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Abstract
Purpose—With the goal of quantifying P-gp transport kinetics, Part 1 of these manuscripts
evaluates different compartmental models and Part 2 applies these models to kinetic data.

Methods—Models were developed to simulate the effect of apical efflux transporters on
intracellular concentrations of six drugs. The effect of experimental variability on model
predictions was evaluated. Several models were evaluated, and characteristics including
membrane configuration, lipid content, and apical surface area (asa) were varied.

Results—Passive permeabilities from MDCK-MDR1 cells in the presence of cyclosporine gave
lower model errors than from MDCK control cells. Consistent with the results in Part 2, model
configuration had little impact on calculated model errors. The 5-compartment model was the
simplest model that reproduced experimental lag times. Lipid content and asa had minimal effect
on model errors, predicted lag times, and intracellular concentrations. Including endogenous
basolateral uptake activity can decrease model errors. Models with and without explicit membrane
barriers differed markedly in their predicted intracellular concentrations for basolateral drug
exposure. Single point data resulted in clearances similar to time course data.

Conclusions—Compartmental models are useful to evaluate the impact of efflux transporters on
intracellular concentrations. Whereas a 3-compartment model may be sufficient to predict the
impact of transporters that efflux drugs from the cell, a 5-compartment model with explicit
membranes may be required to predict intracellular concentrations when efflux occurs from the
membrane. More complex models including additional compartments may be unnecessary.
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Introduction
There is increasing recognition that free intracellular concentrations may be different from
the free plasma concentrations when drugs are transporter substrates (1,2). Accurate
estimation of unbound intracellular concentrations is necessary when predicting activities
for intracellular processes including absorption, distribution, metabolism, and excretion
(ADME), and pharmacological and toxicological targets (3). Ultimately, the relationship
between unbound intracellular concentration and unbound plasma concentration (Kpu,u),
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must be determined in order to relate these activities to plasma drug levels (2,4–6).
Regulatory guidances now include evaluation of transporter mediated drug-drug interactions
(DDIs) from the perspective of both victim and perpetrator (7,8). Characterization of
transporter activity and quantification of transporter kinetics are active areas of research, but
standardization of experimental techniques and data interpretation continues to be
challenging.

There are two kinds of experiments that are routinely conducted to characterize efflux
transporter mediated processes. First, permeability is measured across cell monolayers in the
A→B and B→A directions. These relatively straightforward experiments provide
permeability and efflux estimates with sparse, often single point, data. Second, saturation
experiments are conducted to determine kinetic parameters such as Km or Ki. These
experiments require substantially larger datasets. In a previous report, we utilized single
point data to develop and compare 3- and 5-compartmental (3C and 5C) models that
estimate passive and efflux clearances, and predict intracellular concentration (9). In Part 1,
we develop and evaluate additional models for bidirectional permeability by increasing
model complexity. In Part 2, we apply these models to saturation data in order to predict
kinetic parameters.

Free intracellular concentrations are difficult to determine experimentally, and modeling
techniques may provide a means to estimate this important parameter (2). A number of
modeling efforts have been used to describe combinations of permeability, transport, and
metabolism, and these models inherently include predictions of intracellular concentrations
(10). Compartmental approaches are commonly utilized to model uptake (5,11) and efflux
transport (12,13), metabolism (11,14), and combinations of these processes. For example,
Kalvass et al. use a three-compartment model with different efflux ratios to simulate passive
permeability and transport (12). Bentz and coworkers solve for micro rate constants with
multi-time-point permeability data (13). Menochet et al. utilize concentration-time profiles
of parent and metabolites to simulate the combination of uptake and metabolism in
hepatocytes (11). Different models require datasets of varying complexity depending on the
number of parameters being estimated. The overall goal of this research is to develop
models based on readily available in vitro data to predict intracellular concentrations in the
presence of transporters.

P-glycoprotein (P-gp, ABCB1; MDR1) is an apical efflux transporter that appreciably
affects the disposition of drugs. Differences in relative P-gp tissue expression as well as the
orientation of the apical membrane determine the role of this transporter in drug distribution.
For example, P-gp in brain endothelial cells effluxes drug from the apical membrane into the
blood. This is a significant part of the blood-brain barrier, preventing many hydrophobic
compounds from entering the brain. In the liver, the apical membrane forms the bile
canaliculi, and P-gp effluxes molecules from the apical membrane into the bile. The
orientation of the apical membrane relative to the blood (site of drug exposure) can
influence the impact of P-gp on intracellular concentrations.

Increasing evidence suggests that P-gp effluxes drugs directly out of the apical membrane
(15,16). Compartmental models that represent the cell as a single compartment can
effectively simulate efflux transport out of the cytosol and uptake across the plasma
membrane. Modeling efflux out of a membrane requires an explicit membrane compartment.
We have previously shown that a 5-compartment model with explicit membrane
compartments representing the apical and basolateral membranes can reproduce the impact
of P-gp in brain and liver concentrations (9). In contrast to the 5-compartment model, the
cellular environment is highly complex. Intracellular distribution encompasses partitioning
into membranes and organelles (for example mitochondria and lysosomes), and may be
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influenced by cellular geometry and organization (for example membrane surface areas and
transporter densities). In the studies reported in Part 1, we evaluate a number of
compartmental configurations more complex than the 5-compartment model for their impact
on predicted intracellular concentrations and model error. Characteristics evaluated include
lipid content, the number, relative size, and configuration of explicit membrane
compartments, and the apical-to-basolateral surface area ratio (asa). Models were developed
with permeability data from six drugs in MDCK-MDR1 cells. The effects of experimental
variability and model complexity on predictions and errors are discussed.

Materials and Methods
Chemicals and reagents

Reference compounds were supplied by Sigma-Aldrich (St. Louis, MO). Cell culture
reagents were purchased from Invitrogen (Carlsbad, CA). Madin-Darby canine kidney cells
(MDCK) were obtained from American Type Culture Collection (Manassas, VA). MDCK
cells transfected with the MDR1 gene (MDCK-MDR1) were obtained from NIH (Bethesda,
MD). Transwells (12-well, 11-mm diameter, 0.4-μm pores) were purchased from Corning
Costar (Cambridge, MA).

