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Abstract
The aim of this study was to develop a quantitative 16S rRNA assay for determination of bacterial
nucleic acid load in cerebrospinal fluid (CSF) shunt infection and to compare quantitative 16S
rRNA polymerase chain reaction (PCR) findings to those of conventional bacterial culture in
patients treated for CSF shunt infection. We developed a quantitative 16S rRNA PCR assay that
detected bacterial load across a range of 2.5 × 109 down to 2.5 × 104 16S copies/mL CSF under
experimental conditions for numerous Gram-positive and Gram-negative organisms. However,
when applied to archived CSF samples from 25 shunt infection episodes, correlations between
positive bacterial culture and 16S rRNA levels were seen in only half of infections, and 16S rRNA
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levels dropped precipitously after an initial peak on the first day of sample collection. Bacterial
load measured using 16S rRNA PCR does not provide sufficient information beyond bacterial
culture to inform CSF shunt infection treatment.
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1. Introduction
Cerebrospinal fluid (CSF) shunt placement has been the mainstay of treatment for
hydrocephalus for over 50 years (Kestle, 2003). While CSF shunts allow patients to survive
and avoid further brain injury, they can cause new and often chronic surgical and medical
problems. CSF shunt infections are one such complication, causing 2200–2400 pediatric
hospital admissions each year in the U.S. (Simon et al., 2008).

CSF shunt infections are usually caused by bacterial pathogens (Fan-Havard and Nahata,
1987; Nelson, 1984; Odio et al., 1984; Sells et al., 1977) and are notoriously difficult to
treat. Because the bacteria adhere to the shunt itself, treatment requires both surgical
management to remove and replace the shunt and medical therapy to kill the bacteria.
Medical treatment generally involves prolonged intravenous (IV) antibiotic administration
and occasionally intrathecal antibiotics (Fan-Havard and Nahata, 1987; Kestle et al., 2006).
While IV antibiotics are a mainstay of clinical practice, duration of IV antibiotic use varies
widely—from 4 to 47 days in 1 study (Kestle et al., 2006)—and may depend on both the
surgical approach used (Nelson, 1984; Vinchon and Dhellemmes, 2006) and the pathogen
involved (Fan-Havard and Nahata, 1987; Younger et al., 1987). Available data on optimal
length of therapy are sparse. For children with first CSF shunt infection, the prognosis is
poor with reinfection rates ranging from 12 to 26% (Kestle et al., 2006; Kulkarni et al.,
2001; Vinchon and Dhellemmes, 2006). Rates of reinfection are higher still for children with
second infections (Tuan et al., 2011).

Risk factors for CSF shunt reinfection are not well-understood and may be related to the
management of the prior infection. Diagnosis and management of CSF shunt infection
currently rely on conventional microbiologic cultures. The initial diagnosis is based on the
recovery of a pathogen from culture, and length of therapy is often based on the number of
days that cultures are positive. Conventional cultures can require 24–48 hours for organism
identification, and the chances of recovering a bacterium are significantly reduced if the
patient has received prior antimicrobial therapy. CSF indices (e.g., glucose, protein, cell
count and differential, and Gram stain) are not always reliable in identifying infection or
tracking its progression (Lan et al., 2003); however, these parameters are often followed by
clinicians to determine duration of antimicrobial treatment and timing of shunt replacement.
CSF shunt replacement generally does not occur until negative CSF cultures are obtained
and the treatment course is completed.

Clinicians, patients, and their families clearly need better evidence to guide the treatment of
CSF shunt infection in order to avoid reinfection. We recognized the increasing use of real-
time polymerase chain reaction (RT-PCR) technology targeting conserved regions of the
16S rRNA gene was capable of detecting thousands of species of bacteria, including the
most frequent CSF shunt infection pathogens (Banks et al., 2005; Blaschke and
Voelkerding, 2006; Deutch et al., 2007). The potential utility of 16S rRNA PCR for the
detection of bacterial DNA has been shown in otherwise sterile body fluids including
amniotic fluid, neonates with bacteremia, and neutropenic cancer patients with fever as well

Simon et al. Page 2

Diagn Microbiol Infect Dis. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



as CSF (Banks et al., 2005; Won et al., 2012), but its utility in the detection of infection has
been limited. We wondered if 16S rRNA PCR might be more beneficial for guiding therapy.
We developed a quantitative 16S rRNA assay to quantify bacterial load and evaluate
changes in bacterial load in response to antibiotic therapy and surgical management. The
objectives of this study were to 1) develop a quantitative 16S rRNA assay for the
determination of bacterial nucleic acid load in CSF shunt infection and 2) compare the
findings of quantitative 16S rRNA PCR to those of conventional bacterial culture in patients
treated for CSF shunt infection.

