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Abstract
The mechanisms underlying malignant cell metastasis to secondary sites such as bone are complex
and no doubt multifactorial. Members of the small integrin-binding ligand N-linked glycoproteins
(SIBLINGs) family, particularly bone sialoprotein (BSP) and osteopontin (OPN), exhibit multiple
activities known to promote malignant cell proliferation, detachment, invasion, and metastasis of
several osteotropic cancers. The expression level of BSP and OPN is elevated in a variety of
human cancers, particularly those that metastasize preferentially to the skeleton. Recent studies
suggest that the “osteomimicry” of malignant cells is not only conferred by transmembrane
receptors bound by BSP and OPN, but includes the “switch” in gene expression repertoire
typically expressed in cells of skeletal lineage. Understanding the role of BSP and OPN in tumor
progression, altered pathophysiology of bone microenvironment, and tumor metastasis to bone
will likely result in development of better diagnostic approaches and therapeutic regimens for
osteotropic malignant diseases.
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1. Introduction
Primary bone cancers such as osteosarcoma, chondrosarcoma, or Ewing sarcoma family of
tumors are quite rare comprising < 1% of all cancers with only 2,300 new cases of primary
bone cancer in the U.S. each year [1]. However, bone is one of the most common sites for
metastasis of other cancers, particularly but not exclusively, those with epithelial cell
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origins. The worldwide incidence of bone metastasis reveals several malignancies have
propensities to metastasize to bone including multiple myeloma and breast, thyroid, prostate
and lung cancers [2] (Table 1). Under normal circumstances, bone is constantly undergoing
continuous remodeling wherein osteoblasts contribute to bone deposition and osteoclasts
mediate bone resorption thereby maintaining appropriate bone structure and Ca++

homeostasis. Osteotropic malignancies that metastasize to bone upset this balance causing
lesions that are either osteoblastic, osteolytic, or both [3, 4]. Regardless of the type of lesion,
the patient outcome is usually the same and may include pathologic fractures, bone pain,
hypercalcemia, anemia, spinal instability, spinal cord and nerve compression, and decreased
mobility [2].

The mechanisms underlying malignant cell metastasis from primary sites to secondary
tissues such as bone are complex and poorly understood. Malignant cells must be able to
detach from their primary tissues, evade the host immune system, cross the walls of the
vasculature, penetrate through extracellular matrix in tissue, and finally take up residence
and survive in tissues quite different from their origins. Studies over recent years suggest
that small integrin binding ligand N-linked glycoproteins (SIBLINGs) may mediate many of
the activities necessary for bone metastasis of osteotropic malignancies. In fact, the
expression of SIBLINGs by malignant cells of osteotropic cancers may be intimately
associated with their ability to metastasize to bone.

