-
allel the compromise of BBB integrity in vivo [130]. Fur-
ther experiments reveal that the role of astrocytes in BBB 
integrity is due to the release of soluble factors, including 
Ang1, TGF-β, GDNF, and FGF2 [131–133], as well as 
the direct contact with BMECs [134]. Recently, polarized 
distribution of intramembranous orthogonic arrays of par-
ticles (OAPs), which contain water channel aquaporin 4 
(AQP4), the potassium channel Kir4.1, and a dystroglycan–
dystrophin complex, has been reported in astrocytic endfeet 
[135]. Given the functions of AQP4 and Kir4.1 (regulation 
of water and ion homeostasis at the glial–endothelial inter-
face, respectively), OAPs have been speculated to influence 
BBB permeability [133, 135]. Together, these data support 
that astrocytes contribute to the impermeability of BBB. It 
should be noted that the effect of astrocytes in BBB integ-
rity only takes place in adulthood, because astrocyte devel-
opment starts after birth [136]. There is also evidence, how-
ever, suggesting astrocytes may not contribute to the BBB 
integrity [137]. This inconsistency may be due to different 
experimental conditions or methodology.

Since astrocytes are a main source of MCP1, trans-
genic mice over-expressing MCP1 in astrocytes have 
been developed and used to study the function of MCP1. 
In addition to enhanced nociceptive responses in these 
transgenic mice [138], chronic expression of MCP1 in 
astrocytes induces BBB compromise in vivo, indicating a 

Fig. 1   Proposed model for 
MCP1-induced BBB compro-
mise. By binding to CCR2, 
MCP1 induces phosphorylation 
of ERM proteins, which then 
bind to ZO-1 and actin cytoskel-
eton. Additionally, MCP1 
also activates Rho-associated 
kinases, which phosphorylate 
and inactivate MLCP, resulting 
in increased phosphorylation of 
MLC. The over-phosphorylation 
of MLC induces enhanced and 
prolonged actin–myosin con-
traction, which generates forces 
that pull ZO-1 away from the 
cell–cell border, leading to BBB 
compromise. Adapted from [71]
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crucial role of astrocytic MCP1 in BBB regulation [139]. 
In an in vitro system, it has been shown that MCP1 bind-
ing in human astrocytes is mediated by both CCR2 and D6 
decoy chemokine receptors [140] and activation of CCR2 
promotes the survival of astrocytes [141]. Additionally, 
caveolin-1 has been found to mediate the effects of MCP1 
in astrocytes [142]. Knockout of CCR2 in astrocytes, how-
ever, failed to affect BBB integrity in the BMEC–astrocyte 
co-culture model [67], suggesting that CCR2 in astrocytes 
is dispensable for MCP1-induced BBB breakdown. This 
discrepancy may be due to the over-simplified in vitro BBB 
models used. Future studies should focus on in vivo studies 
or use in vitro BBB models that replicate both the anatomi-
cal and physiological characteristics of the BBB.

BM

Two layers of BM are found at the BBB: endothelial BM 
and parenchymal BM [49, 143]. The two layers are mor-
phologically indistinguishable except at the post-capillary 
venules, where a cerebrospinal fluid-drained perivascular 
space separates them [49]. BM consists of a mixture of 
extracellular matrix (ECM) proteins, including collagens, 
laminins, heparin sulfate proteoglycans, fibronectin, vitron-
ectin, nidogens, perlecan, and agrin [131, 144–147]. BM 
assembly mainly involves polymerization of laminins and 
collagens, which is cross-linked by nidogens [147, 148]. 
Although most ECM proteins are ubiquitously expressed at 
both endothelial and parenchymal BM, the former mainly 
expresses laminin α4 and α5 [51] and the latter predomi-
nantly expresses laminin α1 and α2 [51, 143, 149].

BM has been proposed to regulate BBB integrity directly 
as a physical barrier [150], given its anatomical location: i.e. 
between BMECs and astrocytes. Loss of BM leads to break-
down of BBB [151–156]. In addition, the BM also contrib-
utes to the integrity of BBB through individual ECM proteins, 
which not only anchor different cells in place at BBB but also 
regulate cellular processes [51, 131, 143, 144, 157]. It has been 
shown that laminin, collagen type IV, and fibronectin increase 
TEER of brain capillary endothelial cells [158]. Dystroglycan, 
a major receptor for ECM proteins, is selectively cleaved at 
the parenchymal BM at sites of leukocyte infiltration during 
experimental autoimmune encephalomyelitis [144]. Addition-
ally, laminin α5, an endothelial BM-specific component, has 
been shown to serve as a barrier for leukocyte translocation 
[51]. These results suggest that ECM proteins and their recep-
tors also contribute to the integrity of BBB.