2. Materials and methods
2.1. Primer selection

A panel of target organisms for assay development was generated from those observed in
CSF shunt infections at Primary Children’s Medical Center (PCMC) during a retrospective
observational cohort study conducted from 1997 to 2006 (Simon et al., 2012) (Table 1).
Sequences were aligned using Vector NTI Align × (Life Technologies, Grand Island, NY,
USA), and primers were designed to target conserved sequences between organisms and to
optimize primer characteristics. We selected a 17 base pair (bp) forward primer and a 21 bp
reverse primer to amplify a 107 bp amplicon spanning bases 1149–1256 of the Escherichia
coli 16S rRNA gene. The numbers of copies of 16S rRNA for each bacterial species were
determined from the literature (Lee and Bussema, 2009). After we detected only low
amounts of 16S rRNA using this primer set, we tested samples using a second set of
previously published primers targeting the V6 region of the 16S rRNA gene (Chakravorty et
al., 2007) that also targets all organisms shown in Table 1.

2.2. DNA extraction
We tested several conditions to extract bacterial DNA. Seven organisms were used to test
DNA extraction from CSF: Staphylococcus aureus, Staphylococcus saprophyticus,
Enterococcus faecalis, E. coli, Klebsiella oxytoca, Enterobacter cloacae, and Pseudomonas
aeruginosa (ATCC, Manassas, VA, USA, and clinical isolates from Seattle Children’s
Microbiology Lab). Cultures were grown overnight at 37° in LB broth and were pelleted and
resuspended in uninfected donated CSF, which were then serially diluted using uninfected
donated CSF to test extraction efficiency across a wide range, and particularly, for lower
bacterial concentrations.

We initially tested approaches including Gentra Puregene (Qiagen, Valencia, CA, USA) and
the column-based QIAmp (Qiagen) DNA mini kit, both using the body fluids protocol, with
the addition of either lysozyme, cell lysis solution, proteinase K digestion, RNase digestion,
and/or heat disruption protocols in various combinations. We also tested use of linear
acrylamide, glycogen, and diluted glycogen to improve recovery when low concentrations of
bacteria were expected, but bacterial contamination prevented the use of these approaches.
Direct CSF lysis was also attempted to maximize recovery, but this proved ineffective.

After initial approaches demonstrated low yields with Gram-positive organisms, we
switched to a more rigorous bead-beating cell disruption protocol using 0.1-mm zircona/
silica beads. These smaller gauge beads were substituted into a standard MO BIO PowerSoil
DNA isolation kit (MO BIO Laboratories, Inc., Carlsbad, CA, USA) protocol showing
dramatic improvement in extraction efficiency. The final approach to DNA extraction in
CSF employed direct lysis of 100–μL CSF using MO BIO BiOstic bacteremia DNA
isolation kit, a bead-beating protocol optimized for the purification of DNA (host and
microbial) from body fluids. Volume for final elution of genomic DNA was 50 μL.
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2.3. Assay refinement
Primers were synthesized by Integrated DNA Technologies (Iowa City, IA, USA). RT-PCR
was performed with an Agilent Mx3005P QPCR System instrument using SYBR Green
(Applied Biosystems; Life Technologies, Grand Island, NY, USA) for detection of PCR
products. Each quantitative (qRT-PCR) reaction was performed in triplicate and included
0.4 μL each of 10 μmol/L forward and reverse primers, 5.0 μL 2× SYBRGreen PCR master
mix (Applied Biosystems), 3.2 μL of ddH2O, as well as 1.0 μL of genomic DNA.
Quantitative PCR cycling conditions were as follows: 95 °C for 10 minutes, and 40 cycles of
95 °C for 15 seconds, 60 °C for 1 minute. After each assay, a dissociation curve was run to
confirm specificity of all PCR amplicons. Resulting crossing threshold values were
converted to copy numbers and expressed as the average of triplicate samples ± 1 SD. If an
individual well amplified poorly during qRT-PCR, the replicate was removed from triplicate
measurements.

