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Abstract
Purpose—Tuberculosis treatments need to be shorter and overcome drug resistance. Our
previous large scale phenotypic high-throughput screening against Mycobacterium tuberculosis
(Mtb) has identified 737 active compounds and thousands that are inactive. We have used this data
for building computational models as an approach to minimize the number of compounds tested.

Methods—A cheminformatics clustering approach followed by Bayesian machine learning
models (based on publicly available Mtb screening data) was used to illustrate that application of
these models for screening set selections can enrich the hit rate.

Results—In order to explore chemical diversity around active cluster scaffolds of the dose-
response hits obtained from our previous Mtb screens a set of 1924 commercially available
molecules have been selected and evaluated for antitubercular activity and cytotoxicity using
Vero, THP-1 and HepG2 cell lines with 4.3%, 4.2% and 2.7% hit rates, respectively. We
demonstrate that models incorporating antitubercular and cytotoxicity data in Vero cells can
significantly enrich the selection of non-toxic actives compared to random selection. Across all
cell lines, the Molecular Libraries Small Molecule Repository (MLSMR) and cytotoxicity model
identified ~10% of the hits in the top 1% screened (>10 fold enrichment). We also showed that
seven out of nine Mtb active compounds from different academic published studies and eight out
of eleven Mtb active compounds from a pharmaceutical screen (GSK) would have been identified
by these Bayesian models.
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Conclusion—Combining clustering and Bayesian models represents a useful strategy for
compound prioritization and hit-to lead optimization of antitubercular agents.
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INTRODUCTION
Research targeted toward the identification of small molecule inhibitors of Mycobacterium
tuberculosis (Mtb), the causative agent of tuberculosis (TB), has more recently focused on
whole-cell phenotypic screening (1–6). Even though effective treatments have been
approved for drug-sensitive infections, an urgent need exists for next generation drugs (7, 8)
to address rising drug resistance for a disease that infects approximately one-third of the
world’s population and kills 1.7–1.8 million people annually (9). Key to this effort has been
research on new drugs that would significantly decrease treatment time of drug-sensitive TB
from its current 6–9 month regimen (7, 8). Although many laboratories have screened
libraries numbering 103 – 106 compounds (4, 5), the hit rate is usually below 1% (2, 3) as
typically seen in many other high-throughput screening (HTS) (2, 3, 10, 11) campaigns for
TB as well as other therapeutic indications (10–12). Occasionally the hit rate can reach the
low single digits (~1.7–5%) (4–6). These TB HTS efforts are delivering interesting and
potentially promising hits (albeit at great cost, Table 1), and in excess of a thousand actives
may be deserving of follow-up. Hit-to-lead optimization must be properly balanced with
continuing efforts to screen even larger compound libraries to more thoroughly cover
chemical space and/or sample different experimental conditions to better mimic human TB
infection (13).

The large number of hits for hit-to-lead optimization coupled with limited resources can
benefit from established and highly efficient computational methods to expedite evolution of
novel antitubercular lead compounds for clinical development. We and others (14–22) have
suggested that computational approaches can assist in identifying compounds with activity
against Mtb (20) and, in particular, Bayesian classification models are valuable (16–19, 23).
More recently, we have described dual-event models that combine Mtb growth inhibition
activity and cytotoxicity data to improve selection of actives with antitubercular activity
(measured by IC90 – the concentration of compound inhibiting bacterial growth by 90%)
less than 10 μg/mL (or 10 μM depending on the original chemical library format and
dataset) and a selectivity index (SI = CC50/IC90 where CC50 = concentration of compound
inhibiting growth of a cultured mammalian cell line, Vero cells, by 50%) greater than ten
(22). We demonstrated using data from multiple laboratories that there are clear benefits of
this approach: computational screening of 82,403 commercially available small molecules
predicted 550 actives, which were assayed to identify 124 hits (22.5% hit rate) in one study
(24), while another study computationally screened >13,000 molecules, assayed seven
predicted actives and found five hits empirically (71% hit rate) (22).

We hypothesized that the Bayesian model technology could also positively impact hit-to-
lead optimization. This phase of drug discovery is a significant driver of both process time
and cost, typically entailing the design, synthesis, and biological evaluation of hundreds to
thousands of compounds (25). A computationally-enhanced approach would expand the
chemical space explored given the potentially unrestricted querying of commercial libraries
for follow-up compounds and/or hit substituents derived from reactive building blocks. At
the same time, this in silico approach could enable the efficient selection of a significantly
smaller set of compounds for testing through the prioritization of analogs by their Bayesian
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score, which, in general, scales with the likelihood of activity. The following study describes
the benefits of implementing Bayesian dual-event models in conjunction with the commonly
used approach of hit structure clustering followed by the expansion of chemical space
around core cluster scaffolds through commercial analog selections (26, 27) (Fig. 1). We
also note how different mammalian cell types utilized in cytotoxicity determination can
impact the rate at which active analogs are found.

