
Genes-environment interactions in obesity- and diabetes-
associated pancreatic cancer: A GWAS data analysis

Hongwei Tang1, Peng Wei2, Eric J. Duell3, Harvey A. Risch4, Sara H. Olson5, H. Bas Bueno-
de-Mesquita6, Steven Gallinger7, Elizabeth A. Holly8, Gloria M. Petersen9, Paige M. Bracci8,
Robert R. McWilliams9, Mazda Jenab10, Elio Riboli11, Anne Tjønneland12, Marie Christine
Boutron-Ruault13, Rudolf Kaaks14, Dimitrios Trichopoulos15, Salvatore Panico16, Malin
Sund17, Petra H.M Peeters18, Kay-Tee Khaw19, Christopher I Amos20,*, and Donghui Li1,†

1Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer
Center, Houston, TX, USA 2Division of Biostatistics and Human Genetics Center, School of
Public Health, University of Texas Health Science Center, Houston, TX 77030 3Catalan Institute
of Oncology (ICO-IDIBELL), Barcelona, Spain 4Yale University School of Public Health, New
Haven, CT, USA 5Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering
Cancer Center, New York, NY, USA 6National Institute for Public Health and the Environment
(RIVM), Bilthoven, The Netherlands and Department of Gastroenterology and Hepatology,
University Medical Center Utrecht, Utrecht, The Netherlands 7Samuel Lunenfeld Research
Institute, Toronto General Hospital, University of Toronto, Toronto, Canada 8Department of
Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
9Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA 10International
Agency for Research on Cancer, Lyon, France 11Division of Epidemiology, Public Health and
Primary Care, Imperial College London, London, UK 12Institute of Cancer Epidemiology, Danish
Cancer Society, Copenhagen, Denmark 13Inserm, Centre for research in Epidemiology and
Population Health (CESP), U1018, Nutrition, Hormones and Women’s Health team, F-94805,
Villejuif, France; Univ Paris Sud, UMRS 1018, F-94805, Villejuif, France; IGR, F-94805, Villejuif,
France 14Division of Cancer Epidemiology, German Cancer Research Center, Heidelberg,
Germany 15Department of Epidemiology, Harvard School of Public Health, 677 Huntington,
Avenue, Boston, MA 02115, USA; Bureau of Epidemiologic Research, Academy of Athens, 28
Panepistimiou Street, Athens, GR-106 79, Greece; Hellenic Health Foundation, Kaisareias 13 &
Alexandroupoleos Street, GR-115 27, Athens Greece 16Dipartimento di Medicina Clinica e
Chirurgia, Federico II, University, Naples Italy 17Department of Surgery, Umeå University
Hospital, Umeå, Sweden 18Julius Center for Health Sciences and Primary Care, University
Medical Center Utrecht, Utrecht, The Netherlands; Division of Epidemiology, Public Health and
Primary Care, Imperial College London, London, UK 19School of Clinical Medicine, University of
Cambridge, UK 20Department of Epidemiology, The University of Texas MD Anderson Cancer
Center, Houston, TX, USA

Abstract

†All correspondence should be addressed to: Donghui Li, Ph.D., Department of Gastrointestinal Medical Oncology, UT MD Anderson
Cancer Center, 1515 Holcombe Boulevard, Unit 426, Houston, TX 77030, Phone: 713 834 6690, Fax: 713 834 6153,
dli@mdanderson.org.
*Current address: Christopher I Amos, Department of Community and Family Medicine Geisel School of Medicine, Dartmouth
College, Lebanon, NH 03766

The authors have nothing to disclose.

NIH Public Access
Author Manuscript
Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2015 January 01.

Published in final edited form as:
Cancer Epidemiol Biomarkers Prev. 2014 January ; 23(1): 98–106. doi:10.1158/1055-9965.EPI-13-0437-
T.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Background—Obesity and diabetes are potentially alterable risk factors for pancreatic cancer.
Genetic factors that modify the associations of obesity and diabetes with pancreatic cancer have
previously not been examined at the genome-wide level.