2.4. Assay testing
Assay efficiency was determined for both Gram-positive and Gram-negative CSF shunt
infection organisms in dilution series of genomic DNA suspended in 10 mmol/L Tris-HCl.
Nine organisms were provided by the Seattle Children’s Hospital (SCH) microbiology lab:
S. aureus, S. saprophyticus, E. faecalis, S. pneumoniae, E. coli, K. oxytoca, E. cloacae, P.
aeruginosa, and Haemophilus influenzae (ATCC); Staphylococcus epidermidis was provided
by the Blaschke lab. Bacteria were harvested, and DNA was extracted using the Gentra
Puregene (Qiagen) bacteria protocol including a lysozyme digest. Dilution series were
created and qRT-PCR was performed (Fig. 1).

To generate quantification curves, purified DNA from S. aureus and E. coli bacteria in CSF
was quantified using a PicoGreen DNA quantitation kit (Molecular Probes®; Life
Technologies). This DNA was subsequently diluted serially by copy number (calculated by
molecular weight) and amplified using the 16S rRNA qRT-PCR assay (Fig. 2).

2.5. Samples from children with CSF shunt infection
Children <18 years old undergoing treatment for conventional culture-confirmed CSF shunt
infection at either SCH or PCMC were eligible for enrollment in this study. A CSF shunt
infection was defined as identification of organisms on microbiological culture of CSF fluid
obtained from a partial or complete CSF shunt system. CSF shunt system(s) included
ventriculoperitoneal, ventriculoatrial, ventriculopleural, arachnoid cyst shunts, subdural
shunts, and lumboperitoneal shunts, while temporary devices only such as external
ventricular drain(s), Ommaya reservoir(s), ventricular access devices (reservoirs), and
subgaleal shunts were not included. For all study subjects, except those from PCMC prior to
March 18, 2010, parental permission (and assent when appropriate) was obtained for
additional CSF to be collected on each occasion that regular CSF samples were obtained
during treatment for CSF shunt infection. Prior to March 18, 2010, at PCMC, we used CSF
remaining after routine processing and testing in the PCMC Microbiology Laboratory. The
first CSF sample for diagnosis of infection was usually obtained from needle aspiration of
the shunt reservoir under sterile conditions outside the operating room in a bedside “shunt
tap”. The initial CSF sample analyzed in this study either was leftover from this first
diagnostic sample or was obtained in the operating room under sterile conditions from the
system being removed during the first surgery to treat infection. Subsequent CSF samples,
including those at the end of the infection, were generally obtained under sterile bedside
conditions through a sampling port within sterile extension tubing attached to the external
ventricular drain. The study received Institutional Review Board approval from the Seattle
Children’s Research Institute and the University of Utah, as well as approval from the
PCMC Privacy Board.
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After CSF was obtained for the study, CSF was stored at 4 °C. For a minority of samples,
CSF was stored in solution provided in the MO BIO BiOstic bacteremia DNA isolation kit;
storage in this solution did not affect recovery of bacterial DNA. CSF was then aliquoted for
the study and stored at −70 °C; PCMC samples were shipped overnight to Seattle on dry ice.

2.6. Analysis
DNA from 100 μL of CSF was extracted for each available sample over the course of
infection treatment. BVY performed the 16S rRNA qRT-PCR assay in triplicate. CSF
samples tested included a selection among children for whom consistent CSF sample
collection was obtained over the course of infection. Negative controls included phosphate-
buffered saline and uninfected donor CSF. We tested the original primers in 25 infection
episodes total; for 13 of these infections, we also performed analysis using the V6 primers.
We compared the results of each 16S rRNA PCR series to each other, as well as to
conventional culture results.

3. Results
Testing serial dilutions of genomic DNA from Gram-positive and Gram-negative CSF shunt
infection organisms in water demonstrated the ability of our qRT-PCR to detect bacterial
DNA across a wide range of species (Fig. 1, data not shown for S. epidermidis). Some slight
variation existed when comparing amplifications between species, but generally, the assay
was highly efficient and linear regardless of bacterial template (average efficiency 97.4%,
average RSq 0.996). Amplicon melting temperatures were similar for all organisms (81 °C)
except for S. pneumoniae and P. aeruginosa, which had slightly lower (80 °C) and slightly
higher (83 °C) melt temperatures, respectively.

The assay’s ability to detect quantified amounts of 16S rRNA DNA was demonstrated with
linearity across a range of 2.5 × 109 copies/mL CSF down to a detection limit of
approximately 2.5 × 104 16S copies/mL CSF using standard copy number curves of S.
aureus (efficiency 107.1%, RSq 1.000) and E. coli (efficiency 105.4%, RSq 1.000) bacterial
templates (Fig. 2).