MATERIALS AND METHODS
Small Molecules

Small molecules for biological assay were purchased from Life Chemicals (Ontario,
Canada) and ChemBridge (San Diego, CA).

CDD Database and SRI datasets
The development of the CDD TB database (Collaborative Drug Discovery Inc. Burlingame,
CA) has been previously described (17). The Tuberculosis Antimicrobial Acquisition and
Coordinating Facility (TAACF) and Molecular Libraries Small Molecule Repository
(MLSMR) screening datasets (4–6) were collected and uploaded in CDD TB from sdf files
and mapped to custom protocols (28). All of these Mtb datasets used in model building are
available for free public read-only access and mining upon registration in the CDD database
(18, 28–30), making them a valuable molecule resource for researchers along with available
contextual data on these samples from other non Mtb assays. These datasets used previously
for modeling are also publically available in PubChem (31). All data generated in this study
(TB: ARRA) is available in the CDD TB database (Collaborative Drug Discovery,
Burlingame, CA) (28).

Compound Selection and Clustering
Active compounds from previous H37Rv screens of the MLSMR, TAACF datasets and the
kinase library from LifeChemicals (totaling ~4000 dose-response hits) have been clustered
to identify common core scaffolds and analog series present among actives, as described
previously (4–6). For cluster analyses a hierarchical clustering method implemented in
LeadScope (LeadScope, Inc. Columbus OH.) was used applying default parameters.
Clusters were separated using the ‘Complete Linkage (Furthest Neighbor)’ method with the
cluster threshold distance set to 0.7. Each cluster may be characterized by a cluster scaffold
that is a common core structure shared by all of its members. Clusters were also prioritized
based on an enrichment ratio computed for each cluster, defined as the ratio of the
percentage of compounds containing the cluster scaffold within the active (clustered) set and
the percentage of such compounds within the entire library. High enrichment ratios are
associated with structural motifs preferred among actives compared to primary screened
compounds. Clusters with enrichment ratios below a specified threshold were excluded from
further consideration; for the MLSMR and Chembridge datasets we used the threshold of ten
and for the kinase library the more permissive value of five. We obtained 22, 29 and 26
conformational clusters corresponding to MLSMR, Chembridge and kinase library dose-
response datasets, respectively. Out of these clusters, 30 cluster scaffolds were selected for
follow-up by expanding variation around the core scaffold structures and potential SAR
versus Mtb through the selection of analog series from commercial sources. Out of cluster
scaffolds obtained from clustering dose-response hits from all three screens (MLSMR,
TAACF datasets and the kinase library) totaling close to 4000 compounds, we selected 30
cluster scaffolds that were well represented among commercially available compounds.
Analog compounds exploring chemical diversity around these 30 cluster scaffolds were
selected from the Chembridge and Life Chemicals commercial libraries. Commercial
compounds identical to any primary screened compounds were excluded except those that
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show inhibition of > 80% in primary screens but were not tested in dose-response. The final
selection included 1847 compounds is described by the selected 30 major clusters out of
which large clusters may be further grouped into sub-clusters, totaling 55 sub-clusters/
clusters (or 30 major clusters). We also chose to add an additional cluster of 12 analogs
(based on a designed ‘hybrid’ cluster scaffold) and 65 diverse compounds, totaling 1924
purchased from the aforementioned vendors.

