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Abstract
The majority of methods for the design of Phase I trials in oncology are based upon a single
course of therapy, yet in actual practice it may be the case that there is more than one treatment
schedule for any given dose. Therefore, the probability of observing a dose-limiting toxicity
(DLT) may depend upon both the total amount of the dose given, as well as the frequency with
which it is administered. The objective of the study then becomes to find an acceptable
combination of both dose and schedule. Past literature on designing these trials has entailed the
assumption that toxicity increases monotonically with both dose and schedule. In this article, we
relax this assumption for schedules and present a dose-schedule finding design that can be
generalized to situations in which we know the ordering between all schedules and those in which
we do not. We present simulation results that compare our method to other suggested dose-
schedule finding methodology.
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1. Background
It is sometimes the case in Phase I dose-finding studies in cancer that there exists more than
one treatment schedule. The doses of a single agent can be expressed in multiple ways based
on the frequency with which it is administered. For instance, whether a dose is given once a
day for three days in a particular week or given once that week is likely to have an impact on
the probability of observing dose-limiting toxicity (DLT) for that dose. Each of these
“courses of therapy” can be considered a distinct combination of schedule and dose. For
these trials, finding an acceptable dose and schedule becomes a two-dimensional dose-
finding problem, where one dimension is the dose level of the agent and the other is the
course of therapy. The goal becomes to find a dose-schedule combination with tolerable
toxicity. Several methods have been suggested for finding an acceptable combination of
dose and schedule. Braun, Yuan and Thall [1] proposed a method that determines a
maximum-tolerated schedule in Phase I studies. This method allowed the schedule to vary,
while fixing the dose. The proposal of Braun, Thall, Nguyen and de Lima [2], termed
BTNL, simultaneously optimizes the dose and schedule of a cytotoxic agent. Li, Bekele, Ji
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and Cook [3] develop a dose-schedule finding algorithm based on a Bayesian hierarchical
model that jointly models toxicity and efficacy.

A fundamental assumption of these methods is that the toxicity probabilities adhere to an
order constraint both within and between schedules, i.e. the probability of toxicity for dose
increases monotonically when the schedule is being held fixed, and vice versa. It is
reasonable to assume that within schedule, the DLT probabilities increase as we increase
dose and we refer to this as a complete order. However, the assumption that, for a given
dose, the DLT probabilities can be completely ordered in terms of the different treatment
schedules under consideration may not always be true. We provide an example in which the
schedules are partially ordered in the following section. In this article, we present a dose-
schedule finding design that eliminates this assumption and is able to handle the complexity
of a lack of complete ordering information among the schedules.

In general, the problem of dose-schedule finding can be broadened to the more general
framework of the problem of partial ordering in Phase I clinical trials. The partial order
continual reassessment method (POCRM; [4]) was introduced for such problems, within the
context of drug combination trials. Under the assumption of completely ordered schedules,
the methods presented in this article are a novel application of POCRM to the problem of
dose-schedule finding. When the assumption of completely ordered schedules is not
reasonable, POCRM in its current form is not directly applicable to identifying acceptable
dose-schedule combinations. Therefore, we relax this key assumption of the POCRM and
propose a method for dose-schedule finding that has even less ordering information among
the treatments available than trials of combined drugs. We demonstrate that we can
concentrate DLT probability estimation within a reasonable subset of possible orders and
rely on the near-optimal properties [5, 6] of the continual reassessment method (CRM; [7])
to generate efficient estimates of the MTD within these orders. We provide results
comparing the performance of our proposed dose-schedule finding method to existing dose-
schedule finding methodology (BTNL). The approach of Braun et al. [2] is to fully model
the several aspects of the problem, which is more in tune with Bayesian thinking. Our
approach, while it can make use of prior information, and, therefore have a Bayesian flavor,
is more in the spirit of underparameterized “CRM-type” models. In the next section, we
describe the problem of dose-schedule finding for both completely and partially ordered
treatment schedules. In Section 3, we outline a proposed design for dose-finding under
multiple schedules. In Section 4, we provide simulation results comparing the performance
of the proposed design to existing dose-schedule methodology [2]. Finally, we conclude
with some discussion.