Microsomal partitioning
Since the endoplasmic reticulum consists of unsorted membrane lipids (17), human liver
microsomes were used as a model for membrane partitioning. Microsomal partitioning data
was generated by equilibrium dialysis in a 96-well equilibrium dialyzer with a 5000MW
cutoff as previously reported (18). Following dialysis, samples from each side of the plate
was mixed with an equal amount of the opposite matrix and frozen. For analysis, standard
LCMSMS conditions on an API4000 were used.

Cellular transport studies
MDCK-MDR1 cells were cultured and transport experiments were conducted as described
previously (9,19). All cells were maintained in high glucose (4.5 g/L) DMEM supplemented
with 10% FBS, 1% NEAA, 1% l-glutamine, penicillin (100 U/mL), streptomycin (100 g/
mL) at 37 °C in a humidified incubator with 5% CO2. All cells were seeded at a density of
60,000 cells/cm2 onto collagen-coated, microporous, polycarbonate membranes in 12-well
Transwell® plates. Cells were used between passages 10 and 14. The culture medium was
changed 24 h after seeding to remove cell debris and dead cells; afterwards the medium was
changed every other day for 6 days. The permeability assay buffer was Hanks’ balanced
salts solution containing 10 mM hydroxyethylpiperazineethane sulfonic acid (HEPES) and
15 mM glucose at pH 7.4 (HBSSg buffer). The test compounds were prepared in HBSSg
buffer to a final concentration of 5μM each.

Test compounds were dissolved in dimethyl sulfoxide (DMSO) and then diluted in Hanks’
balanced transport buffer (pH 7.4) (Mediatech, Herndon, VA). The amount of DMSO in the
final transport solution was 1% (v/v). Experiments were conducted with or without the P-gp
inhibitor cyclosporine A (CsA; 10 μM). The test compounds (5 μM final concentration)
were dosed on either the apical side (A→B transport) or the basolateral side (B→A
transport) and incubated in a humidified atmosphere at 37 °C with 5% CO2. For single point
experiments, samples were collected at the end of 90 minutes for experiments in each
direction. All experiments were conducted in triplicate, and estimate means and standard
deviations calculated. A total of 6 compounds were evaluated (Table S1). For permeability
experiments, data is not accepted if recovery is less than 80%. Multiple time points were
conducted to determine lag time. Conditions for the A→B experiments were repeated with
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sampling at 15, 30, 45, 60, 75 and 90 min. Target drug concentrations were analyzed by
liquid chromatography-tandem mass spectrometry with previously described methods (9).

Modeling
The models were developed in a manner similar to that reported previously (9). Model
assumptions include first order kinetics for all processes, equal passive clearances in the
A→B and B→A directions, and no loss of drug to degradation or non-specific binding.
Since back diffusion from the receiver compartment is included, sink conditions and steady-
state are not assumed. Differential equations were developed as previously for the 3-, 4-, 5-,
6-, 7-, and 9-compartment models shown in Figures 1 and S1. Models with explicit
membrane compartments used CLi to represent the clearance of drug into the membrane and
CLo to represent the clearance of drug out of the membrane and into the apical, basolateral,
or cellular compartments. When explicit membrane compartments were included in the
model (all except the 3-compartment model), CLo was equated to CLi/Kp where Kp is the
partition constant for the drug partitioning into microsomal membranes. For microsomes, it
is assumed that 0.7 mL of lipid is available in a 1 mg microsomal protein/mL incubation (9).
Various amounts of cellular lipid were included in the models (5–40%). When physiological
volumes of plasma membrane lipid were used in a compartment (6Phys, 7Phys, and 9Phys),
it was assumed that the plasma membranes contained 0.1% of cell volume. All other lipid
volumes were divided evenly between the remaining lipid compartments in a model. For the
3C and 4C models where the plasma membrane has no explicit volume, CLd was replaced
with CLi/2 (20). This allows explicit membrane and non-explicit membrane components to
be used in the same model.

Since it has been reported that in MDCK cells, the apical surface area is a fraction of the
basolateral surface area (21), an apical surface area to basolateral surface area ratio (asa) was
also varied in some of the calculations. For these calculations, asa was varied between 0.13
and 1. Since clearance is a permeability-surface area product, all clearances into or out of the
apical membrane were multiplied by asa to simulate lower clearances with decreasing asa.

General steps for model development included:

1. Derive ordinary differential equations for the appropriate model (see Figures 1 and
S1). Parameters that were varied include lipid compartment volumes, asa, and
addition of a basolateral uptake transporter.

2. Set efflux clearance (CLae) = 0. Solve the differential equations for CLi in the
A→B and B→A directions using receiver concentrations from either MDCK cells
or MDCK-MDR1 cells + inhibitor.

3. Using the average CLi from step 2, solve the differential equations for CLae using
the receiver concentrations from the MDCK-MDR1 cells.

4. Using the optimized clearance parameters from steps 2 and 3, simulate
compartmental concentration -time profiles.

5. Calculate lag times by fitting the simulated receiver concentration-time data to the
logistic function (equation 1). Lag times are obtained by extrapolation from the
inflection point to the X-axis.

Models with Single Time Point Data—Differential equations for all models in Figure 1
were numerically simulated in Mathematica (Mathematica 8, Wolfram Research). For single
point experimental data, initial donor and final receiver concentrations were used to
optimize values for CLi in the A→B and B→A directions using the FindFit optimizer in
Mathematica. Single point data sets included either MDCK and MDCK-MDR1 values or
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MDCK-MDR1 data in the presence or absence of CsA. The CLi values were obtained using
either control MDCK cells or MDCK-MDR1 cells + CsA. The average A→B and B→A CLi
values were used as input parameters along with experimental MDCK-MDR1 efflux ratios
to solve for efflux clearances. Since the efflux ratios are a ratio of A→B and B→A receiver
concentrations, the system is over-determined and an error of the fit can be calculated from
the predicted and observed receiver concentrations.

