Skip to main content
. Author manuscript; available in PMC: 2015 Jan 17.
Published in final edited form as: J Org Chem. 2013 Oct 31;79(2):473–486. doi: 10.1021/jo4020358

Table 3.

Oxidation of 2,2′-bistryptamine derivatives.

graphic file with name nihms-533822-t0022.jpg

Entry substrate condition yield (product) % ee (product)
1 32 19, CH2Cl2, 0 °C 91% (36:38 = 1:1)a -
2 32 air, neat, 23 °C, 12 d 27% (36:38 = 1.5:1)a,b -
3 33 19, CH2Cl2, 23→50 °C No reaction -
4 34 19, CH2Cl2, 23 °C No reaction -
5 34 mCPBA, CH2Cl2, 23 °C, 3 h decomposition -
6 35 19, CH2Cl2, 23→65 °C No reaction -
7 35 DMDO, acetone, 23 °C, 11 h 32% (37) -
8 35 Shi epoxidationc No reaction -
9 35 Sharpless asymmetric
dihydroxylationd
No reaction -
10 32 Sharpless asymmetric
dihydroxylationd
39% (36:38 = 1.7:1)a <3 (36), <3 (38)
11 32 40 (10 mol%),DMAP, H2O2,
DIC, CHCl3, 0 °C, 24.5 h
49% (36:38 = 1.3:1)a 20 (36), <5 (38)
12 32 41, CH2Cl2, −30→23 °C 95% (36:38 = 2.2:1)a 96 (36), 96 (38)

graphic file with name nihms-533822-t0023.jpg
a

The ratio of 36 to 38 was determined by 1H NMR.

b

65% of unreacted starting material 33 was isolated.

c

Shi catalyst (39), Na2B2O7•H2O, n-Bu4NHSO4, oxone, K2CO3, EDTA, H2O, DMM, MeCN.

d

AD-mix- α , methanesulfonamide, t-BuOH, H2O.