2. Dose-schedule finding
2.1. Complete ordering among schedules

As an example of a dose-schedule finding problem, consider the Vidaza [8] trial described in
Braun et al. [2] for the treatment of a blood cell disease, known as MDS, that often develops
into acute myelogeneos leukemia (AML). The trial consists of four different schedules (A,
B, C, D) and three doses (8, 16, and 24 mg/m2), resulting in the twelve (schedule, dose)
combinations {(A, 8), (A, 16), (A, 24), (B, 8), …, (D, 24)}. For simplicity, we are going to
label each of the twelve combinations, {d1, …, d12}, and we have a matrix of combinations
of dose and schedule like that displayed in Table 1. A reasonable assumption to be made in
these type of studies is that toxicity increases monotonically with dose within each schedule.
In this case, we say that the DLT probabilities follow a complete order in that the
relationship between all DLT probabilities for a certain schedule is completely known. For
instance, denoting the probability of a DLT at combination di by π(di), in Schedule B, π(d4)
≤ π(d5) ≤ π(d6). An assumption that is made in previous literature [2, 3] on dose-schedule
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finding is that the probability of toxicity for schedule increases monotonically when the dose
is being held fixed. In this case we say that the DLT probabilities follow a complete order
for a certain dose, and increases as the schedule moves from A to D. That is, Schedule D
administers treatments more frequently than the other schedules and thus is considered more
aggressive. This assumption is perfectly reasonable in the Vidaza [8] example due to the fact
that the schedules are nested. In other words, administering the drug to patients in Schedule
B amounts to repeating Schedule A twice, with a 25-day rest in between administrations.
Essentially, using the term “schedule,” in this case is equivalent to saying that the drug is
simply given more often. Therefore, for dose 8 mg/m2, we assume π(d1) ≤ π (d4) ≤ π (d7) ≤
π (d10). This ordering information corresponds to completely knowing the relationship
between DLT probabilities across all rows and up all columns of the matrix.

The ordering of combinations along the diagonals of the matrix is unknown. It may be clear
that combination d6 is more toxic than d5, but we may not know the ordering between d6 and
d8. Moving from d6 to d8 corresponds to decreasing the dosage of the agent from 16 mg/m2

to 8 mg/m2 but “increasing” the schedule of the treatment. Associated with each
combination is a set of possible escalation treatments that can be specified prior to the
beginning of the trial. For example, the possible escalation combinations for treatment d1 are
d2 and d4, meaning that if combination d1 was tried and found to be sufficiently non-toxic,
then escalation could proceed to previously untried d2 or d4. Taking into account the subset
of combinations for which we know the toxicity order, we aim to formulate possible
complete orders of the toxicity profile. Considering all possible complete orders is
unreasonable in studies like the Vidaza [8] trial due to the large number of possibilities. One
approach may be to reduce the problem to a complete order by imposing an implicit
ordering on the combinations. If the ordering selected is correct, then operating
characteristics of a chosen method are likely to be very good. If, however, the initial
ordering is incorrect, we expect performance to be quite poor. Instead of imposing a single
ordering, we could choose a small subset of orderings.

Our approach is to select a plausible subset of possible orderings, according to the known
information among combinations. A reasonable approach taken by Wages and Conaway [9]
for drug combination trials is to formulate possible orderings according to the rows, columns
and diagonals of the matrix of combinations. Suppose, in general, we are going to consider a
subset of M possible orderings indexed by m, m = 1, …, M. Let us begin by consider
ordering the treatments across rows and up columns of the matrix. Therefore, two reasonable
possibilities for the toxicity orderings are

1. Across rows [ m = 1]

π(d1) ≤ π(d2) ≤ π(d3) ≤ π(d4) = π(d5) ≤ π(d6) ≤ π(d7) ≤ π(d8) ≤ π(d9) ≤ π(d10) ≤
π(d11) ≤ π(d12)

2. Up columns [ m = 2]

π(d1) ≤ π(d4) ≤ π(d7) ≤ π(d10) ≤ π(d2) ≤ π(d5) ≤ π(d8) ≤ π(d11) ≤ π(d3) ≤ π(d6) ≤
π(d9) ≤ π(d12)

There are many ways to arrange the treatments according to the diagonals of the
matrix. For the sake of simplicity and in order to reduce the dimension of the
problem as much as possible, we are going to restrict possible movements along
diagonals to “up” movements and “down” movements. These two movements
would result in the following two possible orderings of the DLT probabilities.

