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Abstract
Purpose of the study—Many blinding diseases of the inner retina are associated with
degeneration and loss of retinal ganglion cells (RGCs). Recent evidence implicates several new
signaling mechanisms as causal agents associated with RGC injury and remodeling of the optic
nerve head. Ion channels such as Transient receptor potential vanilloid isoform 4 (TRPV4),
pannexin-1 (Panx1) and P2X7 receptor are localized to RGCs and act as potential sensors and
effectors of mechanical strain, ischemia and inflammatory responses. Under normal conditions,
TRPV4 may function as an osmosensor and a polymodal molecular integrator of diverse
mechanical and chemical stimuli, whereas P2X7R and Panx1 respond to stretch- and/or swelling-
induced adenosine triphosphate release from neurons and glia. Ca2+ influx, induced by stimulation
of mechanosensitive ion channels in glaucoma, is proposed to influence dendritic and axonal
remodeling that may lead to RGC death while (at least initially) sparing other classes of retinal
neuron. The secondary phase of the retinal glaucoma response is associated with microglial
activation and an inflammatory response involving Toll-like receptors (TLRs), cluster of
differentiation 3 (CD3) immune recognition molecules associated with the T-cell antigen receptor,
complement molecules and cell type-specific release of neuroactive cytokines such as tumor
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necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). The retinal response to mechanical stress
thus involves a diversity of signaling pathways that sense and transduce mechanical strain and
orchestrate both protective and destructive secondary responses.

Conclusions—Mechanistic understanding of the interaction between pressure-dependent and
independent pathways is only beginning to emerge. This review focuses on the molecular basis of
mechanical strain transduction as a primary mechanism that can damage RGCs. The damage
occurs through Ca2+-dependent cellular remodeling and is associated with parallel activation of
secondary ischemic and inflammatory signaling pathways. Molecules that mediate these
mechanosensory and immune responses represent plausible targets for protecting ganglion cells in
glaucoma, optic neuritis and retinal ischemia.

Keywords
ATP; calcium; cytokines; glaucoma; glia; inflammation; mechanosensation; retinal ganglion cells

INTRODUCTION
The spatiotemporal properties of retinal ganglion cell (RGC) action potentials within the
axons of the optic nerve represent the entire visual output projected from the eye to the
brain. Loss of RGCs therefore culminates in vision loss in debilitating blinding diseases
such as ischemia, diabetic retinopathy and glaucoma. 1 While the biological mechanisms
that compromise RGC viability in retinal disease are currently under intense experimental
scrutiny, potentially useful insights into the disease etiology might be obtained from the
observation that RGC degeneration may, at least initially, occur without injury to other
classes of retinal neurons.1,2 Many studies have investigated the anatomical and molecular
mechanisms that could account for the selective vulnerability of RGCs in glaucoma and
diabetes. It has been suggested that RGCs are uniquely vulnerable to disruptions in energy
supply3 mitochondrial function4 and axonal transport5 due to the need to support
metabolically expensive long-distance axons. This need is tended through continuous supply
of glucose, oxygen and signaling molecules across the blood–retina barrier (BRB), which in
turn requires intact function of pericytes, astroglia, microglia and Müller cell endfeet that
interface between the vascular endothelium and RGC somata/axons. Astroglia contribute to
the metabolic homeostasis of RGCs through glucose/lactate transport mediated by
monocarboxylate transporters (MCTs), glucose transporters (SLC2A), glutamate
transporters, Gamma-aminobutyric acid (GABA) transporters and the proposed glutamate-
glutamine shuttle driven by the bidirectional System N (SN1) transporter.6–8 While blood
vessels and glia maintain the ocular immune privilege by shielding the retina from systemic
inflammation, glaucomatous RGC dysfunction might also involve the breakdown of the
glial-vascular-immune interface, resulting in increased vascular permeability, hypoxia/
ischemia, release of free radicals, cytokines, eicosanoids and growth factors and access of
auto-immune molecules.5,9 Importantly, RGCs are uniquely susceptible to trauma and
biomechanical strain, leading to their selective loss in several debilitating blinding
diseases.9,10

Excessive mechanical stress compromises the viability of many sensory systems, including
hearing, somatosensation and vision.11,12 Glaucoma, the blinding disease most commonly
associated with pathological mechanical stress in the eye, is a designation that covers many
distinct eye diseases unified by anterior chamber dysfunction, optic neuropathy and glial
activation. Its etiology is linked to many known risk factors that include mechanical, genetic
(monogenic or polygenic), epigenetic and environmental factors, and possibly combinations
thereof.13 A major risk factor for developing primary open angle glaucoma (which accounts
for the majority of glaucoma patients) is ocular hypertension9,14 caused by increased
production or decreased outflow of aqueous humor within the anterior chamber.15 Positive
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correlations between intraocular pressure (IOP) levels and RGC loss, and between duration
of elevated IOP and RGC axon loss, have been reported for glaucomatous mice, rats,
primates and humans.9,14,16,17 Currently, pharmacological targeting of increased IOP
represents by far the most common clinical treatment of glaucoma. Because the disease is
too often identified by the time when axonal atrophy and somatic degeneration reach the
irreversible terminal stage, there is an increasing interest in early diagnosis and
neuroprotective strategies that will complement IOP reduction within the anterior eye.18

Both require us to understand the mechanotransduction mechanism at the target (RGCs). As
discussed below, application of pressure/stretch triggers influx of calcium ions into RGCs
through several classes of putative mechanosensitive ion channels. Given that excessive
calcium entry overloads cells with calcium and drives neuronal death in many
neurodegenerative diseases in the retina and the brain,19–21 mechanosensitive channels
represent obvious neuroprotection targets in glaucoma.