Data from 16S rRNA amplification in a representative infection episode are shown in Fig. 3.
After an initial peak on the first day of sample collection, levels of quantitative 16S rRNA
dropped precipitously and thereafter remained comparable to negative controls with both
primer sets. The quantitative 16S rRNA PCR assays using the original and V6 primers were
well correlated.

A summary of findings for all 25 infection episodes is shown in Table 2. Relative quantities
of 16S above baseline, which might be expected in the presence of CSF that grew organisms
in culture, were only observed intermittently. As demonstrated for the representative
infection shown in Fig. 3, levels of quantitative 16S rRNA dropped precipitously after the
first day of sample collection across all samples (data not shown). Correlations between
positive bacterial culture and quantitative 16S rRNA levels did not differ by infecting
organism and were seen in only 4 of 9 (44%) infections with coagulase-negative
Staphylococcus, 4 of 7 (57%) infections with other single organisms, and 4 of 5 (80%)
infections with mixed organisms (Table 2). Results using the original and V6 primers again
correlated well. For 3 of 4 infections in children who went on to develop reinfections (H, M,
T), we also examined levels of 16S rRNA PCR at the end of the initial infection episode.
None of these levels were above that of the negative controls at the end of the first infection
treatment (data not shown).
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4. Discussion
We hypothesized that amplification of bacterial DNA using 16S rRNA PCR could be used
as a marker of CSF bacterial load and might be useful to inform antibiotic management and
timing of shunt replacement to avoid reinfection. We developed a quantitative 16S rRNA
PCR assay that demonstrated an ability to detect genomic DNA from both Gram-positive
and Gram-negative CSF shunt infection organisms across a range of 2.5 × 109 copies/mL
CSF down to a detection limit of approximately 2.5 × 104 16S copies/mL CSF under
experimental conditions. However, when this assay was applied to clinical samples, there
was inconsistent detection of 16S rRNA over background levels when compared to bacterial
culture. Levels of 16S rRNA at the end of infection did not correlate with reinfection. This
quantitative 16S rRNA PCR assay did not augment treatment information provided by
conventional CSF cultures among children undergoing treatment for CSF shunt infection.

Previous work has examined the use of 16S PCR for the rapid detection of CSF shunt
infection (Banks et al., 2005) or in external ventricular drain infections (Deutch et al., 2007).
The use of broad-range 16S rRNA PCR for the detection of pathogens has the potential
advantage of unbiased amplification of any bacterial species present (Nadkarni et al., 2002)
and thus could theoretically be used for infections caused by a range of organisms. While
initial data for broad range PCR were promising, (Banks et al., 2005; Blaschke and
Voelkerding, 2006; Deutch et al., 2007; Won et al., 2012), more recent studies have
demonstrated significant limitations due to the ubiquitous nature of bacterial DNA and the
high rate of false-positive detection (Corless et al., 2000; Millar et al., 2002). Due to high
background levels of bacterial DNA, the extended PCR cycling required for optimal
detection of organisms present in low concentrations cannot be performed (Sontakke et al.,
2009).

Because of the well-documented sensitivity issues with broad-range bacterial amplification,
we were seeking to use 16S PCR not to diagnose infection but to quantify bacterial load in
culture-documented infection as a method to guide antibiotic management. While our
experimental quantification curves showed good correlation between bacterial load and 16S
copy number, this did not translate to practical data with utility for guiding management of
CSF infection. Some authors have advised use of both 16S PCR and conventional culture in
clinical scenarios (Deutch et al., 2007; Sarookhani et al., 2010). In our hands, the PCR did
not add sufficient information to justify its routine clinical use. It is likely that the ability of
our assay to detect bacterial load was complicated by low levels of bacterial DNA present in
samples, particularly after the removal of CSF shunt and initiation of antibiotic treatment.

Measurement of viral load using quantitative real-time PCR is an established method to
guide therapy in viral infections such as those caused by cytomegalovirus and human
immunodeficiency virus (Berger and Preiser, 2002). The use of quantitative bacterial PCR in
clinical care is less well-established. Literature supports its potential benefit in the diagnosis
and evaluation of disease severity in pneumococcal pneumonia and pneumococcal sepsis as
well as in meningococcal disease (Darton et al., 2009; Peters et al., 2004; Rello et al., 2009).
Studies that use bacterial load to guide therapeutic management are rarer still.