The SIBLINGs are primarily involved in bone morphogenesis and include bone sialoprotein
(BSP), osteopontin (OPN), matrix extracellular phosphoglycoprotein (MEPE), dentin matrix
protein 1 (DMP1), and dentin sialophosphoprotein (DSPP). The genes that code for them
(IBSP for BSP, SPP1 for OPN, MEPE, DMP1, and DSPP, respectively) are clustered on the
long arm of chromosome 4 as a tandem array [5]. Originally thought to be expressed
exclusively within mineralized tissue such as bone and dentin, SIBLINGs are now known to
be produced by epithelial cell tumors that are osteotropic and in some cases produce
microcalcifications [6]. These soluble secreted glycoproteins undergo extensive post-
translational modifications including glycosylation, sulfation, phosphorylation, and
sialylation, which in part, may confer their bioactivities. The five members of this family
exert their activities in both paracrine and autocrine fashion and through multiple functional
domains share the ability to bind similar proteins and exert similar activities. For example,
all of the SIBLINGs bind integrins via both classical RGD motifs as well as cryptic binding
sites [5]. The siblings OPN and DMP1 also bind CD44, a cell surface polymorphic
hyaluronate receptor that participates in numerous cellular functions including lymphocyte
activation, recirculation, homing, hematopoiesis, and tumor metastasis. SIBLINGs may
regulate cell adhesion, motility, and survival of tumor cells by binding to integrins and/or
CD44 expressed on tumor cells. Also, SIBLINGs bind and activate specific matrix
metalloproteinases (MMPs) which may promote angiogenesis, tumor progression, and
metastasis [7]. In addition, SIBLINGs bind compliment factor H (CFH) which blocks
antibody-complement mediated cell lysis [8]. When these moieties are bound by SIBLINGs
to the cell surface via integrins or CD44, these activities are conferred to the cell, facilitating
trans-migration through tissue or extracellular matrix as well as escaping complement-
mediated cell lysis. SIBLINGs also regulate cell proliferation and differentiation by
activation of NF-κB [8]. Thus, SIBLINGs appear to provide most, if not all, of the activities
required for tumor cell progression including the ability to metastasize to secondary sites
such as bone. The involvement of BSP and OPN in tumor growth and metastasis has been
more extensively studied than for the other SIBLINGs. This review article summarizes
recent studies on the association of BSP and OPN with tumor progression and bone
metastasis.
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2. Bone sialoprotein
Human bone sialoprotein (BSP), a 33 kDa glycoprotein, is a major non-collagenous
extracellular protein of mineralized tissues such as bone, dentin, cementum, and calcified
cartilage [9]. BSP has an apparent molecular weight of 60–80 kDa due to extensive post-
translational modifications including N-and O-linked glycosylation, serine and threonine
phosphorylation, tyrosine sulfation, and sialylation. BSP is produced by osteoblasts,
osteoclasts, osteocytes, and hypertrophic chondrocytes during bone morphogenesis [5, 10].
The high glutamic acid content of BSP (22%) suggests it is the focal point for mineralization
of hydroxyapatite during bone formation [11–14]. The activity of BSP in bone homeostasis
may be dependent on additional regulatory factors in the bone microenvironment. For
example, Xu and colleagues report that BSP-collagen implants placed into surgically created
rat calvarial defects stimulate osteoblast differentiation and bone repair [15]. Conversely,
BSP contributes to receptor activator of nuclear factor-κB ligand (RANKL)-mediated bone
resorption by inducing osteoclastogenesis and promotion of osteoclast survival [16]. Also,
BSP increases survival of bone marrow derived monocyte/macrophages by enhancing NF-
κB activation and diminishing apoptosis in these cells [16]. Like other SIBLINGs, BSP
binds to integrins, specifically αvβ3 and αvβ5. The interaction of BSP with αvβ3 integrin,
which is up-regulated on activated endothelial cells, promotes human endothelial cell
migration, attachment, and angiogenesis [17, 18]. BSP binds type 1 collagen, binds and
activates MMP2, and binds CFH thereby protecting cells from complement mediated cell
lysis [19].

While BSP was once thought to be produced exclusively by cells involved with bone
morphogenesis, recent studies demonstrate that osteotropic malignancies such as multiple
myeloma and breast, prostate, lung, thyroid, and cervical cancers, may express BSP [20–25].
Furthermore, the transcription factors Runx2 and Msx2, which regulate BSP production in
cells of skeletal lineage, mediate the expression of BSP in human metastatic breast and
prostate cancer cells [26, 27]. BSP production in malignant cells may be stimulated by
fibroblast growth factor 2 (FGF2). For example, treatment of the human breast cancer cell
line MCF7 with FGF2 in vitro results in increased IBSP transcription through activation of
CRE2 and AP1 elements in the IBSP promoter [28]. Similar studies demonstrate FGF2 and
forskolin (an activator of adenylate cyclase) stimulate in vitro IBSP transcription and BSP
protein expression in DU145 human prostate cancer cells [29]. In both of these studies,
FGF2 treatment in vitro caused increased expression of the Runx2 gene [26, 27].