Although pharmacological targeting of IOP-elevations represents by far the most common
clinical treatment of glaucoma, recent studies suggest that the disease also involves pressure-
independent mechanisms mediated by vascular, glial and immune cells. Reactive astroglia
and microglia appear to regulate RGC survival through parallel and intersecting pathways
that encompass elevated levels of the vasoconstrictor endothelin-1, inflammatory
chemokines and cytokines (e.g. TNF-α, IL-1β and IL-18), ATP, eicosanoids and/or damage-
associated molecular patterns (DAMPs) released by injured and dying RGCs, which in turn
activate multiple RGC targets, including TNF-α, TGF-β, IL receptors, the inflammasome
and T-cell antigen receptor (TCR)/major histocompatibility complex (MHC) immune
complexes.22–27 Secondary insults, triggered by molecules released from injured RGCs,
together with cytokines released from reactive glia and immune molecules arriving from
leaky blood vessels may further disrupt the blood retina barrier and facilitate additional
infiltration of circulating immune cells,28,29 thereby fueling RGC damage inflicted by the
primary mechanical stress.22,30,31 Obviously, diagnosis and treatment of glaucoma will need
to simultaneously address the primary (pressure-related) and secondary (inflammatory and
ischemic) symptoms as well as consider the possibility that glaucomatous injury is
exacerbated through feedback interactions between primary and secondary pathways.

The aim of this mini-review is to describe recent developments in glaucoma research,
focusing on genetic, physiological and pharmacological studies, many from the authors’
laboratories. We introduce molecular mechanisms that underlie intrinsic RGC
mechanosensation, showcase the intimate relationship between immune and inflammatory
pathways in glaucoma and conclude by identifying a novel retinal immune recognition
mechanism that might contribute to glaucomatous remodeling in the inner retina.

INTRAOCULAR PRESSURE AND GLAUCOMA
All cells and organisms live within mechanically active environments in which they must
sense and adapt to physical forces such as hydrostatic pressure, osmotic swelling/shrinkage,
shear flow and developmentally driven tissue stretch.32,33 Cells in the eye are additionally
exposed to intraocular pressure, the magnitude of which reflects the elasticity of ocular
tissues and the balance between production and drainage of aqueous humor within the
anterior chamber. Biomechanical strain, exerted by the IOP, was suggested to play a central
role in the normal development of the vertebrate retina through scleral expansion and
continuous stretching of the eye. Consistent with this view, IOP dissipation blocked ocular
expansion even as the neural retina continued to grow.34,35 Furthermore, Coulombre showed
that IOP-deprived chick retinas are forced to increase their thickness, suggesting that
mechanical stress is required for proper establishment of retinal circuits. Thus, as observed
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in other tissues,33,36 morphogenesis, migration, adhesion, osmoregulation and contractility
of developing ocular cells are likely to be influenced by mechanical forces that include IOP.

Given that vision loss in animal glaucoma models and humans reflects the magnitude and
time course of IOP elevations,9,14,16,17,37 it would appear that the identification of
mechanosensitive mechanisms within RGCs, retinal vasculature and glia should represent a
priority target in glaucoma research. Potential candidate mechanisms might include
pressure- and/or stretch-sensitive ion channels, enzymes, cytoskeletal proteins, extracellular
matrix proteins or combinations thereof. Force-induced stretching of focal adhesion
junctions could, for example, reveal intracellular binding sites for cytoskeletal proteins and
influence activation of mechanosensitive ion channels.38,39 Another possibility is that the
pressure gradient across axons within the optic nerve mechanically and/or biochemically
impairs axonal transport between the cell body and midbrain synapses, depriving RGCs of
critical “neurotrophic factors”.40–44 The perfusion pressure difference between arm-
measured blood pressure and IOP is a strong risk factor for incidence and progression of
open angle glaucoma.18 Variants of the “vascular hypothesis”45,46 suggest that the primary
defect in glaucoma is due to vasoconstriction and insufficient blood supply, caused by
compromised arterial flow through the capillaries connected to the peripapillary choroid and
the circle of Zinn–Haller. There is, however, little clear evidence that chronic IOP increases
observed in most ocular hypertensive patients directly affect ocular blood flow. The
biomechanics of this process, especially with respect to the late remodeling of the optic
nerve head, has been reviewed elsewhere.24,47