Bacterial strain, growth conditions and media
Mtb H37Rv (ATCC 27294) was obtained from the American Type Culture Collection
(Manassas, VA). To prepare permanent frozen stocks, H37Rv was grown as five mL
subcultures (50 mL conical tubes, 36–37°C) in Middlebrook 7H9 broth (Becton Dickinson)
supplemented with 0.2% glycerol (Becton Dickinson), 0.05% Tween 80 (Becton
Dickinson), and 10% ADC enrichment (albumin, dextrose, catalase; Becton Dickinson). The
subculture was mixed periodically and used to inoculate (5% inoculum) a second subculture
(30 mL in 250 mL screw cap flask) when the turbidity reached a density similar to a #1
McFarland turbidity standard (A600 nm ~0.2). The subcultures were incubated with periodic
mixing for 18–21 days until the turbidity reached a #3–#4 McFarland turbidity standard
(A600nm ~0.6–0.8, 4–8×107 CFU/mL). The caps on both the conical tubes and flasks were
loosened and wrapped in parafilm to allow for adequate gas exchange and to prevent
evaporation during incubation. Prior to harvest, samples from all cultures were spotted onto
Trypticase Soy Agar (TSA) plates and incubated for 3–4 days to check for contamination.
Mtb grows poorly on TSA which supports the growth of most potential contaminating
microorganisms. Each culture was then transferred to a 50 mL tube and allowed to settle at
ambient temperature for one h. The upper half of each culture was aspirated and pooled in a
flask. Aliquots of one mL were then transferred to two mL cryovials and frozen at −80°C.
At least three frozen stocks were thawed and used to determine the viable count by plating
dilutions, prepared in supplemented 7H9 broth, onto Middlebrook 7H11 Agar followed by
incubation for up to 21 days. A contamination check on the thawed cultures was also
performed as described above.

Mtb Assay
Primary screening against replicating cultures of Mtb were determined using modifications
to the microplate Alamar Blue assay (MABA (32, 33)) as previously published (4). This
assay is widely used for HTS screening by many laboratories as recently documented (34).
Antitubercular activity was determined against Mtb H37Rv ATCC 27294 following 7 days
incubation with test compounds. Compounds were evaluated initially in a stacked-plate dose
response and final test concentrations for the compounds ranged from 100 μM to 0.0195 μM
in two-fold dilutions with a final DMSO concentration of 1.0%.

Cytotoxicity in Vero Cells of compounds that inhibit Mtb
Cytotoxicity for Vero cells (ATCC CCL-81) was determined following 72 hours exposure
(33). Cell viability was assessed using CellTiter-Glo reagent (Promega) according to the
manufacturer’s protocol.

Cytotoxicity in THP-1 cells of compounds that Inhibit Mtb
This functional assay was developed for detection of compounds inhibiting THP-1 cells
viability as a secondary screen to the Mtb bactericidal assay. The THP-1 cell line was
chosen as a representative peripheral blood monocyte. In this assay, we treated THP-1 cells
with compounds selected as “hits” in the Mtb assay over a 10 point 2-fold dilution series,
ranging from 40 μM to 0.078 μM. Following 72 h of treatment, relative viable cell number
was determined using Cell Titer Glo from Promega. Each plate contained 64 replicates of
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vehicle treated cells which served as controls. THP-1 cells were sub-cultured every 7 days in
RPMI 1640 with 10% fetal bovine serum, incubated at 37 °C in 5% carbon dioxide. Cells
were passaged as needed, harvested from flasks using 0.25% trypsin-EDTA and maintained
for no more than 20 passages. Compounds and carrier controls were diluted in complete
growth medium to prepare a 6× concentrated dosing solution which was dispensed into 384-
well black clear-bottom tissue culture treated plates (5 μL volume). The final DMSO
concentration for this assay was 0.4%. Cells were harvested as previously described. Twenty
microliters of complete growth medium containing 3000 cells were dispensed per well.
Plates were incubated at 37 °C, 5% CO2 for 72 h prior to endpoint detection. At the end of
the treatment period, assay plates were removed from the incubator and equilibrated to room
temperature for 10 min. Twenty-five μL of Cell Titer Glo reagent was added and plates were
incubated for an additional 10 min in the dark. At the end of the incubation, assay plates
were analyzed using a PerkinElmer Envision microplate reader in luminescence mode with
an integration time of 0.1 s.