Lag times (tlag) were calculated by fitting simulated receiver concentration data to a form of
the logistic function (22) in Equation 1.

Equation 1

In Equation 1, Crec(t) is the receiver concentration as a function of time t, a is the asymptotic
final concentration, k is the slope at the inflection point and tc is the inflection point. The
slope and inflection point were used to define the straight line and the lag time was
calculated from the intersection of that line with the x-axis. This resulted in a consistent
method to determine lag time from simulated data.

Models with Multiple Time Point Data—For time course data, the compartmental
differential equations were fit simultaneously to the receiver concentration data (six time
points collected in triplicate) to optimize a value for CLi. In order to compare single and
multiple time point fits, a CLi value was also fit to the average of the 90-minute time points.
Due to the variability in the experimental data, attempts to fit the logistics equation to
experimental time course data were not meaningful. Instead, Equation 1 was fit to predicted
data from the compartmental model and lag time was calculated as described above.

Miscellaneous Calculations—In order to investigate the possible impact of lysosomal
trapping on permeability, pH partitioning equations (e.g. as described by Friden (6)) were
used to simulate partitioning between the cytosol and a lysosomal compartment. Passive
clearance into the lysosomal compartment was set as CLi/2 (20). Lysosomal content was set
to 10% of the cell volume. The impact of inclusion of a lysosomal compartment on errors,
intracellular concentrations, and lag time was evaluated.

Error Analysis
Since passive membrane clearances were considered to be identical for all membranes,
increasing model complexity by adding compartments does not result in additional
optimizable parameters. Therefore, standard statistical methods to compare models such as
AIC or BIC cannot be used. Since the apical efflux clearances were fit to the experimental
efflux ratio, an objective model error could be calculated from the predicted and observed
receiver concentrations (error = Creceiver, obs/Creceiver, pred).

In order to determine possible sources of model errors, we investigated the impact of altered
receiver concentration on model error. First, simulated (error-free) receiver concentrations
were generated with the 5C model. Next, receiver concentrations were varied in the presence
and absence of CsA, for both the A→B and B→A directions. The only systematic change
that resulted in non-random, positive errors was higher than expected permeability in
MDCK-MDR1 (+ efflux) cells in the B→A direction. Therefore, we added a basolateral
efflux transporter to the models and determined its impact on model error.
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Results
Experimental variability affects model-predicted parameters

Table 1 lists the A→B and B→A receiver concentrations at 90 min, and efflux ratios (ER)
for atorvastatin in MDCK-MDR1 cells with and without CsA. Data from three separate
experiments are listed (atorvastatin1, atorvastatin2, and atorvastatin3). All three datasets
were generated with standard protocols and procedures. Qualitatively, all three datasets
suggest that atorvastatin has moderate-to-poor permeability and is a P-gp substrate.
Atorvastatin3 data resulted in the lowest model error (data not shown), and was used for all
subsequent studies. These results underscored the sensitivity of the model error to variability
in experimental data. The data for all six compounds are given in Table S1 (Supplementary
Material).

Experimental variability was also evaluated by comparing experiments with different
control cells. There are two possible controls for our MDCK-MDR1 cells – background
MDCK cells and MDCK-MDR1 cells treated with the P-gp inhibitor CsA. Thus, datasets in
MDCK-MDR1 ± CsA cells (Table S1) were compared with datasets from MDCK and
MDCK-MDR1 cells (9). Using the 5-compartment model, errors were compared for six
substrates at different lipid concentrations. The data for 10% and 40% lipid are given in
Table 2. The average fold error for all six drugs at all lipid concentrations was 2-to 3-fold
higher when background MDCK cells were used as controls (Table 2).

Model complexity and membrane compartments—The model errors for the various
compartmental models are shown in Table 3. The errors were similar for each model and
these errors alone are not sufficient to identify an optimal model. When efflux is out of the
cytosol, the 3C model might be sufficient. However, the 5C model is the simplest model that
allows efflux from the membrane. Although we have evaluated structural parameters (lipid
content and fractional surface areas) for all models, for brevity, only the 5C model results
will be presented. The predicted clearance values, lag times, and intracellular concentration
ratios for the 5C model for asa = 1 and lipid content = 10% are listed in Table 4.

In a systematic evaluation of model errors, the only systematic change that replicated the
observed non-random model errors was an increase in B→A permeability for the MDCK-
MDR1 cells. This led us to add a basolateral uptake transporter to the 5C model with apical
efflux. The effect of incorporating this uptake transporter on model error is shown in Figure
2A. Increasing the basolateral uptake clearance decreases the model error to a point. Figure
2B shows the impact of basolateral uptake clearance on intracellular concentration. Most of
the error can be removed without a substantial change in predicted intracellular
concentrations.

Effect of varying lipid content and asa on model parameters
The effect of varying lipid content (5 – 20%) was evaluated for all models, and results for
the 5C model (asa = 1) are reported in Figure 3 and Table S2. Similar trends were observed
for all models. Model error decreased with increasing lipid content. Lag times increased
with increasing lipid for all drugs, with the exception of loperamide. Loperamide has very a
high partition constant and high permeability. Therefore the model converged to low lag
time estimates at high lipid in order to achieve sufficiently high receiver concentrations.
Intracellular concentration ratios in the A→B or B→A direction did not change markedly
with varying lipid, again with the exception of loperamide. The Ccell,AB ratio of loperamide
increased and Ccell,BA ratio decreased with increasing lipid. For all compounds, 10% lipid
was used for subsequent model development.
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Next, the effect of varying asa (0.13 – 1) was evaluated for all models, and results for the 5C
model (10% lipid) are reported in Figure 4 and Table S3. Similar trends were observed for
all models. Varying asa did not have a marked effect on model error, lag time estimates, and
intracellular concentration ratios. There was a trend of increasing error with increasing asa
for some drugs (labetalol, pitavastatin, atorvastatin). This trend was also observed for
Ccell,BA ratios for minoxidil and atorvastatin. Subsequently, asa = 1 was used for model
development.