The observations that some of the earliest actions of increased IOP target the dendritic field
size, the number of synapses as well as light-evoked responses of RGCs48–53 suggested that
the primary retinal pressure sensors may be RGCs themselves. Consistent with this view,
pressure-induced reductions in axon thickness and deformation of the optic nerve head in
primate glaucoma models appear later than abnormalities in the dendritic arbors.54 How do
RGCs sense mechanical stress? Ocular hypertension could affect the cells through
compressive forces (force/cross sectional area) and/or tensile strain (local stretch of the
tissue). A major role for compression is doubtful given that the neural retina is entirely
enclosed within the eye. However, even in healthy eyes IOP-driven increases in ocular
volume could exacerbate tensile forces that impinge on pre-stressed extracellular matrix,
cytoskeleton and plasma membrane structures. The pressure–volume relationship described
by Friedenwald’s ocular rigidity coefficient (“resistance exerted against distending forces”)
is between 0.0126 mm Hg/μL and 0.0224 mm Hg/ μL.55,56 According to Pallikaris et al.,57,
20 mm Hg increase in IOP ought to increase the volume of the human eye by ~30
microliters whereas tonometric measurements from living eyes give a larger volume
increment of ~45 microliters,58 which leads to the prediction that a 20 mm Hg increase in
IOP would expand the ocular volume by ~1%. Showing that retinal cells respond to 1%
stretch would confirm that they are directly sensitive to the tensile forces driven by IOP
changes that are commonly observed in glaucoma. Ocular rigidity is lower in glaucoma
compared to healthy subjects.59 Thus, an increase in IOP will provoke larger tensile stretch
forces across membrane/matrix proteins in glaucomatous RGCs compared to healthy cells
and should be more efficacious in crossing the thresholds of intrinsic mechanosensitive
mechanisms. Mechanical forces and submicrometer displacements generated by IOP
elevations are comparable to the measured free energies of known mechanosensitive
channels.60,61
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MECHANOSENSATION, TRPV4 SIGNALING AND RGC
NEURODEGENERATION

The long-standing question in glaucoma research has been whether RGCs are themselves
capable of transducing mechanical stimuli generated by physiological changes in IOP
amplitude. In vitro, in vivo and preclinical evidence published in recent years shows that
RGCs are themselves highly sensitive to mechanical forces.9,62–67 RGC viability has been
shown to be affected by physical compression, tensile stretch, prolonged swelling and IOP
elevations, which, in intact preparations, were able to induce changes in the molecular
composition and synaptic organization within hours to weeks.63,68–70

The recently identified Transient Receptor Potential (TRP) and Piezo channels represent
obvious candidates for retinal IOP transducers. While little is known about the Piezo family,
the seven subfamilies of the TRP superfamily – so named after their Drosophila homolog,
which plays a key role in phototransduction – are crucial for the perception of sensory
information in vertebrates and invertebrates.11 Most TRP isoforms are nonselective cation
channels that are permeable to Ca2+, therefore their activation serves as suitable trigger for
many different types of intracellular signaling events. Members of four TRP subfamilies,
specifically of the vanilloid (TRPV), ankyrin (TRPA), polycystin (TRPP), and canonical
(TRPC) families are relevant to mechanosensation. These channels are only weakly
sensitive to depolarization but open in response to a wide variety of mechanical, osmotic,
chemical and thermal stimuli.22 RGCs express mechanosensitive TRPC1, 3-, 6-, 7- and
TRPV1- and 4-channel isoforms.66,71–73 TRPV4 is a particularly attractive candidate as a
glaucoma mechanosensor because, while strongly expressed in RGCs, it is excluded from
other types of retinal neuron.66 Selective TRPV4 agonists, such as 4α-PDD and
GSK1016790A, induce calcium influx into RGCs and increase the rate of spontaneous RGC
firing, whereas excessive TRPV4 stimulation induces RGC apoptosis but spares other retinal
neurons.66,74 Mechanosensitive TRPV4-mediated responses could account for the increased
excitability and reduced RGC survival induced by experimental elevation of IOP or
membrane stretch.66 The precise mechanism through which membrane tension activates
RGC TRPV4 channels is unclear. The mutually not incompatible mechanisms include direct
activation by lipid stretch,75 phospholipase A2 or through mechano-chemical feedback
involving β1 integrins and/or focal adhesion kinases.76,77