Cytotoxicity in HepG2 Cells of compounds that inhibit Mtb
This functional assay was developed for detection of compounds inhibiting HepG2 cells
viability as a secondary screen to the Mtb bactericidal assay. In this assay, HepG2 cells were
treated with compounds selected as “hits” in the Mtb assay for 72 h over a 10 point 2-fold
dilution series, ranging from 20 μM to 0.39 μM. Following the incubation, the relative
viable cell number was determined using Cell Titer Glo (Promega). Each plate contained 32
replicates of vehicle treated cells which served as negative controls and 32 wells of 100 μM
hyamine-treated cells that represent a positive control. The maintenance of the HepG2 cells
followed the recommendations of the ATCC. Cells were passaged as needed, harvested from
flasks using 0.25% trypsin-EDTA and maintained for no more than 20 passages. On the day
of the assay, compounds or carrier control (DMSO) were diluted to 6× in complete growth
medium supplemented with 1% Penicillin/Streptomycin and 5 μL was dispensed into 384-
well black clear-bottom tissue culture treated plates using a Biomek FX. The DMSO
concentration was maintained at 0.2% final concentration. A 10 point 2-fold serial dilution
was generated in the “stacked plate” method previously published by this group (4). The
HepG2 cells were harvested as previously indicated and the concentration was adjusted to
1.5×105 cells/mL in complete growth medium supplemented with 1% Penicillin/
Streptomycin. Using a Matrix WellMate in a certified biosafety cabinet, twenty microliters
or approximately 3000 cells were dispensed to each well in the 384-well plate. The plates
were then incubated at 37 °C, 5% CO2 for 72 h prior to endpoint detection. Following the 72
h incubation period, the assay plates were equilibrated to room temperature for 10 min and
twenty-five microliters of Cell Titer Glo reagent (Promega) was added to each well using a
WellMate (Matrix, Hudson, NH). The plates were then incubated for an additional 10 min at
room temperature. At the end of the incubation, luminescence was measured using a Perkin
Elmer Envision microplate reader with an integration time of 0.1 s.

Biological Data Analysis
All data were imported into ActivityBase (IDBS) data management system for analyses and
calculation of IC50 and IC90 values. Percent Inhibition was calculated as: 100× (1-(Median
of Test Compound – Median of Positive control)/Median of Negative control – Median of
Positive control)). Selectivity Index (SI) was calculated as SI = CC50/IC90, where CC50 =
concentration of compound inhibiting growth of cultured cells by 50%.

Using Dual Event Machine Learning Models with novel bioactivity and cytotoxicity data
We have previously described the generation and validation of the Laplacian-corrected
Bayesian classifier models developed with cytotoxicity data to create Mtb dual-event models
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(22, 24) using Discovery Studio (16, 35–38). These models (22, 24) were developed based
on: a. MLSMR dose response and cytotoxicity; b. CB2 dose response and cytotoxicity; and
c. TAACF Kinase dose response and cytotoxicity, where cytotoxicity was determined in
Vero cells for each set. All three models were generated using standard protocols using the
following molecular descriptors: molecular function class fingerprints of maximum diameter
6 (FCFP_6) (39), AlogP, molecular weight, number of rotatable bonds, number of rings,
number of aromatic rings, number of hydrogen bond acceptors, number of hydrogen bond
donors, and molecular fractional polar surface area were calculated from input sdf files.
Models were validated using leave-one-out cross-validation in which each sample was left
out one at a time, a model was built using the remaining samples, and that model utilized to
predict the left-out sample. Each model was internally validated and receiver operator
characteristic (ROC) plots generated, and the cross-validated ROC area under the curve (XV
ROC AUC) calculated. All models generated were additionally evaluated by leaving out
50% of the data and rebuilding the model 100 times using a custom protocol for validation,
to generate the ROC AUC, concordance, specificity and selectivity as described previously
(22, 24). The three models were used in this study to score a set of 1924 commercial analogs
that expand the selected 30 major clusters (or 55 sub-clusters/clusters) obtained from cluster
analyses of these screens. The set of 1924 compounds have been evaluated in dose-response
in whole cell Mtb assay and Vero, THP-1 and HepG2 cytotoxicity assays. Defining non-
toxic actives those that possess IC90 < 10 μg/ml and SI > 10, we obtained 82, 81 and 52 non-
toxic Mtb actives based on Vero, THP-1 and HepG2 cytotoxicity data sets, respectively. The
prediction data were evaluated using a ROC plot and also with standard statistics
(sensitivity, specificity, prediction accuracy and Matthews correlation).

Further retrospective evaluation of Dual Event Machine Learning Models
The previously developed dual-event Mtb and cytotoxicity models (22, 24) were further
evaluated using a set of nine molecules collated from recent academic Mtb HTS studies
(Table 1) as well as eleven hit molecules from GSK (Table 2) (40). These molecules were
sketched using the mobile application Mobile Molecular DataSheet (Molecular Materials
Informatics, Montreal, CA) (41, 42) to create sdf files which were used in Discovery Studio
for prediction with the Bayesian models.