3. Up diagonals [ m = 3]
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π(d1) ≤ π(d2) ≤ π(d4) ≤ π(d3) ≤ π(d5) ≤ π(d7) ≤ π(d6) ≤ π(d8) ≤ π(d10) ≤ π(d9) ≤
π(d11) ≤ π(d12)

4. Down diagonals [ m = 4]

π(d1) ≤ π(d4) ≤ π(d2) ≤ π(d7) ≤ π(d5) ≤ π(d3) ≤ π(d10) ≤ π(d8) ≤ π(d6) ≤ π(d11) ≤
π(d9) ≤ π(d12)

5. Alternating down-up diagonals [ m = 5]

π(d1) ≤ π(d2) ≤ π(d4) ≤ π(d7) ≤ π(d5) ≤ π(d3) ≤ π(d6) ≤ π(d8) ≤ π(d10) ≤ π(d11) ≤
π(d9) ≤ π(d12)

6. Alternating up-down diagonals [ m = 6]

π(d1) ≤ π(d4) ≤ π(d2) ≤ π(d3) ≤ π(d5) ≤ π(d7) ≤ π(d10) ≤ π(d8) ≤ π(d6) ≤ π(d9) ≤
π(d11) ≤ π(d12)

The dimension of the problem makes it difficult to practically consider much more
information than what we have captured in these six orderings. We have provided a way of
choosing a reasonable subset that is consistent with the partially known ordering information
among combinations, and that is independent of the dimension of the matrix. The design
outlined in this article can certainly accommodate other subset sizes, should we have more
or less ordering information at our disposal. If, however, the only information we have is the
assumption of a monotonicity across rows and up columns of the matrix, then we can use the
methods outlined in Section 3 based on this “default” subset of six orderings and have
confidence in its performance. Our simulation results will demonstrate that this practical
manner of selecting orders produces strong operating characteristics in Phase I trials with
multiple treatment schedules in terms of recommending acceptable dose-schedule
combinations as the MTD, as well as allocating patients to combinations with acceptable
toxicity.

2.2. Partial ordering among schedules
As previously stated, it is reasonable to assume that within schedules, the dose-toxicity
ordering is completely known. However, the assumption that the DLT probabilities increase
with schedule may not always be true. Therefore, a design that handles the complexity of
knowing the ordering between some schedules and not knowing the ordering between others
would be useful. This would enable us to relax the assumption of monotonicity across
schedules, for a given dose, and propose a design that is more generalizable to the dose-
schedule finding problem. An example of a Phase I trial with unknown ordering information
between schedules, for a given dose, is that of Graux, Sonet, Maertens et al. [10]. In this
trial, MSC1992371A, an oral inhibitor of aurora and other kinases, was administered under
one of two different schedules. In Schedule A, patients received escalating doses of
MSC1992371A on days 1–3 and days 8–10 of a 21-day cycle. In Schedule B, patients
received escalating doses of the agent on days 1–6 of a 21-day cycle. The per administration
dose, as well as the total amount of the drug given during the DLT assessment window, is
the same for each schedule. In this case, it is difficult to completely ascertain the toxicity
relationship between the two schedules for a given dose over the DLT assessment window,
creating a partial order between Schedules A and B.