It remains to be determined whether excessive calcium influx through TRPV4 channels
contributes to calcium dysregulation that has been linked to the pathogenesis of glaucoma in
animal studies and clinical trials.23,78,79 Interestingly, the risk for developing the disease in
humans is increased by taking high daily doses of calcium supplements80 or by not taking
calcium channel blockers.78 At the very least, calcium ions are going to play a central role in
cytoskeletal reorganization that underpins dendritic/axonal remodeling in glaucoma.
According to the model shown in Figure 1, local Ca2+ influx driven by excessive TRPV4
activation contributes to increased baseline [Ca2+]i levels and RGC hyperexcitability. This
leads to activation of Ca2+-dependent genes belonging to NFAT (nuclear factor of activated
T-cells), c-fos, DREAM (DRE antagonistic modulator protein) and/or CREB (cAMP
response element-binding protein) families and triggers Ca2+-dependent catabolic enzymes
such as calcineurin and calpains, as well as the cytoskeletal remodeling pathways involving
actin and/or microtubular assemblies.8,23,81–86 Calcium levels also modulate the opening
probability of purinergic channels and pannexin hemichannels and could affect their
responsiveness to mechanical stimuli. Consistent with this, TRPV4-mediated Ca2+ entry was
shown to regulate ATP release, which, via P2X7 receptors, could exacerbate mechanically-
induced cell injury and facilitate release cytoactive molecules such as endothelin and/or
TNF-α.87,88
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The emergence of new models of mechanical gating33,89 suggests that force transduction
cannot be disentangled from intracellular biochemistry. Hence, while the direct
mechanosensory function of TRPV4 figures most prominently, the polymodal features of
TRPV4 activation, such as sensitivity to swelling and inflammatory agents75,76 place the
channel squarely within the crossroads of mechanosensing, inflammatory signaling and
anatomical remodeling. Inflammatory mediators would exacerbate RGC injury, induced by
mechanically generated TRP-mediated Ca2+ overload (Figures 1 and 2). According to this
view, TRPV4 signaling represents an epicenter that links primary, pressure-induced RGC
damage to secondary pathophysiological mechanisms mediated by glialvascular inputs
(delineated below). Pannexin channels link the mechanosensitive release of ATP to P2X7
receptor-mediated death of RGCs.

MECHANOSENSITIVE RELEASE OF ATP VIA PANNEXINS AND
AUTOSTIMULATION OF P2X7R RECEPTORS ON RGCs

In the eye, the mechanical strains resulting from increased IOP are also associated with ATP
release. This ATP can mediate physiological and pathological responses through binding to
purinergic P2 receptors, the ligand-gated ion channels activated by ATP.90–92 Several
isoforms of ionotropic P2X receptors, including P2X3-5 and P2X7 were reported to be
expressed in RGCs.93 Increased concentrations of extracellular ATP are present in the
aqueous humor of human patients with acute94 or chronic95 glaucoma. Extracellular ATP is
also elevated in the retina following acute elevations in IOP from rat and bovine retina,68,96

and preliminary data suggest a prolonged increase in retinal ATP occurs in primate and rat
models of chronic glaucoma.97,98 Because extracellular ATP is rapidly degraded in the
central nervous system (CNS) by ecto-ATPases, such sustained increase is the evidence of a
prolonged release from stressed neural cells. While the ATP released in response to
mechanical strain can act at multiple receptors, the P2X7 receptor is of particular interest
given its ability to initiate both inflammatory responses and neuronal death.99,100 Since
RGCs express P2X7Rs, stimulation with its agonist, 2′(3′)-O-(4-Benzoylbenzoyl)
adenosine-5′-triphosphate (BzATP), elevates intracellular Ca2+ and kills RGCS in vitro.101

BzATP also kills RGCs in vivo; this death is inhibited by P2X7R blockers MRS 2540 and
Brilliant blue G.102 This suggests that the mechanosensitive release of ATP accompanying
elevation of IOP may influence ganglion cell health in acute and chronic glaucoma.103,104

Given the pathological effects of excess extracellular ATP on ganglion cells, the cellular
source of this released ATP and the signaling pathways leading to this release are of interest.
Although Müller cells release ATP into the region surrounding RGCs upon mechanical
stimulation, its rapid dephosphorylation into adenosine may limit the concentrations
reaching RGC membranes.105,106 In a healthy retina with little mechanically-evoked ATP
release, ATP dephosphorylation regulates P2X7 receptor activity, because P2X7R requires
relatively high concentrations of ATP for activation.107 In disease, sufficient ATP to activate
the P2X7 receptors may come from the efflux of ATP through channels in close proximity
to the P2X7 receptor on the membrane, with local concentrations high enough to
autostimulate the receptors. The pannexin-1 (Panx1) channel, which can be recruited and
directly activated by P2X7R, has been recently implicated in this role.67,108–110

Pannexins are membrane channels with a high single channel conductance of 500 pS that are
permeable to molecules over 1 kDa.111 Unlike connexin gap junction proteins, pannexin
channels are not coupled to partners in adjacent cells but instead act as pores connecting the
cell interior to extracellular space; opening of the pore is tightly regulated to maintain
cellular integrity.109 Pannexins are widely distributed and have important implications for
inflammation, as discussed below. However, pannexins have two characteristics essential to
the current context; they are highly permeable to ATP and open upon application of
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mechanical strain to the membrane.67 Whether pannexins are themselves the primary
mechanosensor or activated by other upstream mechanosensitive sensors through Rho
kinase,112 their ability to release ATP in proximity to P2X7 receptors upon stretch of the
membrane implicates them in connecting elevated IOP with activation of the p2X7
receptors.