The expression of BSP in these malignancies may underlie events related to tumor
progression such as adhesion, proliferation, invasion, angiogenesis, evasion of host immune
defense mechanisms, and ultimately metastasis. For example, breast cancer cells expressing
αvβ5 bind recombinant BSP and BSP enriched bone in vitro [30]. Also, BSP stimulates
increased adhesive, proliferative, and migratory properties of breast cancer cells in vitro
[31]. Endogenous production of BSP by cancer cells also promotes these pro-metastatic
activities. Transfection and subsequent expression of BSP in breast cancer (MDA-MB-231,
Hs578T) and prostate cancer (PC3) cells in vitro results in up-regulation and expression of
integrin subunits αv, β3, and β5 (except for β5 in Hs578T), increased expression of mature
focal adhesions and their signaling pathways, and increased migration in response to
exogenous transforming growth factor β1 (TGF-β1) and epidermal growth factor (EGF)
[32]. Furthermore, breast cancer cells transfected with IBSP cDNA show increased capacity
for migration and invasion in vitro [33]. BSP binding of αvβ3 on several osteotropic cancer
cell lines, and subsequent cell surface binding and activation of MMP2, also promotes
increased invasive properties of those cell lines in vitro [34, 35].
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In vivo studies suggest BSP is involved in tumor progression and metastasis. For example
nude mice challenged in the mammary fat pad with IBSP cDNA transfected breast cancer
cells show increased primary tumor growth in vivo [33]. Additional studies report forced
expression of BSP in human breast cancer cells enhances in vivo bone metastasis after
placement into a murine model [36] and BSP appears to mediate, in part, the pro-metastatic
effects of TGF-β both in vitro and in vivo [37]. Interestingly, inoculation of IBSP cDNA
transfected non-bone-seeking breast cancer cells (MDA-231BR) results in bone metastasis
in nude mice, while no bone lesions occur in control animals receiving non-transfected
MDA-231BR cells [38]. Also, targeted overexpression of osteoclast-derived BSP increases
bone metastasis of murine 4T1 breast cancer cells in transgenic mice [39]. Taken together,
these data suggest a major role for BSP in the processes underlying tumor progression and
bone metastasis (Figure 1).

3. Osteopontin
Human osteopontin (OPN) is a 33 kDa (apparent M.W. up to 75 kDa) extracellular matrix
glycoprotein that plays a major role in bone morphogenesis, immunoregulation, and
inflammation. During bone remodeling, OPN helps anchor osteoclasts to the mineral matrix
of bone [40]. OPN is an important cytokine in the immune system where it enhances both
specific immune responses and inflammatory responses during wound healing. OPN
enhances Th1 activity by inhibition of Th2-dependent interleukin (IL)-10 production,
promotes B-cell proliferation and immunoglobulin production, stimulates mast cell
migration and degranulation, and increases macrophage activity [41–46]. Also, OPN has
anti-apoptotic activity in macrophages, T cells, fibroblasts, and endothelial cells [45, 46].
OPN is produced by cells involved in bone morphogenesis such as preosteoblasts,
osteoblasts, osteoclasts, osteocytes, odontoblasts, and hypertrophic chondrocytes [5]. In
addition, other sources of OPN include bone marrow myoblasts, dendritic cells, epithelial
cells (breast, skin, kidney), immune cells (T-cells, B-cells, natural killer cells, macrophages,
Kupffer cells), neural cells (glial cells, Schwann cells, neurons), vascular smooth muscle
cells, skeletal muscle myoblasts, fibroblasts, endothelial cells, and extraosseous cells of the
inner ear, brain, kidney, deciduum, and placenta [47–54]. Osteopontin undergoes significant
post-translational modification and like BSP is one of the major non-collagenous proteins in
extracellular matrix of mineralized tissue such as bone and dentin. OPN binds to integrins
like other SIBLINGs, particularly αvβ1, α8β1, αvβ3, αvβ5 via the classical RGD motif, and
α9β1, α4β1, α9β4 via the enzymatically generated cryptic binding site SVVYGLR [8, 52,
55]. OPN also binds CD44 splice variants CD44v6 and CD44v3, binds and activates MMP3
[34], and binds CFH. The activation of NF-κB by OPN enhances survival of endothelial
cells, dendritic cells, dopaminergic neurons, and activated T cells [56–59].