Consistent with the detrimental role of MCP1 in BBB 
integrity, MCP1 has been found to promote hydrogen per-
oxide induced ECM protein degradation [159]. Contrary to 
this finding, there are reports showing that MCP1 directly 
contributes to the production and accumulation of ECM, 
especially collagen, in many disease models, including 

diabetic nephropathy [160], systemic sclerosis [161], and 
peritoneal dialysis-related epithelial–mesenchymal transi-
tion [162]. This discrepancy may be explained by different 
disease models and/or indirect effects of MCP1. For exam-
ple, leukocytes recruited by MCP1 may secrete proteases 
that degrade ECM proteins [163, 164]. The exact role of 
MCP1 in BM needs further investigations.

Pericytes

Discovered more than 100  years ago [165], pericytes are 
sandwiched inbetween the abluminal side of BMECs and 
luminal side of astrocytic endfeet [166]. Specifically, peri-
cytes are embedded in the endothelial BM in CNS capillar-
ies [49, 167], and the degree of its coverage on endothelial 
cells varies depending on tissue type and species [166]. It 
has been shown that the pericyte-to-endothelial ratio is 
1:1 in retina, 1:3 in brain, and 1:100 in skeletal muscles, 
respectively [166, 168]. The average pericyte-to-endothelial 
ratio is lower in rat capillaries (1:5) and relatively higher in 
mouse and human capillaries (1:4 and 1:3–4, respectively) 
[169, 170]. Although brain capillaries have high pericyte 
coverage, the precise percentage of capillary surface cov-
ered by pericytes varies significantly depending on differ-
ent research groups, ranging from 22 to 99  % [168, 171, 
172]. This difference may be due to the different pericyte 
markers used. There are no specific markers for pericytes so 
far, although several markers, including α-smooth muscle 
actin (SMA) [169, 173–175], PDGFRβ [25, 176], Desmin 
[177], CD13 [178, 179], NG2 [6, 180, 181], and RGS-5 
[182, 183], have been used to identify pericytes. It should 
be noted that (1) these markers are also expressed by other 
types of cells besides pericytes, such as smooth muscle 
cells, myofibroblasts, and neuronal progenitors [167, 184, 
185], and (2) the expression of these markers also depends 
on the differentiation stage of pericytes. It has been shown 
that TGF-β-treated (further differentiated) pericytes express 
significantly more SMA, VEGF, MMP-2, and MMP-9 than 
bFGF-treated (less differentiated) pericytes [186]. Fate-
mapping experiments have shown that pericytes have sev-
eral different developmental origins [167]. For example, 
ectoderm-derived neural crest gives rise to pericytes in the 
brain and thymus [187–189], whereas pericytes in the lungs 
[190], liver [191], and gut [192] are from mesothelium. In 
addition, there is also evidence suggesting that some peri-
cytes are derived from hematopoietic stem cells [174, 193].

Pericytes have been reported to exert different func-
tions, including BBB regulation, vascular development, 
homeostasis maintenance, and serving as contractile and 
multipotent cells [169, 173, 194]. Here, we focus only on 
its role in BBB regulation. It has been found that addi-
tion of pericytes to the BMEC–astrocyte co-culture system 
significantly enhances TEER [195, 196], suggesting that 
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pericytes contribute to the integrity of BBB. In addition, 
pericytes have been shown to up-regulate P-glycoprotein 
functional activity in endothelial cells and control tight 
junction permeability [197–199], suggesting that the inter-
action between endothelial cells and pericytes may play 
an important role in BBB integrity regulation. Using mice 
with defects in pericyte generation, researchers have dem-
onstrated that pericyte coverage positively correlates with 
tight junction tightness [134] and negatively correlates with 
the BBB permeability [136]. Consistently, a correlation has 
been reported between pericyte loss and BBB breakdown 
[57, 200]. Further mechanistic studies suggest that the 
diminished expression of BBB-specific genes in endothelial 
cells and lack of polarity in astrocytic endfeet are respon-
sible for pericyte loss-induced BBB breakdown [200]. In 
pathological conditions, such as hypoxia or traumatic brain 
injury, which lead to the disruption of BBB, pericytes have 
been found to migrate away from the micro-vasculatures 
[201, 202], but the relationship between migration of peri-
cytes and compromise of BBB has not yet been studied.

Increased MCP1 levels have been reported in many dis-
orders, including neurodegeneration, neuroinflammation, 
and kidney fibrosis [203, 204]. Additionally, MCP1 con-
centration has also been revealed to correlate with heavily 
oxidized LDL-induced pericyte injury [205]. However, due 
to the recent discovery of the critical role of pericytes in 
BBB regulation, only limited data are available to answer 
the question that how MCP1 affects pericytes.

