Table 4.
Simulation results for Poisson regression: E(Y|X) = exp(β0 + β1X), where X = L + Ub; W = L + Uc; β = (0.5, ln(2))′; M = 1 − 2L + V; Q = −1 + 2X + ∊; θ is the proportion of the calibration data; L ~ N(0.5,1); Ub ~ N(0,) is the Berkson error; Uc ~ N(0,) is the classical error; V ~ N(0,1); ∊ ~ N(0,1); n = 500; Naive, “naive” regression replacing X by W;RC1, Regression calibration approach replacing X by its conditional expectation given W; RC2, Regression calibration approach replacing X by its conditional expectation given W and Q, M in the calibration sample; SIMEX, simulation extrapolation procedure; EEE, Expected estimating equation method.
= 0.3 |
= 0.5 |
||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
θ | β | Naive | RC1 | RC2 | SIMEX | EEE | Naive | RC1 | RC2 | SIMEX | EEE | ||
0.5 | 0.2 | β 0 | Bias | 0.183 | 0.103 | 0.075 | 0.010 | 0.002 | 0.242 | 0.124 | 0.086 | 0.022 | −0.001 |
SD | 0.048 | 0.054 | 0.053 | 0.058 | 0.056 | 0.046 | 0.053 | 0.053 | 0.058 | 0.053 | |||
ASE | 0.046 | 0.052 | 0.051 | 0.055 | 0.053 | 0.046 | 0.057 | 0.056 | 0.059 | 0.057 | |||
CP | 0.048 | 0.481 | 0.670 | 0.927 | 0.935 | 0.005 | 0.420 | 0.686 | 0.917 | 0.962 | |||
β 1 | Bias | −0.159 | 0.000 | −0.006 | −0.012 | −0.001 | −0.230 | 0.007 | −0.004 | −0.030 | 0.004 | ||
SD | 0.037 | 0.057 | 0.051 | 0.045 | 0.048 | 0.035 | 0.066 | 0.056 | 0.047 | 0.051 | |||
ASE | 0.033 | 0.055 | 0.049 | 0.043 | 0.045 | 0.032 | 0.065 | 0.056 | 0.046 | 0.051 | |||
CP | 0.023 | 0.942 | 0.929 | 0.917 | 0.932 | 0.003 | 0.957 | 0.940 | 0.877 | 0.942 | |||
0.4 | β 0 | Bias | 0.230 | 0.149 | 0.103 | 0.003 | 0.001 | 0.289 | 0.172 | 0.120 | 0.005 | −0.001 | |
SD | 0.048 | 0.054 | 0.054 | 0.055 | 0.054 | 0.051 | 0.063 | 0.061 | 0.061 | 0.061 | |||
ASE | 0.049 | 0.056 | 0.055 | 0.057 | 0.057 | 0.050 | 0.060 | 0.059 | 0.061 | 0.061 | |||
CP | 0.003 | 0.262 | 0.524 | 0.929 | 0.952 | 0.000 | 0.234 | 0.453 | 0.935 | 0.950 | |||
β 1 | Bias | −0.161 | −0.001 | −0.010 | −0.006 | −0.001 | −0.231 | 0.001 | −0.015 | −0.013 | 0.000 | ||
SD | 0.039 | 0.061 | 0.055 | 0.047 | 0.049 | 0.038 | 0.074 | 0.061 | 0.049 | 0.054 | |||
ASE | 0.037 | 0.061 | 0.054 | 0.048 | 0.050 | 0.036 | 0.070 | 0.059 | 0.050 | 0.056 | |||
CP | 0.038 | 0.942 | 0.935 | 0.935 | 0.957 | 0.003 | 0.952 | 0.919 | 0.922 | 0.950 | |||
| |||||||||||||
0.7 | 0.2 | β 0 | Bias | 0.181 | 0.100 | 0.054 | 0.004 | −0.002 | 0.242 | 0.127 | 0.069 | 0.021 | 0.003 |
SD | 0.046 | 0.050 | 0.050 | 0.054 | 0.052 | 0.044 | 0.053 | 0.052 | 0.057 | 0.054 | |||
ASE | 0.046 | 0.051 | 0.050 | 0.053 | 0.052 | 0.046 | 0.053 | 0.053 | 0.057 | 0.055 | |||
CP | 0.040 | 0.498 | 0.802 | 0.942 | 0.942 | 0.003 | 0.323 | 0.762 | 0.942 | 0.960 | |||
β 1 | Bias | −0.160 | 0.002 | −0.002 | −0.010 | 0.001 | −0.230 | 0.001 | −0.007 | −0.030 | −0.001 | ||
SD | 0.035 | 0.054 | 0.047 | 0.043 | 0.044 | 0.032 | 0.055 | 0.046 | 0.042 | 0.044 | |||
ASE | 0.034 | 0.051 | 0.044 | 0.042 | 0.042 | 0.032 | 0.057 | 0.048 | 0.043 | 0.046 | |||
CP | 0.018 | 0.928 | 0.938 | 0.940 | 0.960 | 0.000 | 0.960 | 0.960 | 0.887 | 0.943 | |||
0.4 | β 0 | Bias | 0.226 | 0.148 | 0.078 | −0.002 | −0.002 | 0.293 | 0.177 | 0.093 | 0.006 | 0.003 | |
SD | 0.049 | 0.056 | 0.056 | 0.060 | 0.059 | 0.051 | 0.061 | 0.058 | 0.058 | 0.059 | |||
ASE | 0.050 | 0.054 | 0.053 | 0.056 | 0.055 | 0.049 | 0.057 | 0.056 | 0.060 | 0.058 | |||
CP | 0.018 | 0.235 | 0.678 | 0.927 | 0.939 | 0.000 | 0.175 | 0.603 | 0.939 | 0.942 | |||
β 1 | Bias | −0.158 | −0.002 | −0.007 | −0.007 | 0.001 | −0.234 | −0.001 | −0.012 | −0.012 | −0.002 | ||
SD | 0.038 | 0.056 | 0.048 | 0.046 | 0.045 | 0.038 | 0.066 | 0.054 | 0.048 | 0.050 | |||
ASE | 0.037 | 0.054 | 0.048 | 0.045 | 0.045 | 0.036 | 0.061 | 0.052 | 0.048 | 0.050 | |||
CP | 0.041 | 0.937 | 0.942 | 0.934 | 0.947 | 0.000 | 0.934 | 0.929 | 0.924 | 0.939 |
Note: SD denotes the sample standard deviation of the estimates; ASE is the average of the estimated standard errors; CP represents the coverage probability of the 95% confidence intervals.