The multifunctional activity of OPN is also seen in cancer cells through enhanced adhesion,
migration, proliferation and invasion, tumorigenesis, and metastasis. OPN enhances
adhesion of human breast cancer cells in vitro [60]. The binding of OPN to CD44v6 on
colon HT29 cells stimulates integrin activation and subsequent migration [61]. OPN
stimulates increased migration of breast, melanoma, and multiple myeloma cells in vitro
[62–64]. Over-expression of OPN in prostate cancer cell lines increases proliferation,
invasiveness, and the ability to intravasate blood vessels [65]. Induction of proteases by
OPN enhances tumor cell migration through extracellular matrix and tissue thereby
increasing the invasiveness and metastatic properties of malignant cells. For example, Tuck
and colleagues reported that OPN increases transcription of the urokinase plasminogen
activator (uPA) gene and subsequent urokinase expression in breast cancer cells resulting in
increased migration in vitro [66]. OPN binding of integrin receptors on murine mammary
epithelial cancer cells and subsequent induction of uPA and MMP2 activity confers a
metastatic phenotype to these cells [67]. Increased uPA and MMP2 activity in these cells
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was mediated through integrin–linked kinase dependent AP1 activity [67]. Also, non-small
cell lung carcinoma (NSCLC) and pancreatic cancer cells show OPN-mediated increases in
invasiveness [68, 69]. Models exploiting gain and loss of function parameters show
enhanced OPN expression results in metastasis of cancer cells. For example, forced
expression of OPN in non-metastatic rat mammary tumor cells results in lung metastasis in
half the animals that develop primary tumors [70]. Overall, aberrant expression of OPN is
associated with tumor invasiveness and metastasis in breast, lung, prostate, and colon
cancers [53, 71–74].

OPN is a substrate for thrombin, Bone Morphogenic Protein 1 (BMP1), MMP 2, 3, 7, and 9
and the fragments generated therein retain biologic activities and promote events that
underlie metastasis [75–77]. For example, thrombin cleavage of OPN separates amino
terminal integrin binding activity, which promotes cell adhesion, from a carboxy terminal
CD44v6 binding domain which promotes invasion and tumorigenesis [52, 55, 78]. Inhibition
of thrombin in breast cancer cells that express OPN decreases tumor cell growth, colony
formation, adhesion and migration in vitro as well as decreased tumor growth and metastasis
in vivo [79]. Interestingly, cleavage of OPN by thrombin and MMP9 generates fragments
that increase hepatocellular carcinoma invasiveness [77]. Cleavage of OPN by MMP3 and
MMP7 generates fragments that contain the RGD binding site and promote in vitro cell
migration and adhesion through binding and activation of β1 integrins [75]. Cleavage of
OPN by MMP9 generates 5 fragments, one of which (5 kDa) binds to CD44, promoting
tumor cell invasiveness [77]. Taken together these data demonstrate that OPN, and
proteolytic fragments of OPN, promote tumor cell adhesion, migration, and survival.

4. OPN isoforms and their implication in malignancy
Investigators have identified different splice variants or isoforms of OPN. The OPN gene is
comprised of 7 exons where exon 1 and 2 contain the 5' untranslated region (5' UTR), and
the remainder of exon 2 and exons 3–7 contain coding sequence [80–82]. In addition to full
length OPN (OPN-a), there are two splice variants, OPN-b (missing exon 5) and OPN-c
(missing exon 4) [80]. Exon 5 of OPN contains a cluster of phosphorylated serine/threonine
residues [83]. Exon 4 contains two glutamine residues critical for transglutaminase
crosslinking of OPN. Thus, unlike OPN-a and b, OPN-c cannot form polymeric OPN
complexes which have been shown to have altered functional activities [84, 85].
Investigators have begun to examine OPN-splice variant function in numerous malignancies
and the diversity of these activities is significant. Therefore, this review will only discuss the
evidence in those malignancies that have a high rate of bone metastasis (for review of OPN
splice variants see [86]).