We continue to use the same structure (i.e. 3 doses × 4 schedules) as the Vidaza [8] example
in Braun et al. [2], so that we can juxtapose simulation results for the case in which we have
completely ordered schedules and the case in which we do not. As was previously pointed
out, it is within reason to assume in this example that the probability of toxicity increases
with both per administration dose and schedule. However, for illustrative purposes, suppose
we assume that Schedule A is the least toxic schedule and Schedule D is the most toxic, but
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know nothing of the ordering between B and C. This would create the partial ordering called
a loop ordering [11] displayed in Figure 1. By relaxing the assumption of completely
ordered schedules in the Vidaza example, we want to see how much, if at all, performance
diminishes by eliminating this assumption. We would expect some loss of performance for
partially ordered schedules and the simulation results provide a measure of how much
information is being lost as a result of not having a completely known schedule ordering.
With this loop ordering, there are two possible complete orders associated with the partial
ordering among schedules. It could be that (1) A ≤ B ≤ C ≤ D or (2) A ≤ C ≤ B ≤ D in terms
of the order relationship between DLT probabilities. In Figure 2, these two possible
arrangements are graphically displayed, with each sub-figure representing a monotonically
increasing toxicity ordering across rows (between doses) and up columns (between
schedules). Within each of these two ordering possibilities for the schedules, we have a
complete ordering between doses and schedules as described in the previous section.
Therefore, we can choose a reasonable subset of orderings for each schedule ordering
possibility as described above and combine them into one subset of possible orderings. If we
rely on the six orderings selected across rows, up columns, and up/down diagonals, then we
would have a total of twelve orderings contained in the subset. The first six for Figure 2(a),
are m = 1, …, m = 6 above and the remaining six, for Figure 2 (b), could be chosen in a
similar fashion. Once we have chosen the subset of possible orderings with which to work,
the methods of the following section can be implemented in order to find a schedule-dose
combination with an acceptable rate of toxicity. If we have even less ordering information
regarding the schedules at our disposal, the number of possible orderings to consider is
compounded. Although the dimension of the problem increases, the methods outlined in this
article are still applicable to partial orders other than a loop ordering. We have included
simulation results for an example of a higher dimension problem in the Supplementary
Material.

3. Trial design and conduct
3.1. First stage

Wages, Conaway and O’Quigley [12] made the case for using an initial escalation stage in
drug combination trials and discussed the need for a variant of the traditional escalation
schemes due to the fact that, in partially ordered trials, the most appropriate dose to which
the trial should escalate could consist of more than one treatment combination. In the first
stage, we make use of “zoning” the matrix of dose-schedule combinations according to the
diagonals of the matrix in Table 1. The trial could begin in the zone Z1 = {d1} and the first
cohort of patients be enrolled on this “lowest” combination. At the first observation of a
toxicity in one of the patients, the first stage is closed and the second stage, which is model-
based, is opened. As long as no toxicities occur, cohorts of patients are examined at each
dose within the currently occupied zone, before escalating to the next highest zone. If d1 was
tried and deemed “safe”, the trial would escalate to zone Z2 = {d2, d4}. If more than one
dose is contained within a particular zone, we sample without replacement from the doses
available within the zone. Therefore, the next cohort is enrolled on a dose that is chosen
randomly from d2 and d4. The trial is not allowed to advance to zone Z3 = {d3, d5, d7} in the
first stage until a cohort of patients has been observed at both all combinations in Z2. This
procedure continues until a toxicity is observed or all available zones have been exhausted.
This procedure can certainly be modified for partially ordered schedules as displayed in
Figure 2. For example, we could expand zone Z2 to include d7 as well, since we do not know
the ordering between d2, d4, and d7 with partially ordered schedules. These zones are simply
a mechanism for getting the trial underway with a conservative initial escalation scheme. All
of the simulation results presented below implement single patient cohorts in the initial
stage. We have also run simulations using our methods with two-patient cohorts. In the latter
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case, the average sample size increased, but overall performance in terms of recommending
acceptable dose-schedule combinations was relatively unchanged. Subsequent to a DLT
being observed, the second stage of the trial begins.