RESULTS
Hierarchical clustering of actives from three previous antitubercular screens

Dose response hit compounds from three previous antitubercular screens (4–6) of the
MLPCN (MLSMR), TAACF (Chembridge) and the Life Chemicals kinase libraries were
pooled and clustered to identify common core scaffolds and analog series present among
actives, as described previously (Fig. 2) (4–6). The pool of clustered compounds consisted
of dose-response hits from the Chembridge and kinase libraries with IC90 < 10 μg/mL and
additionally we chose to include all dose-response hits from the MLSMR screen, totaling
close to 4000 hits that were included for cluster analysis (see Materials and Methods).
Within these 4000 hits 737 compounds satisfy the criteria of IC90 < 10 μg/mL and SI (Vero
cells) > 10, however we chose to use this larger, more inclusive set for the purposes of
conformational clustering. The enrichment of cluster scaffolds among actives was assessed
through the computation of cluster enrichment ratios, as described in detail under the
‘Materials and Methods’. Briefly, only cluster scaffolds represented as ‘enriched’ among
dose-response hits compared to primary screening libraries were considered for the selection
of commercial analogs. Based on the scaffolds shown in Fig. 2 a total of 1924 commercially
available compounds were selected to explore the chemical space and Mtb SAR around
these cluster scaffolds. As also shown in Fig. 2, large clusters have been grouped into sub-
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clusters, totaling 55 sub-clusters/clusters (or 30 major clusters, Table 3) and an additional
cluster (Cluster 28) was also added based on a designed ‘hybrid’ substructure.

In vitro Screens for growth inhibition of Mtb and cytotoxicity
The selected 1924 commercial compounds were tested in vitro for growth inhibition of Mtb
and cytotoxicity versus three distinct mammalian cell lines: THP-1, Vero and HepG2. For
each cell line used for cytotoxicity assessment, SI values have been calculated as the ratio of
CC50 determined in each cytotoxicity assay and the antitubercular IC90 activity (averaged
over three runs). Defining non-cytotoxic Mtb actives as possessing IC90 < 10 μg/ml and SI >
10, out of the 1924 commercial compounds 82, 81 and 52 molecules satisfy the criteria of
non-cytotoxic actives in Vero, THP-1 and HepG2 cells, respectively (Table S1). These
numbers represent ‘hit rates’ of 4.3%, 4.2% and 2.7% for the three cytotoxicity cell lines,
retrospectively. The use of a more stringent efficacy and/or SI cutoff would naturally
decrease the hit rate and be useful for exploring in hit evolution.

Bayesian Machine learning for hit-to-lead optimization
An alternate approach to expanding on the diversity of these ~4000 screening actives, while
also seeking to enhance their antitubercular growth inhibition and SI values, relies on our
recently published dual-event Bayesian machine learning. These models have been educated
through learning which compound physiochemical and structural features are consistent
with activity and promising SI. Importantly, the models have been validated through
retrospective enrichment studies with published screening datasets as well as prospective
prediction of actives from a GlaxoSmithKline antimalarial library (22). We have also
utilized the dual-event models to score nine recently published hits from Mtb whole-cell
screening campaigns (Table 1) that were derived after our dual-event models were built.
Using the panel of three Bayesian models, we would have identified seven of nine of the
molecules as actives. Interestingly, the maximal Tanimoto similarity using MDL keys and
the MLSMR dose response and cytotoxicity model dataset was quite high (range 0.64–0.82)
and yet the model only correctly identified two molecules. The TAACF-CB2 dose response
and cytotoxicity model alone performed better with these molecules in this case and alone
would have selected five of the nine compounds. Similarly, a second test dataset of 11 active
molecules that were tabulated in a paper describing the HTS of two million compounds
performed by GSK (40) against Mtb was analyzed, and at least one of the three models
predicted eight of the compounds as hits (Table 2). These results highlight the need for
further studies to comprehend what model factors influence predictive value, or whether the
utilization of a consensus scoring approach with our dual-event Bayesian models could
further enhance their ability to pick actives.

The dataset of 1924 molecules selected by clustering was virtually screened with our current
three previously generated dual-event Mtb and cytotoxicity models. The molecules were
ranked using the classification from all three models, and the receiver operator curve plot
was generated (Fig. 3). The MLSMR dose response and cytotoxicity model appeared to
perform the best at identifying the active compounds and scoring them highly. This is
exemplified by the MLSMR and cytotoxicity model identifying ten active molecules (~12%)
in the top ranked 20 molecules (~1% of the entire dataset) when using the Vero cell
cytotoxicity dataset. With random screening of the molecules, we would have expected less
than one active (at the 4.3% hit rate empirical hit rate with the Mtb and Vero cell screens)
(11.8 fold enrichment). For THP cells nine actives were in the top 20 molecules (10.7 fold
enrichment). For HepG2 cells six actives were in the top 20 molecules (11.1 fold
enrichment), however there were also fewer actives in this cell line. The TAACF Kinase
dose response and cytotoxicity model has shown enrichments from 6.7 to 11.1 fold in the
top 1% while the CB2 dose response and cytotoxicity model consistently performed poorly