This pannexin/P2X7R system was recently found to translate mechanical strain into receptor
activation in ganglion cells.113 RGCs strained by stretching on a silicone substrate, or
swollen with hypotonic solution, released ATP. This release was inhibited by pannexin
blockers carbenoxolone, probenecid and inhibitory peptide, 10 Panx, implicating the
pannexin channel in the efflux. Importantly, this mechanosensitive release came from
isolated immunopanned cells, identifying RGCs themselves as a cellular source of releasable
ATP. Whole cell ion currents activated by swelling were reduced by pannexin channel
blockers by removal of extracellular ATP with apyrase or by P2X7R blockers A438079,
AZ10606120 and zinc. Together, these observations strongly support a model whereby the
mechanosensitive release of ATP through pannexin channels on RGCs autostimulates P2X7
receptors on the cells.

The consequences of this mechanosensitive auto-stimulation are likely to be more complex
than originally thought. Although stimulation of the P2X7R is widely associated with cell
death, the expression of pannexins114 and P2X7 receptors115,116 in healthy adult RGCs
suggests that death is not a necessarily consequence of receptor stimulation. However, the
massive ATP release that accompanies excessive mechanical strain may push the system
into a pathological state. The location of the pannexin/P2X7 receptors may also influence
the function of this mechanosensitive ATP release and autostimulation. According to
immunohistochemical analysis, Panx1 and P2X7 proteins are expressed on both the soma
and neurites of isolated ganglion cells.113 As much of the mechanical strain in glaucoma
occurs at or near the optic nerve head,117 expression of this mechanosensitive signaling pair
along neurites suggests the system may translate strain in the optic nerve head to local
damage in ganglion cell axons.

THE ROLE OF PANNEXIN1-ACTIVATED PATHWAYS IN RGC INJURY
The Panx1 protein forms large non-selective membrane channels and is implicated in
paracrine signaling and regulation of the inflammasome. Compared to connexin
hemichannels, Panx1 channels are less sensitive to extracellular Ca2+, and open when intra-
cellular Ca2+ increases, suggesting them to serve as an additional pathway for Ca2+ influx
across membrane in pathological conditions.118–120 Importantly, Panx1 membrane channels
have superior permeability to ATP, which prompted referring to them as “the ATP
channels” suitable for paracrine signaling in astrocytes, neurons and other cell types.88 As
described above, pannexins are implicated in massive ATP release by glial and blood
endothelial cells is typically observed in various pathologies.89–92 Moreover, Panx1
channels were shown to regulate the inflammasome.121,122 The Panx1-mediated pathway
activates faster in pathogenic conditions, i.e. after stress, injury and cytokine exposure, when
cells were shown to decrease the number of gap junctions in the plasma membrane in favor
of hemichannels made of either connexins or pannexins.123–125 Mechanistically, the
abnormal opening of Panx1 channels is facilitated by a combination of pathogenic stimuli
typically released after stress or injuries, including mechanical stress, extracellular K+, ATP,
glutamate, cytokines and Zn2+ and proteolysis by active caspase-3.109,126–129

Recent studies utilizing gene knockdown and knockout mouse models suggested that Panx1
plays a key role in ischemic death of multiple types of neurons.130,131 Several reports
showed that over-stimulation of the Panx1 channels facilitate neuronal loss in models of
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stroke, glaucoma, retinal ischemia, spreading depression and enteric colitis.99,130–135

Because RGCs express high levels of Panx1 and are extremely susceptible to ischemic
injury, we tested the hypothesis that activation of Panx1 directly facilitates rapid and
selective loss of RGC neurons in ischemia. Our data generated using the Panx1 knockout
mice, which are significantly protected from ischemic injury, showed that two distinct
neurotoxic processes are mediated by these channels in ischemic conditions.130

As revealed by dye transfer and calcium imaging assays, one mechanism involves
permeation of RGC plasma membranes. This causes an imbalance of small molecules, and,
in particular, an influx of Ca2+ and the efflux of ATP.130,132,136 Ca2+ overload, which
activates Ca2+-dependent proteases and facilitates apoptosis, can occur directly via Ca2+-
insensitive Panx1 channels (Figures 1 and 2). In addition, an opening of Panx1 channels can
occur via the P2X7R-dependent mechanism in response to several external and internal
stimuli of physiological or pathological nature, which prompted researchers to name
P2X7R-Panx1 a “death complex”.99,120,137–139 It is plausible that prolonged opening of
Panx1 can be triggered by a combination of pathological factors such as increases in
extracellular concentration of known agonists including ATP, K+, Zn2+, glutamate and pro-
inflammatory cytokines. 67,109,124,128,140 Such a combination is common in retinal or brain
ischemia (stroke) and other CNS injuries.99,130,131

The second process that is interrupted in the Panx1 knockout is the activation of caspase-1
and inflammasome-mediated production of IL-1β and IL-18.84–86 The inflammasome is a
macromolecular complex, first characterized in macrophages108,141 and, more recently, in
glia and neurons.122 The well-known pathway for transcriptional activation of IL-1β and
IL-18 genes involves stimulation of TNF and Toll-like receptors (TLRs),28,142–146 which
causes the activation of NF-κB (nuclear factor kappa-light-chain-enhancer of activated B
cells)-dependent gene transcription (Figures 2 and 3). Thus, production of these ILs depends
on two independent pathways: (1) transcriptional activation via the NF-κB pathway and (2)
proteolytic processing of IL precursors by the inflammasome.