3.2. Second stage
Once we have at least one toxic and one non-toxic response, the modeling stage begins.
Suppose that we have formulated a subset of M possible orderings of DLT probabilities
consistent with available ordering information among the dose-schedule combinations as
described in the previous section. Consider a trial investigating k treatments labeled d1, …,
dk similar to Table 1. For a particular ordering, m, we model the true DLT probability, π(di),
at combination di using a class of models ψm(di, a), m = 1, …, M. A common model used in
practice is the power model

(1)

where α1m, …, αkm represents the skeleton of the model and a ∈(0, ∞). Let us take account
of any prior information regarding the probability of each ordering and allow M to be
described by a set of prior probabilities p (m) = {p(1), …, p(M)}, where p (m) ≥ 0 and where
Σm p (m) = 1. The treatment for the jth patient, Xj, is a random variable taking values xj ∈
{d1, …, dk}. Let Yj be a binary random variable, where 1 denotes the observation of a DLT
for patient j. After inclusion of the first j patients into the trial, if the data are to be analyzed
under ordering m, then the log-likelihood can be written as

(2)

where any terms not involving the parameter a have been equated to zero. Under working
model m, the maximum likelihood estimate of a is given by

We need some value for m so we weight each of the M candidate working models as we
make progress. The updated probability of each ordering is then given by

Wages et al. [4, 12 ] propose an escalation method that selects the ordering with the largest
probability ωj(m). Therefore, we choose a single ordering, m*, such that
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If there is a tie between two or more orderings, then m* is chosen at random from among the
tied orderings. Given m*, the next patient is then allocated to the treatment xj+1 = di such that

for some target DLT rate θ. For trials subject to partial orders, there may be more than one
combination with DLT probability closest to the target. If there is a tie between two or more
combinations, the patient will be randomized to one of the combinations with DLT
probability closest to the target. The trial stops once enough information accumulates about
the MTD.

3.3. Terminating the trial
In practice, investigators are likely to stop the trial if there are already many patients on the
suggested treatment for the next patient. The stopping rule we use here is a practical one; the
trial is stopped if more than a predetermined number, nt, of patients are treated on a single
treatment. In the first stage, the design will stop if escalation proceeds to the highest
combination and nt patients are treated with no DLT on the highest combination d12. In this
case, d12 is declared the MTD. Also, in the first stage, if DLT is observed in the first
enrolled patient on the lowest combination, then an additional patient is included at the
lowest combination. If DLT is observed in both of the first two patients, then the trial is
stopped for safety and no MTD combination is recommended. In the second stage, if the
recommendation is to assign the next patient to a combination that already has nt patients
treated on the combination, the study is stopped and the recommended combination is
declared the MTD. The simulations in the following section present results based on the
stopping rule of nt = 9 patients being already treated on a combination for the example
discussed in Section 2. The design can certainly accommodate other rules. In general,
making it so that the trial is “easier to stop” will result in smaller sample sizes and fewer
toxicities per trial on average, but also in a smaller percentage of trials that recommended an
“acceptable toxicity.” One of the goals of the simulation results is to demonstrate a strong
performance by the design outlined in this section using a practical stopping rule such as the
one described above.

4. Simulated results
We compared the performance of the proposed design with that of Braun et al [2] for finding
acceptable dose-schedule combinations in Phase I clinical trials, as well as assessed its
performance for smaller, more practical, sample sizes. In each set of 1,000 simulated trials,
the target toxicity rate is θ = 0.30 and we incorporate a uniform prior distribution, p (m), on
the orderings. The true toxicity probabilities for each of seven scenarios are provided in
Table 2. As was noted in the previous section, the probability of DLT is modeled via the
power parameter model with the skeleton values generated according to algorithm of Lee
and Cheung [13] using the getprior function in R package dfcrm. (i.e. getprior(δ = 0.05, θ =
0.30, ν = 6, d = 12)). The location of these values were then adjusted to correspond to each
of the possible orderings considered in the subset, creating M different skeletons of initial
DLT probability estimates (see Table 4 of [12]). The primary objective of the trial is to
recommend a single combination with a DLT rate closest to 0.30, keeping in mind there may
be more than one. However, selecting combinations with DLT rates that are within a certain
range of the target is still acceptable. Table 3 provides summary statistics for the
performance of the designs. It reports the probability that each method selects an
“acceptable” combination. These combinations were defined with respect to having true
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DLT probabilities within ±10% of the target rate and are indicated in bold-face type in Table
2. Table 3 also gives the mean sample size after 1000 runs (for trials not stopped after the
first two patients), the percent of overall toxicity induced and the percent of trials stopped
early for safety based on the stopping rules described above. The distribution of MTD dose-
schedule combination selection and patient allocation across all combinations can be found
in the Supplementary Material. Simulations were carried out using R statistical package and
user-friendly R-code for implementing the proposed design can be downloaded at http://
faculty.virginia.edu/model-based_dose-finding/.