Microglia

Microglia, which account for 10–20  % of glial cells, are 
brain-resident immune cells. Their number in the brain 
(100–200 billion depending on the condition) is comparable 
to that of neurons. It had long been believed that microglia 
originated from myeloid progenitors in the bone marrow 
[206–210] and that these macrophage-like cells migrated 
into the brain during early development (before the forma-
tion of BBB). A recent lineage tracing study has shown 
that adult microglia derive from colony-stimulating fac-
tor-1 receptor (CSF1R) positive primitive myeloid progeni-
tors that arise before embryonic day 8 [211]. Consistently, 
fate-mapping experiments support that microglia mostly 
originate from Myb-independent, FLT3-independent, but 
PU.1-dependent myeloid progenitors that express CSF1R 
at embryonic day 8.5 [212–216]. Microglia have two states: 
a resting state with ramified morphology and an activated 
state with amoeboid morphology. Compared to the amoe-
boid morphology, the ramified structure has a smaller cell 
body surrounded by many long, thin, and highly dynamic 
processes. In the brain parenchyma, ramified microglia 
extend and retract their processes continually to sense 
changes in the surrounding microenvironment [217]. It is 

estimated that microglia can survey the entire brain in a 
few hours [217]. When there is an injury or disturbance of 
homeostasis in the CNS, microglia become activated. The 
activation involves changes of morphology and gene expres-
sion. The activated microglia then migrate to the injury site 
and proliferate locally. Additionally, these cells also secrete 
both pro- and anti-inflammatory cytokines, phagocytose cel-
lular debris, process antigens, and present them to T cells 
via MHC class I molecules [218–225]. Whether microglia 
play a beneficial or detrimental role in CNS injury is highly 
controversial. There is evidence showing that microglia play 
neuroprotective roles by clearing cell debris and secreting 
factors promoting neurite growth and neuronal survival, 
such as neurotrophin-3 and brain-derived neutrophic factor 
(BDNF) [226–228]. In contrast, microglia have also been 
shown to produce pro-inflammatory cytokines, including 
TNF-α and IL-1β, which induce direct cytotoxicity by bind-
ing to their receptors (TNFRs and IL-1RI, respectively) and 
activating downstream cell death pathways [229]. Given 
that microglia are found in the perivascular space, it is spec-
ulated that microglia may play an important role in regulat-
ing BBB integrity by interacting with other BBB compo-
nents, including BMECs, astrocyte endfeet, and pericytes 
[230]. There is evidence showing that microglial activation 
restores BBB integrity after the disruption of BBB [231]. 
In contrast, TNF-α released from activated microglia has 
been shown to impair BBB integrity [232], possibly through 
TNF-α-induced direct cytotoxicity on BMECs. This dis-
crepancy may be due to different injury models and differ-
ent timing after injury. Therefore, further investigations are 
needed to clarify the role of microglia in BBB permeability.

As indicated by its name, MCP1 is a potent chemoat-
tractant for monocytes and microglia. MCP1-induced 
chemotaxis of monocytes and microglia has been found 
in many CNS injuries, including ischemia, excitotoxicity, 
and hemorrhage [72, 204, 221, 233–237]. The trafficking 
of microglia and leukocytes, however, is impaired in mice 
lacking CCR2, suggesting that MCP1-induced chemotaxis 
is dependent on CCR2 [238, 239]. Our laboratory has pre-
viously shown that microglial activation/migration induced 
by excitotoxic injury is attenuated in MCP1−/− mice [204]. 
Similar results were found in rats or mice injected with 
MCP1 blocking antibody [204, 240]. Interestingly, like 
MCP1−/− mice, excitotoxicity-induced microglial activa-
tion/migration is decreased in mice lacking plasminogen 
(plg) or tissue plasminogen activator (tPA), which con-
verts plg to active plasmin [241, 242]. These results indi-
cate that mouse MCP1 and the plg activation system may 
use converging pathways. Further studies in our labora-
tory have revealed that plasmin, generated by the action of 
tPA on plg in the mouse CNS (or urokinase plasminogen 
activator in other systems), cleaves MCP1 at lysine (K) 
104 [204]. This cleavage removes the highly glycosylated 
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C-terminal extension and generates a N-terminal fragment 
that is highly homologous to human MCP1. The chemot-
actic potency of plasmin-cleaved MCP1 is higher than that 
of intact MCP1 and comparable to human MCP1 [38, 204], 
suggesting that plasmin is an activator of mouse MCP1. In 
accordance with this, infusion of plasmin-cleaved MCP1 
into the CNS restored excitotoxicity-induced microglial 
activation/migration in plg−/− mice, whereas infusion of 
FL-MCP1 failed to do so. Furthermore, we have shown that 
mouse MCP1 C-terminus, when fused to human MCP1, is 
also inhibitory [70]. These data indicate that plasmin-medi-
ated cleavage may be a mechanism used by cells to acti-
vate MCP1 and initiate downstream signaling cascades in 
mice. Importantly, the effects of plasmin-cleaved MCP1 are 
comparable to that of human MCP1 [38], suggesting that 
human MCP1 may be regulated similarly by an unidenti-
fied protein or differently at transcriptional/translational, 
transport, or signaling levels. We favor the latter, because 
we were not successful in pulling down proteins that spe-
cifically interact with human MCP1. In addition, the two 
CCR2 isoforms in human (CCR2A and CCR2B) have been 
shown to be able to activate different signaling pathways. 
Calcium influx has been found in chemotaxis of CCR2B-
positive cells, but not in CCR2A-positive cells [243, 244], 
suggesting that the MCP1-CCR2 axis may also be regu-
lated at the receptor or signaling levels in human.