Ekins et al. Page 7

Pharm Res. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in all cell lines (Figure 3, Tables 4–6). Based on earlier studies (17, 18) we have focused on
how the models enrich the top ranked molecules (top 1%) as this would suggest that we
could screen a much smaller fraction of a library. In other applications it is advantageous to
consider a larger percentage e.g. the top 10%, as well as use multiple models for compound
selection. We would still observe a considerable enrichment over random as approximately
50% of the actives are identified by the MLSMR and cytotoxicity and TAACF Kinase dose
response and cytotoxicity models, while random screening would have delivered only 10%
of the hits (5 fold enrichment, Figure 3). Retrospectively, out of the three Bayesian models
developed based on the MLSMR, CB2 and kinase library dose-response screens and
cytotoxicity counter screens we found that the MLSMR-based model predicted the identity
of actives out of the 1924 compound set most accurately, outperforming the kinase library
based model, while the CB2 dataset-based model did not perform much better than random
selection. These findings are illustrated in Figure 3 and also reflected in the number of true
positives and prediction accuracy (Tables 4–6). These findings also underline the usefulness
of applying multiple computational models to predict activity/toxicity since in typical
applications it is not known a priori which model may perform better.

DISCUSSION
With the advent of antibacterial screening and chemotherapy in the early twentieth century,
rapid advances led to a variety of new antibacterial agents. Research from the 1940’s –
1960’s led to current tuberculosis treatments (e.g., streptomycin, isoniazid and rifampicin)
via the design and synthesis of small numbers of compounds (100’s per program) and their
assessment in in vitro and in vivo models. Unfortunately, disease-focused research often
occurs in spurts depending on perceived public health threat, pharmaceutical market size,
and available funding. This phenomenon is best exemplified by the hunt for a cure for
tuberculosis, caused by one of humankind’s oldest pathogens – Mtb. With the rapid
development of effective antitubercular agents, the notion developed that tuberculosis would
be eradicated worldwide, and this perception led to a reduction in efforts to maintain the
tuberculosis research infrastructure, particularly the capabilities needed to drive new drug
discovery. Beyond the incredible magnitude of eradicating this disease worldwide, the
realities of treating latent disease and more recently resistant forms of tuberculosis have
strained the public health infrastructure and led to the realization that new sources of drugs
will continually be needed in order to simply contain the disease. The acute need for new
faster acting therapies not subject to current drug-resistant strains is being partially
addressed through large-scale renewed screening efforts much like those established in the
1940’s. Due to the advent of modern technology and HTS, millions of compounds can and
have been screened for antitubercular efficacy under different metabolic conditions
representing models of various states of human infection. Specific target-based screening of
large synthetic libraries was found to be a relatively ineffective approach to antibacterial
drug discovery due to a variety of reasons including bacterial permeability (43). On the other
hand, whole-cell phenotypic screens suffer from the disadvantage of being target agnostic
making compound optimization and selectivity problematic. In spite of these issues, recent
large-scale phenotypic (4–6) HTS and computational- assisted HTS (22, 24) screens against
Mtb have identified thousands of potential hit compounds. Our challenge is now to follow
up on these data in a timely and efficient manner as described herein.

Our prior studies have demonstrated that dual-event Bayesian machine learning models can
enrich hit discovery (22, 24). Using public Mtb screening data as a whole (actives and
inactives) can enable us to make more effective decisions to identify active compounds. Our
Bayesian models also indirectly take into account both uptake and activity against a growth-
relevant target, making use of positive and negative information. This empirical, activity-
based approach derived from large sets of screening results may be a useful and rapid
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alternative to other methods for predicting bacterial permeability, such as MycPermCheck
which requires five molecular descriptors to be calculated (44).

As we see an increase in academic-industry collaborations around HTS such as the TB Drug
Accelerator (45) screening for compounds active against Mtb, it is likely that the number of
hits in the literature will only increase. Efforts to follow up on these compounds will create a
bottleneck, perhaps similar to what we have seen with the wealth of antimalarial screening
data (46). Therefore, the approach (Fig. 1) we propose of using the dual-event Bayesian
classifiers to assist in selection of follow-up compounds would seem a natural progression,
learning from all the data generated previously. Considering the tight research budgets and
likely reductions in government supported tuberculosis drug discovery, it may be in the best
interests of the academic research community to more widely employ these proven
computational methods that are used in pharmaceutical company drug discovery programs,
in order to accelerate progress. The potential for sharing the Mtb models derived from
published literature (as used in this and previous studies (22, 24)) could quickly impact these
efforts.