Conventional culture techniques examine free-floating clonal populations of a single species
during logarithmic growth phase (Rhoads et al., 2012). In contrast, biofilms are surface-
associated groups, often composed of multiple genera, of organisms held together by an
extracellular matrix, and both the growth conditions and population within the biofilm can
be spatially and temporally variable (Rickard et al., 2003). These complex communities
attach to surfaces in a largely dormant mode (Bayston et al., 2012) that promotes resistance
to antibiotics. Biofilms have been implicated in several chronic infections (Costerton et al.,
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1999). Some work has suggested the presence of biofilms on CSF shunts (Fux et al., 2006;
Guevara et al., 1987). One possible explanation of our findings is that biofilms are present in
CSF shunt infections, and bacterial DNA is only periodically detected by either 16S PCR or
conventional culture in CSF due to the highly dormant state of bacteria in these
communities. Nonetheless, reinfection occurs at high rates. This apparent paradox indicates
a need to consider different models for understanding the microbial environment in CSF
shunt infection.

This pilot study took the first step to examine the utility of molecular quantification of CSF
pathogens for patients undergoing treatment for CSF shunt infection. Based on our data, we
conclude that molecular quantification of bacterial load using broad-range 16S rRNA PCR
does not appear useful as a novel adjunct to optimize treatment of CSF shunt infection. It is
possible that other approaches, such as examination of biofilm, species-specific
amplification, and/or markers of inflammation may be more suitable, and these approaches
deserve further study. For the moment, clinicians continue to require an optimal treatment
strategy for CSF shunt infections that accurately determines when bacteria have been
eradicated and reinfection after shunt replacement is unlikely.
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Fig. 1.
qRT-PCR for 16S rRNA showing dilution series of genomic DNA in water from 9 CSF
shunt infection organisms (S. aureus, S. saprophyticus, E. faecalis, S. pneumoniae, E. coli,
K. oxytoca, E. cloacae, P. aeruginosa, and H. influenzae). Caption: Nine species of bacteria
were cultured, and genomic DNA was extracted. Dilution series for each bacterial species
were created and tested using the 1149f and 1256r primers.

Simon et al. Page 10

Diagn Microbiol Infect Dis. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
RT-PCR for 16S rRNA showing standard copy number curves for S. aureus and E. coli
bacteria in CSF. Panel A demonstrates a standard curve of S. aureus bacteria in CSF. Panel
B demonstrates a standard curve of E. coli bacteria in CSF. Panel C demonstrates melt
curves for both S. aureus (Tm 81.3 °C) and E. coli (Tm 82.8 °C) PCR amplicons.
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Fig. 3.
A representative example of 16S rRNA PCR over the course of infection treatment for a
single infection episode (P) using the original primer set (A) and the primers targeting V6
(B). For A, Concurrent negative controls of CSF alone produced a relative quantity of
232,500–265,000 copies of 16S per milliliter CSF. For B, Concurrent negative controls of
CSF alone produced a relative quantity of 238,500–272,000 copies of 16S per milliliter
CSF.
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Table 1

CSF shunt infection organisms targeted during 16S rRNA PCR primer design.

Gram positive Gram negative

Enterococcus spp. E. cloacae

Propionibacterium acnes E. coli

S. aureus Haemophilus spp.

Staphylococcus spp. (coagulase-negative) K. oxytoca

Streptococcus pneumoniae P. aeruginosa

Streptococcus spp. Serratia marcescens

Streptococcus viridans K. pneumoniae 
a

Corynebacterium spp.
a

Micrococcus spp.
a

a
Organism was not an original target during primer design, but primer is able to detect its 16S rRNA sequence based on alignment.
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Table 2

Determination of bacterial load with quantitative 16S rRNA DNA PCR using original and V6 primers,
compared conventional bacterial culture findings only when cultures demonstrated organisms.

Patient Day Bacterial culture Original primer 16S copy number per
ml CSF

V6 primer 16S copy number per mL
CSF (if tested)

A. Coagulase-negative Staphylococcus only (n = 11). We had insufficient CSF to obtain PCR data for J and N on day 1, as well as B on day 1
and K on day 2.