How does Panx1 contribute to inflammasome activation? One feasible mechanism is a direct
interaction with the inflammasome complex that facilitates proteolytic processing of
caspase-1 and results in Il-1β release, as reported by Pelegrin and Surprenant.141 The second
mechanism of Panx1-mediated inflammasome activation involves transcriptional activation
of IL-1β, since the large pore of the Panx1 channel can provide a gateway for the entry of
pro-inflammatory molecules into the cell, leading to stimulation of intracellular membrane
receptors such as TLR3.86,108,141 TLR3, as well as surface receptors TLR4 and TNFR,
cause transcriptional activation of NF-κB (Figure 2) and have been recently implicated in
several neurodegenerations, including glaucoma.147–149 In a similar fashion, the activation
Panx1 and, subsequently, the inflammasome can be triggered via stimulation of P2X7
receptors by extracellular ATP.150,151 It was demonstrated that Panx1 is essential for
P2X7R-induced proteolytic cleavage of caspase-1 and subsequent IL-1β maturation/release,
which can be blocked by pharmacological blockade of the Panx1 channels with small
interfering RNA, mimetic peptide or carbenoxolone.108,121,151,152 Likewise, genetic ablation
of Panx1 resulted in a robust neuroprotection in mouse models of enteric colitis and
traumatic brain injury.39,43 Importantly, a study of neuron-specific Panx1 knockout mice
demonstrated that Panx1-mediated neurotoxicity is facilitated by the endogenous, neuronal
inflammasome.84,122 Neuronal types expressing high levels of Panx1, such as RGCs, are
vulnerable to Panx1-mediated death in response to certain pathological and pro-
inflammatory stimuli. Opening of Panx1 channels was shown to be independent of TLR
activation.86 Combined with our own results,130 this finding allowed us to propose a model
where Panx1 acts in parallel, not downstream of TLRs. This model implies synergy between
the MyD88-NF-κB pathway and Panx1-mediated processes for IL-1β processing and
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secretion. Indeed, cytokine maturation appears to be a crucial step in the neurotoxic pro-
inflammatory program that is activated in injured CNS via the MyD88-NF-κB
pathway.122,130,153 Consistent with our hypothesis, the extent of neuroprotection in Panx1
knockout mice is similar to that observed in the knockouts of caspase-1, P2X7 receptor,
TNF receptors 1/2, TLR3/4 and conditional knockouts of NF-κB.130,142,154–158 In a similar
fashion, pharmacological blockade of P2X7R, NALP1/ 3 or ASC subunits of inflammasome
showed robust neuroprotection in various CNS injuries,84,85,151,159 a strong evidence for
neurotoxic effects of inflammasome activation.

TNFR and TLR Signaling Promote Inflammation through NF-κB, Driving RGC Degeneration
Increased glial production of TNF-α in the glaucomatous human retina and optic nerve has
been implicated in RGC death and inflammatory processes through the TNFR
signaling.28,160–162 High-throughput characterization of the retinal proteome has recently
indicated a prominent up-regulation of TNFR-mediated apoptosis pathway and
inflammation signaling in human glaucoma.161 Retinal proteins exhibiting increased
expression in glaucoma have included TNF-α, TNFR1 and various downstream adaptor/
interacting proteins, such as TNFR1-associated death domain protein (TRADD) and the
members of the TNFR-associated factor (TRAF) family, and protein kinases involved in
TNF-α/TNFR1 signaling. Proteomics data support that a complex crosstalk relationship
between multiple signaling pathways determines diverse bioactivities of TNF-α.28 Besides
the proteolytic caspase cascade, co-activation of calpain-mediated pathways, mitochondrial
dysfunction and endoplasmic reticulum stress may reinforce each other during RGC
apoptosis in glaucoma. Regarding TNFR-mediated inflammation signaling, proteomics
analysis of the glaucomatous human retina has produced data supporting NF-κB activation,
JAK/STAT signaling and inflammasome assembly.161 Proteomics analysis of RGC and
astrocyte samples has also showed cell-specific regulation of TNF-α signaling in
experimental glaucoma, such as caspase activation leading to apoptosis in RGCs, but NF-κB
activation promoting cell survival and inflammation in astrocytes.162 In addition, the type of
receptor preferentially used is important in determining the outcomes of TNF-α signaling.
This multifunctional cytokine can bind two different receptors of the TNFR superfamily,
TNFR1 (p55) and TNFR2 (p75). TNFR1 appears to be the primary receptor for both
neurodegenerative and inflammatory consequences of TNF-α signaling in glaucoma.161