As an example we have demonstrated that assessment of compounds suggested by four
academic groups and GSK from the literature as Mtb hits represents (in the absence of their
entire screening libraries) one way to determine whether the three Mtb Bayesian dual-event
models would have classified them as actives (Table 1, Table 2). Seven out of the nine
(78%) academic screening derived compounds were identified by at least one model (Table
1) and eight out of eleven (73%) compounds in the dataset from GSK (Table 2). While we
do not have access to the complete screening libraries used by these groups (ranging from
tens of thousands to two million compounds) to do a complete assessment, predictions on
their published hits may be instructive. Extension of such retrospective analysis is likely
optimistic but it does suggest the benefits of using multiple models likely to cover a broader
chemical space. Frequently, we have seen multiple Bayesian models perform differently
with different datasets (17–19, 22, 24) and the current study using nearly 2000 compounds
selected by clustering, is no exception. The CB2 and cytotoxicity model performed better
with the literature compounds (Table 1 and 2) than with the 1924 compounds derived from
clustering (Table 4–6, Fig. 3). This result may be a reflection of the diversity of the
respective training sets for each model (compared to the test compounds), and, as we have
seen previously, one of the models performed well in selecting Mtb active compounds from
a library of antimalarial compounds (22). At the very least this result suggests that large
libraries of compounds screened against Mtb can be used to generate Bayesian models (that
incorporate activity and cytotoxicity information obtained in previous screens) to improve
the selection of compounds for subsequent screening sets that are enriched in non-toxic
actives. Full release of the large GSK dataset of two million compounds should allow
significant improvement of these computational models, but results for the currently
available 11 compounds prominently described in the paper suggest the models are
performing well for hit to lead optimization and in line with our own data from previous
studies (22, 24).

Bayesian classification models have been applied for identifying antibacterials in
retrospective testing with 1–2 fold enrichments (23) and thus could have broader
applicability than just finding compounds active against Mtb. In addition, Bayesian
classification methods have also been used for ADME/Tox models (36, 47–49). Thus, using
Bayesian models for hit follow-up outside of Mtb is worthy of further exploration.
Limitations of using such models based on whole cell data are that there is of course no
information on a target or SAR for a target, although this may not be necessary for further
pursuit of a lead.
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Interestingly, data derived with different cell types for cytotoxicity does suggest the benefits
of using more than one cell line, as different cells appear to have different sensitivities based
on the variation in hit rates observed. Fewer actives were present in HepG2 cells than Vero
and THP-1, respectively. We are not aware of any discussion of such differences with or
without mechanistic underpinning, although others have used many cell types to derive
general cytotoxicity models (49). It could reflect expression of metabolizing enzymes
involved in molecule activation versus detoxification, transport differences (import/export)
or other possibilities. Some have compared the use of cardiac, hepatic and kidney derived
cell lines at predicting compounds specific to each organ and found similar cytotoxicity
across all cell types (50). It should also be noted in this study that we have used models
incorporating only Mtb activity and cytotoxicity and have not tried to directly account for
absorption, distribution, metabolism and excretion properties. A panel of models for
different bacteria using different cell types for cytotoxicity could also be helpful for scoring
potential compounds for follow up, to understand selectivity versus broad spectrum action
and multi-targeting. As illustrated in Figure 3 and also reflected in model statistics (Tables
4–6) the MLSMR and Vero cytotoxicity based model performs well in the selection of non-
toxic actives out of the set of 1924 compounds, with a prediction accuracy close to 70%
using each of the three cytotoxicity datasets. The model developed based on the kinase
library performed close to 65% with each of the three cytotoxicity datasets. The CB2 model
performed relatively poorly as applied to the set of 1924 compounds. Out of clusters
represented in the 1924 compound set cluster scaffolds containing at least one or more non-
cytotoxic active hits are listed in Table 3. While the CB2 compound set utilized in the
development of the CB2 model was lacking cluster 1 members (and its sub-clusters), all
other clusters were represented equivalently or better compared to the MLSMR or the kinase
set. Out of the three sets, the kinase library set was most under-represented in non-cytotoxic
active scaffolds listed in Table 3 and yet performed well for the prediction of non-cytotoxic
active compounds out of the set of 1924. In the case of a new (unknown) set of compounds,
it is likely the best results may be achieved through the application of all three models
followed by pooling top scoring compounds from each model. Non-cytotoxic actives
identified in this study are distributed over a number of clusters as shown in Table 1. Core
scaffolds shared among cluster members are related among sub-clusters. Among the less
desirable are clusters that contain many evaluated or active compounds but only one (or
few) non-cytotoxic active(s) such as sub-clusters 1e, 1i or 2a, d, g.