Different malignancies express different OPN-splice variants and the bioactivity of OPN-a,
b, or c in these malignancies may be a function of the cell-type of origin. An examination of
OPN splice variants in breast cancer reveals OPN-c expression is greater than OPN-a or b
and is associated with tumor grade, poor prognosis, and increased recurrence [87–89].
Interestingly, the level of OPN-c expression increased in tumors as they progressed from
grade I to grade 3 [88]. Normal breast tissue and tissue surrounding the tumor did not
express OPN-c, whereas OPN-a and b were expressed at low levels in normal tissue, tissues
adjacent to the tumor, and within the tumor itself [87, 88]. OPN-a promotes cell adhesion in
non-invasive breast cancer cells MFC-7 whereas OPN-c strongly promotes MCF-7
anchorage-independent growth [87]. In 21T mammary epithelial and MDA-MB-468 cells,
over-expression of OPN-b increases cell adhesion, migration, invasion, and metastasis [66,
79, 90, 91]. In lung cancer, OPN-a and b, but not OPN-c, are the predominant isoforms
expressed [86]. Over-expression of OPN-a occurs in tumors from patients with NSCLC
relative to normal lung tissue, whereas OPN-c is found in normal lung tissue but not tumor
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tissue [92]. In another study, over-expression of OPN-a in human lung cancer cells
potentiated angiogenic activity and vascular endothelial growth factor (VEGF) secretion in
vitro, OPN-b had low angiogenic activity but exhibited no effect on VEGF secretion, while
OPN-c had inhibitory effects on both angiogenesis and VEGF secretion [93]. In addition,
increased cell proliferation, migration, invasion, and anchorage-independent cell growth was
observed in NSCLC cell lines A549, H358, and H460 following forced expression of OPN-a
[92]. In these studies, OPN-b exerted less activity on these parameters than OPN-a, whereas
OPN-c had no effect [92]. Similar results have been seen in prostate cancer. For example,
OPN-a, b, and c expression is significantly elevated in prostate cancer (PCa) as compared to
benign prostate hyperplasia (BPH) where OPN-c expression levels are the highest of the
OPN isoforms [94]. Further, OPN-c and to a lesser extent OPN-b, promotes a more
aggressive phenotype in PCa cells such as enhanced cell proliferation, migration, invasion,
soft agar colony formation, and tumor formation in vivo [94, 95]. Additionally, over-
expression of OPN-c and OPN-b in PC-3 cells stimulates MMP2, MMP9 and VEGF
expression [95]. Finally, OPN-c was as reliable, if not more reliable, than prostate-specific
antigen (PSA) as a marker of prostate cancer progression [94].

Taken together, the data demonstrates that OPN and OPN splice variants a, b, c have
pronounced effects on the processes that underlie malignancy and metastasis such as
adherence, proliferation, migration, invasion, anchorage independent growth, and
angiogenesis. The effects of OPN splice variants on these processes may be determined by
malignancy type, cell origins, or possibly the microenvironment of the tumor. OPN and
OPN-splice variants seem to have prognostic value and may represent a potential target for
therapies.

5. Post-translational modifications of BSP and OPN and their relevance to
cancer biology

Both BSP and OPN undergo extensive post-translational modification including N- and O-
linked glycosylation, sulfation, phosphorylation, and sialylation which can contribute as
much as 50% to their predicted molecular weights. Post-translational modifications
influence the neoplastic activity of OPN, particularly adhesion and/or migration, in different
cancer cells. For example, unphosphorylated recombinant OPN increases adhesion,
migration, and invasion of both human and murine breast cancer cells [60, 66, 96, 97].
Highly phosphorylated OPN exerts less pro-adhesive activity on MDA-MB-435 breast
cancer cells than OPN with a lower level of phosphorylation [60]. Most tumor cells express
hypophosphorylated OPN, however it is uncertain whether total phosphorylation and/or site-
specific phosphorylation is responsible for the alterations in tumor cell adhesion/migration
[86]. Also, diminished phosphorylation of BSP and OPN reduces osteoclast adhesion,
whereas de-phosphorylation of OPN increases osteoclast migration [98, 99]. Variations in
the glycosylation of OPN may also influence the neoplastic activity of this protein. In a
murine model of breast carcinoma, OPN has been identified as bearing a sialyl-Thomsen-
nouveau (STn) antigen (CD175s) which has been linked to diminished response to
chemotherapy and diminished survival in human breast cancers [100, 101]. Thus, post-
translational modifications may be important to the tumor-specific activities of BSP and
OPN in different osteotropic malignancies.