Lag times are observed experimentally
Lag times observed in MDCK-MDR1+CsA cells in the A→B direction for 5 compounds are
depicted in Figure 5. The 5C model (10% lipid, asa = 1) was fit to the lag time data (Figure
5, blue line). CLi estimates obtained with the entire concentration – time dataset (CLi,all)
compared well with CLi estimates obtained with only the 90-min concentration data point
(CLi,90). Therefore, a time-course experiment may not be necessary in order to obtain
cellular diffusion or active efflux clearance estimates. Lag times calculated with the logistic
curve equation from the tangent at the inflection point of the curve (Figure 5, red line) are
listed in Figure 5 for each drug. Due to experimental variability, it was necessary to fit
Equation 1 to the model predicted data shown in Figure 5. This appears to work well for
four of five drugs, but the calculated lag time appears to be overestimated for loperamide. It
is clear from these data that lag times are observed experimentally for all compounds, and
models built upon these datasets should capture the observed lag times.

Model predicted lag times are shown in Figure S2. It is noteworthy that the 3C and 4C
models - models with no explicit apical or basolateral membrane compartment - did not
predict a lag time for any drug. Of the remaining models, the 6Phys model predicted lower
lag times compared to the other models. This is also expected since the 6Phys model differs
from the 5–9C, 7Phys and-9Phys models in that it lacks a substantial barrier membrane
compartment. Due to its low volume, the physiologic plasma membrane compartment
reaches steady-state very quickly, resulting in low predicted lag times.

A→B versus B→A intracellular concentration differences are predicted with explicit
membrane compartments

Intracellular concentration ratios (Ccell−efflux/Ccell+efflux) in the A→B and B→A
directions (Ccell,AB and Ccell,BA respectively) are shown in Figure 6. Predicted Ccell,AB
ratios were similar across models. On the other hand, very low Ccell,BA ratios were predicted
by all models except 3C and 4C models. In other words, all models except the 3C and 4C
models predict much higher decreases in intracellular concentration in the A→B than in the
B→A direction. The 3C and 4C models predict large decreases in intracellular
concentrations in both directions.

Comparison of compartmental models
A total of 9 models were developed (Figure 1and Figure S1), as detailed under Methods.
Estimates of clearance and intracellular concentrations, and errors are listed in Table S4. The
3C and 4C models – models with no explicit apical or basolateral membrane compartments
– resulted in parameter estimates that were different from all other models for most drugs.
Thus, CLi estimates generally were up to an order of magnitude lower with the 3C and 4C
model versus all other models. The estimates for CLae with the 3C and 4C models were
several orders of magnitude higher compared to the other models. This is expected since the
amount transported is [CLae * concentration] and the membrane concentrations are much
higher than aqueous concentrations. With respect to intracellular concentrations, the Ccell,AB
ratios were similar across all models. However, the Ccell,BA ratios were markedly higher
with the 3C and 4C models compared to all other models. Finally, errors were comparable
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across all models (Tables 3 and S4). The inclusion of a lysosomal compartment (pH
partitioning (6)) was evaluated but did not result in decreased errors, substantially different
lag times, or intracellular concentrations (data not shown).

Discussion
The FDA and EMA guidances on transporters are evolving, and currently do not incorporate
specific experimental assays into clear decision trees. This is expected given the diversity of
available experimental in vitro systems and protocols, and undeveloped correlations with in
vivo effects. Development of these correlations requires both an understanding of relevant
concentrations and the kinetic parameters of the transporters of interest. While unbound
extracellular concentrations can be measured, unbound intracellular concentrations cannot.
The free drug hypothesis suggests that extracellular and intracellular unbound
concentrations are equal for permeable compounds. This may not be true for uptake and
efflux transporter substrates. Others and we have shown previously that compartment
models can be used to predict intracellular concentrations. As discussed below, the present
study evaluates the impact of experimental variability, model complexity, and model
identifiability on in vitro analyses.

Experimental Variability
Experimental variability is a major factor when developing quantitative relationships for
permeability data. The two factors that we have examined are experimental variability and
inconsistencies between different cell-based models. For example the variability in the
atorvastatin data in Table 1 shows that receiver concentrations can vary more than an order
of magnitude on different days. The efflux ratios are more consistent, presumably since
some of the variability cancels when ratios are calculated. Similar variability in permeability
experiments has been reported in the literature. For example, the reported Papp values for
verapamil in MDCK cells varies between 8 and 33 × 10−6 cm/sec (9,23).

Another factor contributing to variability is the use of different cell lines in the same
experiment. Table 2 clearly shows that lower errors are obtained when addition of CsA to
the MDCK-MDR1 cell line is used as a control. Others have suggested that different cell
lines can have significant differences in permeability and/or transport (24). Differences in
cell phenotype such as membrane composition, transporter expression, or tightness of cell
junctions could contribute to experimental variability. For this reason, it is preferred to use
inhibited cells (e.g. MDCK-MDR1+ CsA) versus background cells (e.g. MDCK) as a
control for transporter experiments.

Model Complexity
In contrast to compartmental models, the actual path across a cell is complicated by
membranes and organelles. An important component of this complexity that can be modeled
is the partitioning of drugs into intracellular lipids. There are two ways we can represent
intracellular membrane components. First, a membrane can form a barrier dividing the
cellular compartment (e.g. 7C L in Fig. 1). In this case, the drug molecule must diffuse in
and then out of the membrane compartment for passage across the cell. A second
configuration is a lipid compartment within the cell for which an intracellular drug molecule
can but need not diffuse through (e.g. 4C L and 6C L). When modeling the plasma
membrane, lipid content can be divided evenly among all membrane compartments, or the
plasma membrane compartments can be limited to physiological volumes - only 0.1% of the
total cell volume (e.g. 6C or 6Phys respectively). Although we used the fraction unbound in
microsomes to estimate membrane partitioning, other modeling efforts have incorporated
Log P/Log D to predict Kp (20).
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The data presented here suggests that adding model complexity (additional compartments,
lysosomal partitioning, geometric changes) does not offer an advantage over the simpler 3C
and 5C models. Only P-gp data are discussed here, but we expect similar results for other
transporters. Thus, efflux out of the cytotosol and uptake from the extracellular fluid may be
adequately modeled with the 3C model.