In Braun et al. [2], a mean of approximately 60 patients was enrolled in all scenarios, with
the exception of Scenario 4 in which all combination are too toxic. In this scenario, a mean
of 28.7 patients was enrolled before the trial stopped for safety. In order to provide a
justifiable comparison to Braun et al. [2], we ran simulations that exhausted a predetermined
sample size, rounded to the nearest integer of the mean sample sizes in Braun et al. (BTNL;
[2]). In all simulated trials, the complete number of patients was exhausted and one of the
available combinations was recommended at the conclusion of the trial. The goal of
presenting these results is to show relative performance of the proposed design to BTNL
when enrolling a comparable number of patients.

4.1. Comparison to Braun et al
In Scenario 1, BTNL outperforms the proposed method in terms of recommending an
acceptable combination, selecting one of the four doses with DLT probabilities between
0.20 and 0.40 in 87% of simulated trials, while the proposed design for completely ordered
schedules does this in 73% of the trials. The methods induce toxicity in a similar proportion
of patients (0.22 vs. 0.20). In Scenario 2, our design yields a slightly higher selection
percentage for acceptable combinations (86%) than the BTNL (81%) and, again, the
methods induce toxicity in a comparable proportion of patients. The methods perform nearly
identically in Scenario 3 in terms of selecting acceptable combinations as the MTD (88% vs.
87%).

In Scenario 4, there are no acceptable combinations and the BTNL stops the trial without
selecting any combination 90% of the time. The proposed design does not include a stopping
rule for this set of simulations, so a comparison in this scenario is difficult. The proposed
method, carried out on a sample of 29 patients, chooses the lowest combination in 93% of
simulated trials or one of its two diagonal neighbors in another 5%. It is also worth pointing
out, approximately 90% of the patients were assigned to the lowest level or one of its two
neighboring combinations. In Scenarios 5–7, the performance of the our design for both
completely and partially ordered schedules demonstrates superior performance to the BTNL,
selecting acceptable doses in approximately 10%, 13% and 16% more simulated trials,
respectively. Overall, the simulation results indicate that, in terms of identifying acceptable
combinations, the performance of the new method is competitive with that of existing dose-
schedule finding methods. It is also important to notice that, even in the presence of partially
ordered treatment schedules, the performance of the proposed method does not diminish
significantly. In fact, the recommendation percentages for completely and partially ordered
schedules are nearly identical in several scenarios, and the former outperforms the latter by
merely 4 – 6% in other scenarios.

4.2. Inclusion of a stopping rule
We now examine the design proposed in this work when incorporating the stopping rules
described in Section 3.3 for both completely and partially ordered schedules. It is clear from
examining Table 3 that our design is performing well in terms of recommending acceptable
combinations as well as treating patients at acceptable combinations, for both completely
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and partially ordered schedules, when the trials are stopped early. For instance, in Scenario
1, the proposed design selects one of the four doses with DLT probabilities between 0.20
and 0.40 in about 62% of simulated trials, while stopping the trial after a mean of
approximately 26 patients. In Scenario 2, the proposed designs yield a selection percentage
for acceptable combinations in approximately 75% trials and enrolls, on average,
approximately 25 patients. In Scenario 3, our method with stopping rules recommends an
acceptable combination in 73% of simulated trials while enrolling an average of only 22
patients per trial. The design appropriately stops trials in the presence of toxic combinations.
In Scenario 4, all combinations are too toxic, so no combination is acceptable. On average,
approximately 15 patients are enrolled before the trial stops about 24% of the time. The
method also enrolled a majority of patients on the lowest combination d1 or one of its two
closest neighboring doses, d2 or d4, in a large percentage of trials (see Supplementary
Material).