6. BSP and OPN promote pro-metastatic events through integrin binding
Integrins, a family of non-covalently associated heterodimeric transmembrane receptors,
bind many different ligands including serum proteins, extracellular matrix proteins, and cell-
surface proteins, thereby regulating cell adhesion, differentiation, motility, growth, gene
expression and apoptosis in response to extracellular stimuli [102, 103]. While activation of
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second messenger/kinase cascades has been elucidated (in part) for OPN, intracellular
signaling elicited by BSP-integrin interaction has not been well characterized. Binding of
OPN (and potentially BSP) to integrins induces kinase cascades such as the nuclear factor
inducing kinase/mitogen-activated protein kinase kinase/extracellular signal-regulated
kinase (NIK/MEK1/ERK) pathway and mitogen-activated protein kinase kinase kinase 1/
mitogen-activated protein kinase kinase 4/c-Jun N-terminal kinase 1 (MEKK1/MKK4/
JNK1) pathway subsequently promoting gene transcription through activation of nuclear
transcription factors such as NF-κB and AP1 (Figure 2). Alternatively, binding of CD44 by
OPN (and possibly DMP1) induces activation of NF-κB through the phospholipase Cγ
(PLCγ), protein kinase C (PKC), and phosphoinositide 3 kinase (PI3K) pathways (for review
see [52]).

The binding and activation of integrins by SIBLINGs promote changes in malignant cells
that favor metastasis. For example, OPN may stimulate cancer cell motility, tumor growth,
and metastasis by αvβ3 integrin binding and activation which stimulates PI3K/Akt-
dependent NF-κB activation and uPA secretion in tumor cells [38]. Also, OPN can stimulate
uPA-dependent MMP9 activation by inducing both IKK/ERK pathways and subsequent
NIK-dependent NF-κB activation [38]. OPN binding of αvβ3 integrin may transactivate
epidermal growth factor receptor (EGFR) through activation of c-Src, a member of the non-
receptor protein tyrosine kinase family that is directly associated with focal-adhesion
proteins involved in cell attachment, migration, and turnover of focal adhesions [104, 105].
The binding of αvβ3 in breast cancer cells (MDA-MB-231, MCF-7) by OPN and subsequent
transactivation of EGFR by c-Src stimulates activation of signaling cascades such as PI3K,
RAS-MAPK, PLC, and PKC in these cells [96, 106]. OPN binding of αvβ3 integrin and
EGFR transactivation by c-Src leads to ERK phosphorylation, AP-1 activation, and cross
regulation between NIK/ERK and MEKK1/JNK1 pathways, all of which enhance malignant
cell motility, invasiveness, and ability for metastasis [38]. OPN may promote cell survival
and motility of malignant cells by binding CD44 and CD44 splice variants with subsequent
activation of PLC-γ, PKC, and PI3K pathways. The binding of CD44 by OPN augments the
pro-survival activities of IL-3 and granulocyte/macrophage colony stimulating factor (GM-
CSF) through PI3K-Akt signal pathways in murine pro-B cells BA/F3 [107]. Activation of
CD44 on breast cancer cells up-regulates integrin expression, stimulates integrin-mediated
adhesion, and intravasation [108]. Thus, binding of integrins (or CD44) on malignant cells
by OPN and BSP results in activation of signaling cascades within the cell that promotes
metastasis.

7. BSP and OPN in tumor prognosis and therapy
SIBLING expression in different osteotropic cancers may be useful for establishing the risk
of bone metastasis in cancer patients. For example, increased expression of BSP in breast,
lung, prostate, and thyroid cancers may predict bone metastasis in these malignancies [20,
21, 23, 109–114]. Studies examining BSP levels in primary breast cancer tissue suggest
elevated levels of this SIBLING are prognostic for shorter survival and correlate with the
development of bone metastasis [109, 114]. In a retrospective study assessing BSP levels in
tumor tissue from 454 individuals it was found that only 8% of BSP negative patients
developed bone metastasis whereas 22% of BSP positive patients developed bone metastasis
[109]. Expression levels of BSP, but not OPN, in primary resected lung tissues from NSCLC
patients are associated with bone metastasis and may identify high risk patients [113].
Similarly, elevated levels of BSP in the blood correlate with, and may be predictive of, bone
metastasis in several osteotropic malignancies including breast, lung, prostate, and multiple
myeloma [114–122]. Serum BSP levels in prostate cancer increase only in the later stages of
the disease bringing into question the prognostic value of BSP in prostate cancer [123]. In
addition, the expression of OPN in breast cancer tissue and the elevation of OPN in patient
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sera predict a poor prognosis for breast cancer patients [89, 124]. Thus, SIBLINGs may have
excellent prognostic value in certain osteotropic malignancies.