Error analysis suggests additional transporters
The model errors (Table 3) from the single time-point data arise from lack of consistency
between control and efflux cells. Additional unaccounted differences (e.g. additional
transporters besides apical efflux) may exist in the A→B and B→A directions. An analysis
of the model errors revealed that observed errors (non-random, positive, and large) could
only be reproduced with higher than expected permeability in MDCK-MDR1 (+ efflux)
cells in the B→A direction. One possible origin of these errors is the presence of an
endogenous basolateral uptake transporter that is inhibited by CsA. The presence of
endogenous basolateral transporters in MDCK cells has been postulated previously (13,25).
We can include a basolateral uptake transporter in our models and determine its impact on
the model errors. Figure 2A shows the impact of basolateral uptake clearance (CLbu) on the
errors for the 5C model. As can be seen in this figure, large errors are dramatically reduced
with increasing CLbu. Similar results were obtained for the 7C model (data not shown). The
observed decrease in errors is by no means proof of the existence of a basolateral
transporter. Any process or property that increases the B→A permeability of the drugs
would similarly decrease these errors.

As expected, inclusion of an uptake transporter can influence the intracellular concentration.
As can be seen in Figure 2B, the predicted intracellular concentrations increase with
increasing CLbu. Poorly permeable compounds, e.g. labetalol, are more likely than highly
permeable compounds, e.g. verapamil, to exhibit these increased concentrations. Comparing
Figures 2A and 2B, it can be seen that most of the error is removed before large increases in
intracellular concentrations are observed. The results in Figure 2 should be interpreted
qualitatively. Errors could be due to factors other than basolateral uptake. Therefore
mathematically minimizing errors by with CLbu may not provide a true estimate of uptake.
Experimental uptake data would be necessary to parameterize CLbu and predict intracellular
concentrations.

Impact of lipid content
With compartmental models, volumes such as lipid content need not be physiological, and
can instead be mathematical (‘apparent’). These volumes are used to reproduce observed
concentrations. In the present study, we have evaluated all our models at lipid contents
ranging from 5% to 40% (Table S2). Data are shown for 5–20% lipid (Figure 3), because
higher partitioning drugs such as loperamide cannot be correctly modeled at higher lipid
content. Also, the physiological lipid content of cells is likely to be 5–10% of cell volume
(26–28).

Impact of surface area ratios
In addition to membrane configuration and content, another consideration of the cell models
is the relative surface area of the apical and basolateral membranes. It has been reported that
the apical surface area of MDCK cells is 13% of the basolateral surface area (asa = 0.13
(21)). We therefore evaluated all models (at 10% lipid) at asa values ranging from 0.13 to
1.0 (Table S3). As seen in Figure 4, there is very little change in errors, lag time, and
concentration ratios with changes in asa.
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Model Identifiability
It is clear from the above discussions that the errors cannot definitively identify the best
model. This not surprising since the mathematical equations of the models can be collapsed
to identical forms (see Part 2). However, there are two observations for which some models
diverge. First, a lag time is predicted for some but not all models. Second, although
experimental receiver concentrations can be reproduced for all models, intracellular
concentrations can vary dramatically as discussed below.

Lag time
Although there is variability in observed lag times between and within experiments (Figure
5), all compounds studied do show a lag time. These lag times are presumably due to both
diffusional barriers and the need to equilibrate with intracellular membranes. As seen in
Figure S2, the 3C and 4C models do not predict lag times. This is because these models have
no membrane barriers. A molecule that crosses the first plasma membrane (with no explicit
volume) is immediately available at the second plasma membrane. A lag time is predicted
for the 6Phys model but the minimal volume of the membrane barrier allows rapid
equilibration, and therefore, the lag times are minimal. On the other hand, all models with
considerable membrane barrier volumes predict longer lag times.

It stands to reason that both poor permeability and high partitioning will increase lag times.
Therefore it could be expected that physicochemical properties of drugs will be determinants
of lag times. It is also possible that the complexities of cellular membranes contribute to
delayed passage across cells. For example, the inner and outer leaflets of the plasma
membrane have different compositions (29). Our current datasets are too sparse and too
variable to model these complex relationships.

Intracellular concentrations
As stated earlier, predicting relevant concentrations of transporter substrates is critical for
accurate in vitro - in vivo extrapolation. The impact of transporter activity on unbound
intracellular concentrations can be evaluated with compartment models (6,11,30). For the
models discussed here, models with explicit membranes predicted quantitative differences
between the A→ B and B→A directions. As can be seen in Figure 6, the 3C and 4C models
show substantial decreases in intracellular concentrations in the presence of active efflux for
both A→ B and B→A directions. For all other models, active efflux results in minimal
decreases in intracellular concentrations in the B→A direction. This is because the apical
efflux is modeled out of the cell in the 3C and 4C models and out of the apical membrane in
all other models. As discussed previously, decreasing the apical membrane concentration
upon basolateral addition will result in at most a two-fold decrease in intracellular
concentration (9).