This is because a death domain present on the intracellular region of TNFR1, but not present
in TNFR2, leads to apoptotic cell death, while signaling through TNFR2 leads primarily to
cell proliferation. TNFR1 is also the primary signaling receptor responsible for the majority
of TNF-α-mediated inflammatory responses, particularly those mediated by the soluble
TNF-α required for inflammation.28,163

The glaucomatous human retina also exhibits up-regulation of TLR signaling149 (Figures 2
and 3). Innate immune activity in the CNS can be triggered by numerous pathways after
recognition of invading pathogens or tissue stress/injury by pattern recognition receptors,164

which include TLRs and nucleotide-binding oligomerization domain-like receptors (NLRs).
Although TLRs are membrane-spanning receptors, NLRs are cytoplasmic sensors that form
a platform for the assembly of the inflammasome, a multiprotein complex that processes
pro-ILs into their mature forms via proteolytic cleavage by caspase-1,165 as is evident in
glaucoma.161,162 TLRs recognize a wide variety of pathogen-associated molecular patterns
and also the DAMPs expressed during tissue stress or injury.166 Recent proteomics studies
of human glaucoma and animal models have revealed that glial cells, including both
microglia and astroglia, are the main cell types that express a repertoire of TLRs, as well as
several inflammasome-related molecules.149,162 In addition, there is in vitro evidence
indicating that glaucomatous stress-related intrinsic ligands, such as heat shock proteins
(HSPs) and oxidation products, can activate glial TLRs and stimulate T cells.149 After
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recognizing specific molecular patterns, TLRs recruit adaptor proteins, such as MyD88, and
activate NF-κB (Figure 2), a major transcription factor for the expression of pro-
inflammatory cytokines.167 Proteomic data from human glaucoma and animal models, along
with the findings of in vitro treatment experiments, support the notion that the glial TLR
signaling initiated by glaucomatous stress-related ligands includes MyD88-dependent
pathways.149

NF-κB activation after binding TNFRs and TLRs triggers the transcriptional activation of
pro-ILs that are processed into their active forms by the inflammasome.165 Glaucomatous
retinal proteome exhibits increased glial expression of specific kinases involved in the NF-
κB activation pathway, such as receptor-interacting serine-threonine kinase (RIPK), NF-κB-
inducing kinase (NIK), and inhibitory kappa B (IκB) kinases (IκKs), including a master
regulator, IκKgamma (NF-κB essential modulator), and phosphorylation of NF-κB subunits,
NF-κB1-p105/p50 and p65.161,162 Although NF-κB regulates neuronal survival programs,
including in the retina and optic nerve,168 this transcription factor is a master regulator of the
inflammatory responses leading to secondary neurodegenerative processes.167,169 The NF-
κB pathway may similarly play a major role in regulation of glia-driven pro-inflammatory
processes during glaucomatous neurodegeneration.162 As implicated in other
neurodegenerative diseases,170 TNF-α/TNFR signaling, TLR signaling and the
inflammasome together exhibit the potent inflammatory capacity with beneficial and
detrimental outcomes in glaucoma. NF-κB, as being a common player of inflammation
through TNFR or TLR signaling, appears to be a promising treatment target to provide
immunomodulation in glaucoma171 and deserves further studies.

Function and Possible Mechanisms of Activation of Immune Molecules in the Retina
Recent studies demonstrated that genes typically associated with the immune system, such
as those in the MHC and complements, are expressed by neurons in various regions of the
CNS, including retina, and may play important roles in synapse formation during normal
development and pathogenesis in CNS diseases.25,172–177 Consistent with this notion,
genetic deletion or mutation of a number of MHC class I genes (such as a MHCI co-subunit
β2-microglobulin or a key component of MHCI receptor complex CD3ζ), complements or
complement receptors result in the failure of development of the eye-specific segregation of
RGC axonal projections to the dLGN.25,174,178,179 On the other hand, over-expression of
MHCI molecules caused effects on the retinogeniculate projections opposite to that of
MHCI or complement mutations.180 Furthermore, the expression of complements is up-
regulated in glaucomatous retinas,181 and over-expression of MHCI molecules significantly
enhanced the recovery of locomotor abilities after spinal cord injury.181