SIBLINGs may represent valuable targets for therapeutics since they play a role in many
aspects of tumor progression including bone metastasis. Several studies have targeted OPN
and BSP utilizing antibodies, small interfering RNAs (siRNA), antisense oligonucleotides
(ASOs), and short hairpin RNAs (shRNA) to block the tumor progression and metastasis
induced by these SIBLINGs in animal models [125–128]. Rat monoclonal antibodies to
human BSP (hBSP) reduced tumor growth and osteolytic lesion formation in nude rats
receiving MDA-MB-231 breast cancer cells [129]. In this study, complete remission was
observed in 75% of rats who were treated with these inhibitory antibodies against hBSP
[129]. Further, many investigators have demonstrated the potential use of siRNAs as anti-
SIBLING therapeutic agents in animal models [130, 131]. Reufsteck et al demonstrated a
significant reduction in proliferation of MDA-MB-231 breast cancer cells in a nude rat
model after treatment with siRNA against hBSP. Additionally, while siRNA against OPN,
BSP, Runx2 and Integrin β3 diminish migration of these cells in vivo, siRNA against BSP
produces the greatest anti-migratory effect. Finally, siRNA against BSP reduces osteolytic
bone lesions when compared to controls; however, the use of a nanoparticle delivery system
lowers the effective dosage required for this reduction by approximately 25 times when
compared to systemic dispersion using minipumps [132]. The use of ASOs to partially
silence BSP and OPN expression in the human breast cancer cell line MDA-MB-231
reduces the ability of these cells to cause osteolytic bone metastasis in xenografted nude rats
[133]. The use of shRNA against OPN diminishes tumor growth and lymph node metastasis
of human esophageal squamous carcinoma cells in vitro [134]. While the use of small
interfering or shRNA treatment reveals promising potential, the use of these methods in
treatment of human malignancy is currently unavailable.

8. Conclusions and future perspectives
Taken together, current evidence demonstrates that SIBLINGs, particularly BSP and OPN,
play significant roles in bone metastasis of osteotropic malignancies derived from breast,
prostate, lung, thyroid, and multiple myeloma. SIBLINGs seem to directly or indirectly
mediate most, if not all, of the requirements for development of metastasis including
detachment of neoplastic cells from their primary site, migration, invasion, cell adhesion,
proliferation, enhanced survival, angiogenesis, escape from immune surveillance, and
altered gene expression. In fact, it is suggested that OPN confers the activities required for
all of the “Six Hallmarks of Cancer Progression” [91]. Further studies examining BSP's role
in osteotropic metastasis will determine BSP-mediated mechanisms that underlie metastatic
processes.

A receptive bone microenvironment is necessary for bone metastasis, proliferation, and
survival of osteotropic malignancies [135, 136]. For example, stress-induced endogenous
beta 2 adrenergic receptor (β2AR) activity alone stimulates bone marrow osteoblast
production of RANKL and subsequent bone metastasis of MDA-MB-231 cells [136].
Additional studies demonstrate breast cancer cell production of parathyroid hormone-related
peptide (PTHrP) in the bone microenvironment stimulates osteoblast and stromal cell
production of RANKL and subsequent osteoclastogenesis followed by osteoclast-mediated
bone resorption. Bone degradation/resorption releases transforming growth factor β (TGF-β)
and insulin like growth factor-1 (IGF-1) from bone and stimulates increased breast cancer
cell production of PTHrP and proliferation (respectively), thus setting into motion the
“vicious cycle” of bone resorption [137]. In fact, breast cancer cells produce many
osteoclastogenic factors including tumor necrosis factor alpha (TNF-α), macrophage
colony-stimulating factor (M-CSF), interleukin (IL)-6, IL-11, and prostaglandin E2 (for
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review see [138, 139]). Future studies examining the changes in bone (e.g.
osteoclastogenesis, osteoblastogenesis etc.) elicited by malignant cells will provide new
insights into mechanisms that permit survival of malignant cells in the bone
microenvironment and the mechanisms of bone pathology associated with these malignant
diseases.