The difference in apical and basolateral exposure becomes important when considering the
impact of efflux transporters on tissue concentrations. A review of the numerous examples
in the literature underlines the impact of P-gp expression on brain and liver exposure in
mdr1 knockout mice (Table 5). The brain concentrations ratios (knockout to wild type)
ranged from 1.3 to 73.6, with an average ratio of 19.2. In contrast, the liver exposure ratios
ranged from 0.5 to 4.5 with an average of 1.7. While this is consistent with efflux out of the
apical membrane, differences in transporter expression could also explain this data. An
interesting exception is pitavastatin for which the predicted A→B intracellular concentration
ratio is 10 whereas the experimental brain ratio is 1.3. These results are not surprising, since
pitavastatin has been shown to be subject to both uptake and efflux transport in the rodent
brain (31). This underscores the point that all transport activity must be accounted for, in
order to have confidence in predicting intracellular concentrations (see Figure 2B).
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Summary
The major goal of this research effort is to provide models that can use in vitro data to
predict in vivo intracellular concentrations in various tissues and in the presence of P-gp.
Therefore, we have explored several models, with varying characteristics, including
membrane configurations, lipid content, and membrane surface area ratios. When
membranes are modeled explicitly, these characteristics have little effect on errors and
predicted intracellular concentrations. Errors in these models may be primarily due to the
presence of multiple transporters in the experimental system. Our results suggest that 1) a 3-
compartment model may be sufficient when efflux occurs from the cell and capturing lag
times is unnecessary; 2) a five-compartment model is sufficient to predict the impact of
transport out of a membrane; 3) this model may be applicable to different cell types with
different apical and basolateral surface areas and different lipid contents; and 4) these
models can and should be expanded to include additional transporters as necessary. As our
ability to identify and characterize individual transporters increases, these models can be
expanded to predict complex cellular distribution.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

3C, 5C, 6C, 7C, 9C 3-, 5-, 6-, 7-, and 9-compartmental models respectively

6Phys, 7Phys, 9Phys 6-, 7-, and 9-comparment models with physiologic volumes of
plasma membranes

A→B apical to basolateral transport

ABCB1 ATP-binding cassette transporter B1

asa apical-to-basolateral surface area ratio

B→A basolateral to apical transport

Ccell,AB ratio the ratio on predicted intracellular concentration in the A→B
direction, without efflux transport to with efflux transport

Ccell,BA ratio the ratio on predicted intracellular concentration in the B→A
direction, without efflux transport to with efflux transport

CLae active apical efflux clearance

CLbu active basolateral uptake clearance

CLcib clearance through a compound independent barrier

CLd passive diffusion clearance

CLi diffusion clearance into an explicit membrane compartment

CLo diffusion clearance out of an explicit membrane compartment
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Kp partition constant for the drug partitioning into microsomal
membranes (Kp = CLi/CLo)

CsA cyclosporine A

ER efflux ratio

MDCK Madin-Darby canine kidney cells

MDR1 multidrug resistance protein 1 gene

MDCK-MDR1 MDCK cells stably transfected with human MDR1

Papp apparent permeability

P-gp P-glycoprotein

tlag permeability lag time

References
1. Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R,

Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli
JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L.
Membrane transporters in drug development. Nat Rev Drug Discov. 2010; 9(3):215–36. [PubMed:
20190787]

2. Chu X, Korzekwa K, Elsby R, Fenner K, Galetin A, Lai Y, Matsson P, Moss A, Nagar S, Rosania
GR, Bai JP, Polli Jw, Sugiyama Y, Brouwer K. Intracellular Drug Concentrations and Transporters:
Measurement, Modeling and Implications in the Liver. Clin Pharmacol Ther. 2013 In Press.

3. Smith DA, Di L, Kerns EH. The effect of plasma protein binding on in vivo efficacy:
misconceptions in drug discovery. Nat Rev Drug Discov. 2010; 9(12):929–39. [PubMed: 21119731]

4. Yabe Y, Galetin A, Houston JB. Kinetic characterization of rat hepatic uptake of 16 actively
transported drugs. Drug Metab Dispos. 2011; 39(10):1808–14. [PubMed: 21730030]

5. Shitara Y, Maeda K, Ikejiri K, Yoshida K, Horie T, Sugiyama Y. Clinical significance of organic
anion transporting polypeptides (OATPs) in drug disposition: their roles in the hepatic clearance
and intestinal absorption. Biopharm Drug Dispos. 2013; 34(1):45–78. [PubMed: 23115084]

6. Fridén M, Bergström F, Wan H, Rehngren M, Ahlin G, Hammarlund-Udenaes M, Bredberg U.
Measurement of unbound drug exposure in brain: modeling of pH partitioning explains diverging
results between the brain slice and brain homogenate methods. Drug Metab Dispos. 2011; 39(3):
353–62. [PubMed: 21149540]

7. Guideline on the Investigation of Drug Interactions EMA Guidline. www.ema.europa.eu

8. Drug Interaction Studies — Study Design, Data Analysis, Implications for Dosing, and Labeling
Recommendations. FDA Guidance for Industry. http://www.fda.gov/Drugs/
GuidanceComplianceRegulatoryInformation/Guidances/default.htm

9. Korzekwa KR, Nagar S, Tucker J, Weiskircher EA, Bhoopathy S, Hidalgo IJ. Models to Predict
Unbound Intracellular Drug Concentrations in the Presence of Transporters. Drug Metab Dispos.
2012; 40(5):865–76. [PubMed: 22279052]

10. Zamek-Gliszczynski MJ, Lee CA, Poirier A, Bentz J, Chu X, Ellens H, Ishikawa T, Jamei M,
Kalvass JC, Nagar S, Pang KS, Korzekwa K, Swaan PW, Taub ME, Zhao P, Galetin A. Best
Practices in Determination of Transporter Kinetic Parameters and Translational Models for Human
Transporter-Mediated Pharmacokinetics and Drug Interactions. Clin Pharmacol Ther. 2013 In
Press.