The precise molecular mechanisms of how MHCI molecules and complement cascade
expressed by CNS neurons are activated, and how they regulate the normal development and
pathogenesis of CNS diseases are unclear. It was suggested that the expression and activity
of MHCI molecules and complement cascade are regulated by neuronal activity.
Consistently, retinal activity was found to regulate the level of mRNA of MHCI molecules
in the dorsal lateral geniculate nucleus (dLGN).173 In retina, the effects of CD3ζ seem to be
cell-type and neurotransmitter-specific. Xu et al.,25 reported that CD3ζ is specifically
expressed by RGCs and mice with genetic mutation of CD3ζ exhibited a selective reduction
of glutamate receptor-mediated synaptic transmission of RGCs. It was also postulated that
activation of immune molecules in neurons could produce similar intracellular signals as
those generated in immune cells but with different ultimate effects, such as altering synaptic
development, strength, neuronal morphology or circuit properties downstream of synaptic
activity25,182,183 (Figure 3). In the immune system, activation of CD3ζ triggers several
downstream cascades, including a Ras-MAPK pathway and actin-based cytoskeleton
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reorganization, which regulates immune cell polarization, migration and dendritic
growth.184–186 It has been shown that most components of these cascades are expressed in
the CNS and implicated in activity-dependent synaptic plasticity.182,187 In addition, direct
activation of CD3ζ on hippocampal neurons affects cell morphology by promoting dendritic
pruning through a tyrosine-based phosphorylation signaling motif common to the immune
system.172 Furthermore, neuronal activity in the retina is also suggested to regulate the
complement-dependent activation of the resident immune cells in retina, microglia, which in
turn regulates the developmental remodeling of RGC axonal projection during normal
development through a process similar to “phagocytosis”.178 Recent studies also implied
that retinal microglia might play an important role in RGC death in glaucomatous retinal
degeneration.188–190 These observations strongly support the possibility that the immune
molecules and cells could regulate the neuronal structure and function through mechanisms
similar to those in the immune system.

CONCLUDING REMARKS
Analysis of signaling pathways associated with RGC injury points at intracellular
involvement of ubiquitous messenger molecules such as Ca2+ and ATP, which could
participate in intrinsic mechanosensation and drive feedback pathways associated with
secondary glial and vascular mechanisms. Because [Ca2+]i maintenance is critically
important for the regulation of excitability, cytoskeletal integrity, metabolism and synaptic
function, disruption of Ca2+ homeostasis would ultimately lead to anatomical and
physiological remodeling observed in glaucoma. Recent evidence suggests that such Ca2+

overloads in RGCs could be mediated by TRPV4, P2X7R and/or pannexin channels. The
effect of mechanical stress on resident mechanosensitive channels has to be placed within
the larger context encompassing secondary inflammatory and immune responses driven by
feedback loops between injured RGCs, astrocytes, microglia and the vascular endothelium.
Inflammatory cytokines and complement molecules released from glial and endothelial cells
could drive the plasma membrane P2X7R-Panx1 complex as well as complex arrays of
immune/ inflammatory signaling molecules that might include TNF-α, IL-1β, Toll-like and
T-cell receptors. The ensuing reconfiguration of intracellular signals is proposed to involve
the NF-κB pathway and activation of the inflammasome complex.

Current glaucoma treatments are limited to minimization of mechanical impact mediated by
elevated IOP and lack tools that would protect RGCs by targeting the mechanosensing
mechanisms and/or secondary inflammatory/immune pathways within the retina. Thus,
development of novel neuroprotective treatments depends on our ability to characterize the
force transduction mechanisms that mediate retinal IOP sensing (TRPV4, Panx1 and P2X7R
discussed here) together with the role of secondary interactions between RGCs and the
surrounding vascular endothelial cells, pericytes, astrocytes, Müller cells and microglia.
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FIGURE 1.
Proposed model for RGC mechanotransduction. Pressure-induced membrane stretch
activates plasma membrane TRPV4 channels leading to calcium entry, activation of Panx1
and ATP release. This leads to secondary activation of P2X channels and P2Y receptors on
neurons and glial cells. Calcium dysregulation may then trigger dendritic and axonal
remodeling, inflammation, glial reactivity, RGC hyperexcitability, and eventually,
apoptosis.
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FIGURE 2.
Schematic diagram of signaling mediated by surface receptors and Panx1 in the injured
retina. Although signaling by TNFRs, TLR4 (signals through MyD88 and/or TRIF) and
Ca2+ can feed directly into NF-κB activation, TLR3 signaling via TRIF first results in the
transcription of type 1 interferon genes. These can also promote NF-κB-regulated
transcription (dashed arrow). Ultimately, the maturation of pro-IL-1β into IL-1β via
inflammasome pathways perpeturates inflammation and worsens the glaucomatous damage.
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FIGURE 3.
Retinal signaling and cellular remodeling mediated by TLR, TNF and immune molecules
involves neuronal-glial circuits. The activation of TLR4, TNFRs and TCRs can promote
NF-κB-regulated transcription, generating pro-IL-1β, which is then processed into IL-1β and
secreted. This drives glial reactivity and furthers inflammation (e.g. the release of more
TNF-α), thus perpetuating the inflammatory cycle. As RGCs are damaged and killed, they
may release DAMPS (e.g. certain HSPs) that activate innate immune receptors such as
TLR4 and thereby worsen glaucoma. The activation of TCR/CD3 may be involved in
glaucomatous dendritic remodeling, which may disturb normal circuit functions and degrade
the fidelity of visual processing.
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