Although human MCP1 does not have a highly glyco-
sylated C-terminus, it can also be truncated in the C-ter-
minus. A fragment with 69 amino acids (1–69) has been 
found and this fragment has the same activity as the wild-
type MCP1 [245]. Which enzyme(s) is responsible for this 
cleavage, however, is not clear. In the N-terminus, human 
MCP1 has been reported to be cleaved by matrix metal-
loproteinase-1, -3, -8, and -12 between aminoacid 4 and 5 
[246, 247]. This cleavage generates a fragment (5-76) that 
functions as an antagonist for CCR2 [245–248]. Consist-
ently, the MCP1 mutant lacking amino acids 2-8 (7ND) has 
been shown to inhibit MCP1-CCR2 signaling both in vitro 
and in vivo [39, 249, 250]. There is no report on whether 
these matrix metalloproteinases cleave mouse MCP1. 
However, it would be reasonable to assume they do, based 
on the similarity of human and mouse MCP1 sequence. 
The first eight amino acids for human and mouse MCP1 
are QPDAINAP and QPDAVNAP, respectively.

Neurons

It is estimated that in human brain every neuron has its 
own capillary [251], which together with neurovascular 
coupling (local neuronal activity and metabolism regulate 
cerebral blood flow) [252] indicates that neurons may reg-
ulate BBB functions. Anatomical studies have shown that 
BMECs and astrocytic processes are directly innervated 

by noradrenergic, serotonergic, cholinergic, and GABAer-
gic neurons [253–259]. The presence of neurons has been 
shown to increase the integrity of BBB in vitro [260]. In 
addition, neurons have been shown to promote the expres-
sion of specific enzymes on BMECs [187]. These data sug-
gest that neurons contribute to the integrity of BBB.

MCP1 exerts profound functions on neurons both directly 
and indirectly. MCP1 has been shown to directly bind to 
CCR2 on rat spinal neurons and activates Akt pathway. The 
binding of MCP1 on these neurons potently and efficiently 
inhibits GABA(A)-mediated GABAergic responses [261]. 
The MCP1–CCR2 axis has also been shown to contribute to 
neuropathic pain via interaction between astrocytes and neu-
rons [262–265]. Contrary to these reports, MCP1 has been 
found to protect against methylmercury neurotoxicity [266], 
and early expression of MCP1 in neurons is necessary for 
hypoxic preconditioning-induced ischemic tolerance to 
focal stroke [267]. MCP1-induced molecular changes in 
neurons may modulate the function of other BBB compo-
nents, and thus affect the integrity of BBB. In accordance 
with this hypothesis, MCP1 level has been found to posi-
tively correlate with the permeability of BBB and progres-
sion of disease, including Gaucher’s disease, brain inflam-
mation, stroke, and excitotoxic injury [71, 72, 204, 221, 
233–237, 268, 269]. Consistently, lack of MCP1 or CCR2 
prevents neuronal death, decreases BBB permeability, and 
improves neuronal function in many disorders, including 
hemorrhage and ischemia–reperfusion injury [72, 270].

Future directions

Although it is clear that plasmin removes the C-terminus 
of mouse MCP1 and enhances its chemotactic activity 
[38, 204], how human MCP1, which lacks the heavily gly-
cosylated C-terminus, is regulated is still elusive. Future 
work should focus on the regulation/activation of human 
MCP1. In addition, how MCP1 regulates individual BBB 
components, especially pericytes, astrocytes, neurons, and 
BM, needs investigations. Such studies will shed light on 
our understanding of MCP1–CCR2 signaling/functioning, 
and may provide new molecular targets for the treatment 
of many CNS diseases, including brain trauma, stroke, and 
neurodegenerative diseases.
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