11. Ménochet K, Kenworthy KE, Houston JB, Galetin A. Simultaneous assessment of uptake and
metabolism in rat hepatocytes: a comprehensive mechanistic model. J Pharmacol Exp Ther. 2012;
341(1):2–15. [PubMed: 22190645]

Nagar et al. Page 12

Pharm Res. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm
http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm


12. Kalvass JC, Pollack GM. Kinetic considerations for the quantitative assessment of efflux activity
and inhibition: implications for understanding and predicting the effects of efflux inhibition.
Pharm Res. 2007; 24(2):265–76. [PubMed: 17191095]

13. Agnani D, Acharya P, Martinez E, Tran TT, Abraham F, Tobin F, Ellens H, Bentz J. Fitting the
elementary rate constants of the P-gp transporter network in the hMDR1-MDCK confluent cell
monolayer using a particle swarm algorithm. PLoS One. 2011; 6(10):e25086. [PubMed:
22028772]

14. Sun H, Pang KS. Permeability, transport, and metabolism of solutes in Caco-2 cell monolayers: a
theoretical study. Drug Metab Dispos. 2008; 36(1):102–23. [PubMed: 17932224]

15. Gottesman MM, Pastan I, Ambudkar SV. P-glycoprotein and multidrug resistance. Current opinion
in genetics & development Elsevier. 1996; 6(5):610–617.

16. Jin MS, Oldham ML, Zhang Q, Chen J. Crystal structure of the multidrug transporter P-
glycoprotein from Caenorhabditis elegans. Nature England. 2012; 490(7421):566–9.

17. Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the
Cell. 4. NY: Garland Science; 2002. Intracellular Compartments and Protein Sorting.

18. Austin RP, Barton P, Cockroft SL, Wenlock MC, Riley RJ. The influence of nonspecific
microsomal binding on apparent intrinsic clearance, and its prediction from physicochemical
properties. Drug Metab Dispos. 2002; 30(12):1497–503. [PubMed: 12433825]

19. Wang Q, Strab R, Kardos P, Ferguson C, Li J, Owen A, Hidalgo IJ. Application and limitation of
inhibitors in drug-transporter interactions studies. Int J Pharm. 2008; 356(1–2):12–8. [PubMed:
18272304]

20. Nagar S, Korzekwa K. Commentary: Nonspecific Protein Binding versus Membrane Partitioning:
It Is Not Just Semantics. Drug Metab Dispos. 2012; 40(9):1649–52. [PubMed: 22711748]

21. Butor C, Davoust J. Apical to basolateral surface area ratio and polarity of MDCK cells grown on
different supports. Exp Cell Res. 1992; 203(1):115–27. [PubMed: 1426034]

22. Corradini MG, Peleg M. Estimating non-isothermal bacterial growth in foods from isothermal
experimental data. J Appl Microbiol. 2005; 99(1):187–200. [PubMed: 15960679]

23. Sahin S, Estudante M, Benet L. Role of P-gp on the Transport of Verapamil Across MDCK and
MDR1-MDCK Cell Monolayers. AAPS Journal. 2007; 9(S2)

24. Kuteykin-Teplyakov K, Luna-Tortós C, Ambroziak K, Löscher W. Differences in the expression
of endogenous efflux transporters in MDR1-transfected versus wildtype cell lines affect P-
glycoprotein mediated drug transport. Br J Pharmacol. 2010; 160(6):1453–63. [PubMed:
20590635]

25. Acharya P, O’Connor MP, Polli JW, Ayrton A, Ellens H, Bentz J. Kinetic identification of
membrane transporters that assist P-glycoprotein-mediated transport of digoxin and loperamide
through a confluent monolayer of MDCKII-hMDR1 cells. Drug Metab Dispos. 2008; 36(2):452–
60. [PubMed: 17967933]

26. Schlager SI, Ohanian SH. Tumor cell lipid composition and sensitivity to humoral immune killing.
II. Influence of plasma membrane and intracellular lipid and fatty acid content. J Immunol. 1980;
125(2):508–17. [PubMed: 7391566]

27. Spector AA, Yorek MA. Membrane lipid composition and cellular function. J Lipid Res. 1985;
26(9):1015–35. [PubMed: 3906008]

28. Carpenter HM, Hedstrom OR, Siddens LK, Duimstra JR, Cai ZW, Fisher KA, Curtis LR.
Ultrastructural, protein, and lipid changes in liver associated with chlordecone treatment of mice.
Fundam Appl Toxicol. 1996; 34(1):157–64. [PubMed: 8937903]

29. Janmey PA, Kinnunen PK. Biophysical properties of lipids and dynamic membranes. Trends Cell
Biol. 2006; 16(10):538–46. [PubMed: 16962778]

30. Watanabe T, Kusuhara H, Maeda K, Kanamaru H, Saito Y, Hu Z, Sugiyama Y. Investigation of
the rate-determining process in the hepatic elimination of HMG-CoA reductase inhibitors in rats
and humans. Drug Metab Dispos. 2010; 38(2):215–22. [PubMed: 19875501]

31. Ose A, Kusuhara H, Endo C, Tohyama K, Miyajima M, Kitamura S, Sugiyama Y. Functional
characterization of mouse organic anion transporting peptide 1a4 in the uptake and efflux of drugs
across the blood-brain barrier. Drug Metab Dispos. 2010; 38(1):168–76. [PubMed: 19833843]

Nagar et al. Page 13

Pharm Res. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



32. Hendrikse NH, Schinkel AH, de Vries EG, Fluks E, Van der Graaf WT, Willemsen AT, Vaalburg
W, Franssen EJ. Complete in vivo reversal of P-glycoprotein pump function in the blood-brain
barrier visualized with positron emission tomography. Br J Pharmacol. 1998; 124(7):1413–8.
[PubMed: 9723952]

33. Uchida Y, Ohtsuki S, Kamiie J, Terasaki T. Blood-brain barrier (BBB) pharmacoproteomics:
reconstruction of in vivo brain distribution of 11 P-glycoprotein substrates based on the BBB
transporter protein concentration, in vitro intrinsic transport activity, and unbound fraction in
plasma and brain in mice. J Pharmacol Exp Ther. 2011; 339(2):579–88. [PubMed: 21828264]

34. Kalvass JC, Graff CL, Pollack GM. Use of loperamide as a phenotypic probe of mdr1a status in
CF-1 mice. Pharm Res. 2004; 21(10):1867–70. [PubMed: 15553234]

35. Schinkel AH, Wagenaar E, Mol CA, van Deemter L. P-glycoprotein in the blood-brain barrier of
mice influences the brain penetration and pharmacological activity of many drugs. J Clin Invest.
1996; 97(11):2517–24. [PubMed: 8647944]

36. Fujino H, Yamada I, Shimada S, Kojima J. Metabolic fate of pitavastatin, a new inhibitor of HMG-
CoA reductase--effect of cMOAT deficiency on hepatobiliary excretion in rats and of mdr1a/b
gene disruption on tissue distribution in mice. Drug Metab Pharmacokinet Japan. 2002; 17(5):449–
56.

37. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-
Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin,
and cyclosporin A. J Clin Invest. 1995; 96(4):1698–705. [PubMed: 7560060]

38. van Asperen J, Schinkel AH, Beijnen JH, Nooijen WJ, Borst P, van Tellingen O. Altered
pharmacokinetics of vinblastine in Mdr1a P-glycoprotein-deficient Mice. J Natl Cancer Inst. 1996;
88(14):994–9. [PubMed: 8667431]

39. Jonker JW, Wagenaar E, van Deemter L, Gottschlich R, Bender HM, Dasenbrock J, Schinkel AH.
Role of blood-brain barrier P-glycoprotein in limiting brain accumulation and sedative side-effects
of asimadoline, a peripherally acting analgaesic drug. Br J Pharmacol. 1999; 127(1):43–50.
[PubMed: 10369454]

40. Salama NN, Kelly EJ, Bui T, Ho RJ. The impact of pharmacologic and genetic knockout of P-
glycoprotein on nelfinavir levels in the brain and other tissues in mice. J Pharm Sci. 2005; 94(6):
1216–25. [PubMed: 15858856]

41. Geyer J, Gavrilova O, Petzinger E. Brain penetration of ivermectin and selamectin in mdr1a,b P-
glycoprotein- and bcrp- deficient knockout mice. J Vet Pharmacol Ther. 2009; 32(1):87–96.
[PubMed: 19161460]

42. Sasabe H, Kato Y, Suzuki T, Itose M, Miyamoto G, Sugiyama Y. Differential involvement of
multidrug resistance-associated protein 1 and P-glycoprotein in tissue distribution and excretion of
grepafloxacin in mice. J Pharmacol Exp Ther. 2004; 310(2):648–55. [PubMed: 15131241]

43. Yokogawa K, Takahashi M, Tamai I, Konishi H, Nomura M, Moritani S, Miyamoto K, Tsuji A. P-
glycoprotein-dependent disposition kinetics of tacrolimus: studies in mdr1a knockout mice. Pharm
Res. 1999; 16(8):1213–8. [PubMed: 10468022]

44. Leusch A, Volz A, Müller G, Wagner A, Sauer A, Greischel A, Roth W. Altered drug disposition
of the platelet activating factor antagonist apafant in mdr1a knockout mice. Eur J Pharm Sci. 2002;
16(3):119–28. [PubMed: 12128165]

45. Desrayaud S, De Lange EC, Lemaire M, Bruelisauer A, De Boer AG, Breimer DD. Effect of the
Mdr1a P-glycoprotein gene disruption on the tissue distribution of SDZ PSC 833, a multidrug
resistance-reversing agent, in mice. J Pharmacol Exp Ther. 1998; 285(2):438–43. [PubMed:
9580581]

Nagar et al. Page 14

Pharm Res. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1. Compartmental models to predict the impact of transporters on intracellular
concentrations
Models 3C-7C (models with mathematical volumes for plasma membrane), and 6Phys and
7Phys (models with physiologic volumes for plasma membrane) are depicted.
Compartments are labeled as follows: A: apical; B: basolateral; C,C1,C2: intracellular; L:
intracellular lipid; AM: apical membrane; BM: basolateral membrane.
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Figure 2. Impact of basolateral uptake transport on model error and predicted intracellular
concentration
All datasets in Tables 1 and S1 were used to build a 5C model with apical efflux as well as
basolateral uptake. In the absence of basolateral uptake experimental data, a theoretical
range of CLbu was used to evaluate the impact of CLbu on A) model error, and B) predicted
intracellular concentration.
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Figure 3. Effect on lipid content on model predictions
Lipid content was varied from 5 – 20% in the 5C model. Model errors, predicted lag times,
Ccell,AB ratios and Ccell,BA ratios with varying lipid content are depicted for six compounds.

Nagar et al. Page 17

Pharm Res. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Effect of asa on model predictions
Asa was varied from 0.13 – 1 in the 5C model. Model errors, predicted lag times, Ccell,AB
ratios and Ccell,BA ratios with varying asa are depicted for six compounds.
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Figure 5. Experimental lag times
Receiver concentrations in direction as a function of time are depicted. Experiments were
conducted in MDCK cells at 20μM drug concentration in triplicate, and data points are
depicted as closed circles. Data were collected for A) verapamil, B) loperamide, C)
labetalol, D) atorvastatin, and E) minoxidil. The 5C model-predicted concentration – time
profile is depicted with a blue line. The tangent at the inflection point of the logistic curve to
calculate lag time (tlag) is depicted with a pink line. CLi,all: CLi predicted with the entire
time course dataset; CLi,90: CLi predicted with the single point (90 min) data points.
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Figure 6. Comparison of intracellular concentration ratios among models
Ccell,AB ratios and Ccell,BA ratios predicted from all compartmental models are depicted for
six compounds.
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TABLE 2

Fold error with the 5C model (asa = 1) in experiments with MDCK-MDR1 + CsA or MDCK cells. Errors at
10% and 40% lipid are listed.

Drug
Experiment

MDCK-MDR1 + CsA MDCK MDCK-MDR1 + CsA MDCK

10% lipid 40% lipid

Atorvastatin 1.6 6.5 1.0 4.2

Loperamide 1.2 1.1 3.5 2.1

Labetalol 4.4 10.4 2.9 6.7

Pitavastatin 2.2 14.5 1.4 9.2

Minoxidil 2.4 2.8 2.1 2.5

Verapamil 1.0 1.5 1.5 1.1

Average fold-error 2.1 6.1 2.1 4.3
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