From the screen of 1924 compounds there were 33 compounds that met the bioactivity and
selectivity criteria for all three cell lines (Table 7). Twenty seven of these compounds had
been predicted as active with the MLSMR dose response and cytotoxicity Bayesian model.
Twenty two were predicted active with the CB2 dose response and cytotoxicity Bayesian
model while 23 were predicted active with the TAACF kinase dose response and
cytotoxicity Bayesian score. AB00952642 is the most active compound out of these based
on the IC90 (0.63 μM and 0.2 μg/ml). Noteworthy is the observation that AB00953420 and
AB00953487 share the tetrahydropyrazolopyrimidine carboxamide common to potent
antitubercular agents recently disclosed by both GlaxoSmithKline (51) and the Novartis
Institute for Tropical Diseases (52) as well as resembling previous active compounds
identified in our own laboratories (22, 24). Many of the other compounds in Table 7 also
represent promising starting points for drug discovery optimization.

In summary, we have shown how computational approaches such as hierarchical clustering
and Bayesian models could be used to assist human decision making in hit follow up for
Mtb. Three Bayesian models have been developed based on Mtb dose-response activity and
cytotoxicity datasets obtained for three previously screened libraries. We applied these
models retrospectively for the prediction of actives out of a set of 1924 commercial
compounds. The latter set consists of commercial analogs exploring chemical diversity
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around cluster scaffolds obtained from conformational clustering of the three previously
screened libraries. The set of 1924 compounds was evaluated for antitubercular activity and
cytotoxicity in three cell lines resulting in the identification of 82, 81 and 52 non-cytotoxic
active compounds (IC90 < 10 μg/ml and SI > 10) using Vero, THP-1 and HepG2
cytotoxicity results, respectively. The selection of the 1924 commercial compounds was
based on cluster scaffolds of dose-response hits from previous screens, followed by
chemical diversity selection for clusters with large numbers of commercially available
compounds. Compared to this strategy the current study demonstrates that the selection of
such new sets of compounds may be achieved more effectively through the application of
Bayesian models incorporating available antitubercular activity and cytotoxicity datasets.
Multiple dual-event Bayesian models can increase the enrichment of non-cytotoxic actives
in the top 1% of compounds to greater than tenfold and thus decrease the number of
compounds purchased and tested. For example the application of our MLSMR model onto
the 1924 compounds chosen by standard clustering (using the Vero cytotoxicity dataset)
achieved an 11.8-fold enrichment of non-cytotoxic actives in the top 1% compared to
random selection. Ideally the Bayesian models should be used prior to purchasing and
testing of compounds to maximize the number of active compounds selected. Considering
the likely limited budgets for purchasing follow up active samples for screening, this
approach also allows virtual screening of even larger commercial databases and the purchase
of a small, select set of compounds for follow-up that will be enriched in active compounds
potentially leading to larger numbers of active compounds for mechanism of action studies
than chemical diversity selection following conformational clustering alone. As further
examples, the computational models can also be used to score compounds already identified
by others and may be useful to triage the overwhelming number of hits and follow up
screening set samples which themselves would consume valuable testing resources if they
were all to be followed up.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic illustrating the integrated in vitro and computational processes described in this
study
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Figure 2.
Cluster scaffolds of MDR TB DR hits following hierarchical clustering as described in the
Materials and Methods.
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Figure 3.
Results for the 1924 compounds tested from the ChemBridge and Life Chemicals libraries
screened for whole-cell TB activity and predicted with dual-event Bayesian models shown
as receiver operator characteristic curves. The random rate is based on the empirical HTS hit
rate; MLSMR+cytotox is based on the MLSMR dose response and cytotoxicity model;
CB2+cytotox is based on the CB2 dose response and cytotoxicity model. Kinase+cytotox is
based on the MLSMR dose response and cytotoxicity model. The best curve is based on a
100% hit rate. A. Vero cells, B. THP cells, HepG2 cells.
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