A 1 S. epidermidis 477,000–835,000 n/a

B 5 S. epidermidis 253,000–328,500 227,500–235,500

C 1 Staphylococcus lugdunensis 194,000–280,500 n/a

2 S. lugdunensis 188,500–281,000 n/a

E 1 Coagulase-negative Staphylococcus
211,850–247,150

a
 and 384,200–453,950

and 344,050–358,200

n/a

3 Coagulase-negative Staphylococcus
201,050–242,750

a n/a

F 1 Coagulase-negative Staphylococcus 3,627,000–3,600,050 n/a

G 1 S. epidermidis 52,500–70,000 n/a

I 1 S. epidermidis 26,850–90,500 n/a

2 S. epidermidis 211,500–232,000 n/a

3 S. epidermidis 173,000–244,500 n/a

4 S. epidermidis 171,000–187,000 n/a

K 1 S. epidermidis 435,500–483,000 n/a

M (#2) 1 S. epidermidis 206,050–220,300 193,000–216,000

2 S. epidermidis 129,100–164,050 150,500–171,000

3 S. epidermidis 129,050–145,750 142,000–150,500

4 S. epidermidis 106,500–147,250 and 133,000–197,850 103,500–117,500 and 156,500–177,500

B. Other single infecting organisms (n = 8). We had insufficient CSF to obtain PCR data for H (#2) on day 1 with S. aureus, as well as Ton day
3 with Serratia marcescens, Ron day 2
with E. faecalis and L on day 7 with Propionibacterium acnes.

D 1 S. aureus
153,500–165,000

a n/a

L 1 P. acnes 2,355,000–2,765,000 n/a

2 P. acnes 168,500–225,000 n/a

M (#1) 1 Group A beta-hemolytic
Streptococcus

406,400–565,000 445,500–610,000

O 1 P. acnes 77,000–100,500 66,500–73,250

P 1 E. coli 3,225,000–3,785,000 3,205,000–3,325,000

R 1 E. faecalis 256,500–314,500 306,500–324,000

T (#2) 1 S. marcescens 950,000–1,150,000 1,125,500–1,331,500

2 S. marcescens 195,000–225,500 202,800–240,300

C. Infections with a several organisms (n = 6). We had insufficient CSF to obtain PCR data for S (#2) on day 1 with S. epidermidis,
Staphylococcus warneri, and Diphtheroid bacilli,
as well as for Q on day 1 with S. pneumoniae, S (#1) on day 17 and 18 with Micrococcus spp., and T (#1) on days 4 and 6 with S. aureus and
day 11 with Staphylococcus hominis.

H (#1) 1 S. epidermidis and S. aureus 7,050,000–7,800,000 n/a

3 S. aureus
96,500–145,000

a
 and 85,500–100,500

a

and 78,500–114,500
a

n/a
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Patient Day Bacterial culture Original primer 16S copy number per
ml CSF

V6 primer 16S copy number per mL
CSF (if tested)

4 S. aureus
21,550–164,000

a
 and 4,670–27,550

n/a

5 S. aureus
108,000–163,500

a
 and 71,000–123,000

a n/a

6 S. aureus
110,000–131,000

a
 and 42,850–60,500

n/a

Q 3 No growth 3,140,000–3,775,000 3,440,000–4,080,000

5 Staphylococcus capitis 940,000–1,165,000 1,020,000–1,525,000

S(#1) 1 Corynebacterium spp. 406,400–565,000 148,000–181,500

10 Corynebacterium spp. 138,450–151,050 204,000–241,000

11 Corynebacterium spp. 289,350–347,150 211,500–267,000

12 Corynebacterium spp. 201,750–366,900 177,500–187,500

T (#1) 1 S. aureus 133,500–202,500 96,000–116,500

2 S. aureus
234,500–256,500

a 199,000–205,500

3 S. aureus
175,000–219,500

a 103,500–111,500

5 S. aureus
226,500–293,500

a 224,000–239,000a

16 Coagulase-negative Staphylococcus 291,000–336,000 258,000–293,500

U 1 K. pneumoniae and Streptococcus
mitis/oralis

318,350–383,650 349,650–471,950

3 K. pneumoniae 137,850–159,900 151,400–177,300

5 K. pneumoniae 177,050–192,950 181,850–265,100

16 S. epidermidis and S. aureus 92,200–124,450 91,100–153,500

Subsequent days of infection treatment with negative CSF cultures are not provided here. Bolded primer counts are significantly different from
negative CSF controls and later (culture-negative) samples drawn during the infection episode; these examples resemble the representative
infection episodes shown in Figs. 3A and 3B.

a
Above CSF negative controls, but not different from other samples drawn during the infection episode.
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