In Scenarios 5–7, both completely and partially ordered designs with stopping rules continue
to demonstrate strong performance, selecting acceptable combinations in a high percentage
of trials and allocating patients to acceptable combinations, while significantly cutting down
on the typically large sample sizes seen in Phase I trials with many combinations. In
Scenario 5, the method uses an average of 23 patients to recommend an acceptable
combination as the MTD 64 – 65% of the time. In Scenario 6, with completely ordered
schedules, our design selects acceptable combinations in 69% of simulated trials based on a
mean of 24 patients, while with partially ordered schedules, it does this in 66% of trials
based on approximately 26 patients. Finally, in Scenario 7, 49% of the time, an acceptable
combination is recommended after enrolling 24 patients on average. This scenario contains
the largest diminish in performance between complete and partial ordered schedules.
Recommendation percentage drops 6% to 43% in partially order schedules from completely
ordered. This should not be unexpected in that it is not reasonable to anticipate that a design
with partially ordered schedules will perform as well as one with completely ordered
schedules in every scenario. We should expect this loss of information to hinder
performance in some cases. Overall, the simulation results indicate that the proposed method
is a practical design for dose-finding under both completely and partially ordered treatment
schedules. We can choose a small number of orderings, so as to reduce the dimension of the
problem, and have confidence in the performance of the proposed design in terms of the
criteria used to measure its performance in this section.

We also evaluated the performance of the proposed method under true toxicity scenarios that
have DLT probabilities that are nonmonotonic in schedule. Table 4 provides the true
probabilities under Scenarios 8–13, in which Schedule B is more toxic than Schedule C.
These scenarios are Scenarios 1–3 and 5–7 of Table 2 with probabilities for Schedules B and
C switched. We did not repeat Scenario 4, in which all combinations were overly toxic.
Table 5 provides summary statistics for the performance of the “partial order schedules,
stopping rule” application of the design to these scenarios. It is clear from examining Table
5 that the results are very close to those reported for partially ordered schedules / stopping
rule in Table 3. This should not be unexpected since we have accounted for the uncertainty
of actually knowing whether Schedule B is more toxic than Schedule C (orderings 1–6), or
vice versa (orderings 7–12), by considering more orderings in the subset of possibilities. In
other words, by taking account of the uncertainty of Schedule B or C being the more toxic
treatment schedule, we have guarded against our method being reliant on this information,
and thus achieve similar results in each case.
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5. Conclusion
In this article, we have proposed a new design for effectively estimating acceptable dose-
schedule combinations in Phase I clinical trials involving multiple courses of study. In these
trials, the toxicity order of all combinations is usually not fully known. Further, while we
can assume a complete order for the doses under investigation within schedule, it may be
that we cannot make this assumption for schedules within doses. Therefore, we have
outlined a method that will handle this complexity by relaxing the assumption that toxicity
always increases with schedule, and thus can accommodate partially ordered courses of
therapy. The simulation results indicate that, in terms of identifying acceptable
combinations, our method performs well in comparison to existing dose-schedule finding
methods [2]. At the very least, the method gives the investigator an alternative to his or her
design preference when presented with a Phase I trial with multiple treatment schedules.
Further, the proposed method displays a strong performance for sample sizes that are
smaller than have been typically reported in previous literature on dose-schedule finding.

If, for some reason, we happen to know the ordering of all combinations between all
schedules, our method reduces to the CRM. The CRM has been shown to have near-optimal
properties in trials of a single-agent, which can explain the strong performance of the our
proposed design since we are essentially applying the CRM after having taken the extra step
of choosing an ordering. Operating characteristics appear to be strong although more study,
under a broader range of possible situations, may provide more insight into general
behavior. We have tested our method in extensive simulation studies, of which only a small
part are presented here. Because it is an extension of the well known CRM, it is believed
that it will be more easily understood by clinicians and review boards. Overall, the strong
showing of our method in extensive simulation studies gives us confidence in
recommending it for practical use.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Example of a loop partial order
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Figure 2.
Possible arrangements of toxicity orderings between schedules. Toxicity increases as we
move across rows and up columns of each sub-figure.
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Table 1

Combinations for 3 doses and 4 schedules

Schedule

Doses in mg/m2

8 16 24

D d10 d11 d12

C d7 d8 d9

B d4 d5 d6

A d1 d2 d3
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