The mechanisms that underlie the ability of BSP and OPN to confer an “osteomimetic”
phenotype to malignant cells are no doubt complex and likely multifactorial. It does not
seem likely that an osteomimetic phenotype is conferred to malignant cells simply by
“expressing” a SIBLING such as BSP or OPN. Rather, it seems likely that the
“osteomimicry” of malignant cells is not only conferred by surface bound SIBLINGs, but
more importantly includes the “switch” in the gene expression repertoire typically expressed
in cells of skeletal lineage during bone morphogenesis (e.g., IBSP, SPP1, Runx2, Msx2,
core-binding factor β (CBFβ), cadherin 11 (CDH11), etc. [140, 141]. This might suggest that
malignant cells with an “osteomimetic” phenotype express other, as yet unidentified, cell
surface moieties characteristically associated with cells of skeletal lineage. Understanding
what causes the “switch” in gene expression in malignant cells of epithelial cell origins to a
repertoire associated with cells of a skeletal lineage should help unlock some of the
mechanisms required for malignant cell metastasis to bone. Continued examination of the
mechanisms underlying the role of BSP and OPN in tumor promotion, progression and
metastasis, and the altered physiology of the bone microenvironment, will likely result in
development of better diagnostic approaches and therapeutic regimens for osteotropic
malignant diseases.
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Fig. 1. Proposed steps in BSP-mediated bone metastasis
1) BSP binds to integrin receptors (e.g., αvβ3) on malignant epithelial cells. 2) Activation of
the integrin signaling by BSP stimulates malignant cell proliferation. 3) BSP stimulates
angiogenesis and neovascularization of the tumor. Activation of urokinase-type plasminogen
activator (uPA) and matrix metalloproteinase (MMP) allows invasion of malignant cells
directly into the extracellular matrix (ECM). 4) BSP-stimulated angiogenesis allows
intravasation of malignant cells into the circulatory system and subsequent metastasis of
malignant cells to secondary sites (e.g., bone). Inset: BSP bound to integrin also binds
compliment factor H (CFH) allowing malignant cell escape from compliment-mediated cell
lysis in the blood. 5) Malignant cell(s) lodge or bind endothelium in bone capillaries. BSP-
stimulated angiogenesis allows malignant cell extravasation into bone tissue. 6) Survival and
proliferation of malignant cells in bone resulting in stimulation of osteoblastogenesis and
bone formation causes osteoblastic bone lesions (a), stimulation of osteoclastogenesis and
bone resorption causes osteolytic lesions (b).
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Fig. 2. Second messenger cascades associated with integrin and CD44 binding by OPN
OPN binding of αvβ3 or CD44 may activate transcription factors NF-κB and AP-1 through
multiple pathways ultimately leading to expression of target genes (e.g. uPA, MMPs) that
increase tumor cell survival, motility, tumor growth and metastasis. OPN binding to CD44
may also stimulate protein kinase B (Akt)-dependent activation of anti-apoptotic
mechanisms enhancing tumor cell survival, as well as enhancing tumor cell motility. OPN
binding to αvβ3 may transactivate (dotted line) the epidermal growth factor receptor
(EGFR) via c-Src activation. Abbreviations: Phospholipase C-γ (PLCγ), protein kinase C
(PKC), phosphatidylinositol 3 kinase (PI3 kinase), protein kinase B (Akt), IKappaB Kinase
alpha (IKKα), IKappaB Kinase beta (IKKβ), NF-κB inhibitor (IκBα), NF-κB heterodimer
[p50 (NFKB1)/p65 (RelA)], cellular sarcoma proto-oncogene (c-Src), nuclear factor-
inducing kinase (NIK), mitogen-activated protein kinase (MAPK/ERK), MAPK kinase
(MAP2K1/MEK1), activator protein 1 (AP1), mitogen-activated protein kinase kinase
kinase 1 (MAP3K1) (MEKK1), mitogen-activated protein kinase kinase 4 (MAP2K4)
(MKK4), c-Jun N-terminal kinase 1 (JNK1), urokinase-type plasminogen activator (uPA),
matrix metalloproteinase (MMP).
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Table 1

Incidence of Bone Metastasis Associated With Various Malignancies

Primary tumor Bone metastasis (%) Lesion type(s)

Multiple myeloma 95–100 Osteolytic

Prostate cancer 65–75 Osteoblastic

Breast cancer 65–70 Mixed: osteolytic > osteoblastic

Thyroid cancer 60 Osteolytic

Lung cancer 30–40 Mixed: osteolytic > osteoblastic

Renal cancer 20–25 Mixed: osteolytic > osteoblastic
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