Methods—Using GWAS genotype and risk factor data from the Pancreatic Cancer Case Control
Consortium, we conducted a discovery study of 2,028 cases and 2,109 controls to examine gene-
obesity and gene-diabetes interactions in relation to pancreatic cancer risk by employing the
likelihood ratio test (LRT) nested in logistic regression models and Ingenuity Pathway Analysis
(IPA).

Results—After adjusting for multiple comparisons, a significant interaction of the chemokine
signaling pathway with obesity (P = 3.29 × 10−6) and a near significant interaction of calcium
signaling pathway with diabetes (P = 1.57 × 10−4) in modifying the risk of pancreatic cancer was
observed. These findings were supported by results from IPA analysis of the top genes with
nominal interactions. The major contributing genes to the two top pathways include GNGT2,
RELA, TIAM1 and GNAS. None of the individual genes or SNPs except one SNP remained
significant after adjusting for multiple testing. Notably, SNP rs10818684 of the PTGS1 gene
showed an interaction with diabetes (P = 7.91 × 10−7) at a false discovery rate of 6%.

Conclusions—Genetic variations in inflammatory response and insulin resistance may affect
the risk of obesity and diabetes-related pancreatic cancer. These observations should be replicated
in additional large datasets.

Impact—Gene-environment interaction analysis may provide new insights into the genetic
susceptibility and molecular mechanisms of obesity- and diabetes-related pancreatic cancer.
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Introduction
Pancreatic cancer is the fourth leading cause of cancer death, accounting for more than
37,600 deaths each year in the United States (1). Epidemiological studies have identified
cigarette smoking as the major modifiable risk factor for this disease. Obesity and long-term
history of diabetes mellitus may also affect risk and are also modifiable (2, 3). Genetic
factors are known to play a role in pancreatic cancer development. Although genome-wide
association studies (GWAS) have identified a few loci and chromosome regions that are
significantly associated with the risk of pancreatic cancer (4, 5), these findings explain only
a portion of the heritability of this disease. Because of the limitations of single marker
analysis on GWAS data, there have been increasing efforts recently on GWAS pathway
analysis, which uses prior biological knowledge of gene function and aims at combining
moderate signals of SNPs and obtaining biologically interpretable findings (6, 7). Despite its
great promise in providing insights into disease mechanisms, current GWAS pathway
analysis has some caveats including being limited to enrichment of marginal genetic effects
in biological pathways without considering possible interactions between pathways and
environmental factors (8). On the other hand, environmental factors are likely to interact
with multiple genes through various biological pathways, contributing to the susceptibility
of complex human diseases. While current GWAS top hits account for only limited
heritability, gene-environment interactions may account for some of the missing heritability
of pancreatic cancer (9).

We have previously conducted pathway analyses of the GWAS data in pancreatic cancer.
Several novel pathways significantly associated with risk were identified (10, 11). For
example, the pancreas development pathway (Mature Onset Diabetes of the Young
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[MODY] pathway) was identified as a top pathway in pancreatic cancer etiology. One
possible mechanism related to this pathway is through obesity and diabetes (12–14).
However, our previous study did not detect a significant interaction of obesity or diabetes
with the NR5A2 gene, a GWAS top hit and a major contributing gene to the pancreas
development pathway (aka MODY (Mature Onset Diabetes of the Young) pathway), in
modifying the risk of pancreatic cancer. On the other hand, we detected a strong interaction
of the fat mass and obesity-associated (FTO) gene with overweight for pancreatic cancer
risk, even though the gene did not show a marginal effect (15). A recent post-GWAS
analysis of diabetes-related genes also failed to find strong evidence that common variants
underlying type 2 diabetes or related phenotypes interact with diabetes in modifying the risk
of pancreatic cancer (16). These observations suggest that there are unidentified genes
contributing to obesity- and diabetes-related pancreatic cancer. Taking advantage of the
existing GWAS data and exposure variables from the Pancreatic Cancer Case Control
Consortium (PanC4)(17), we conducted a comprehensive gene-environment (G x E)
interaction analysis of genetic factors that may modify the associations of obesity and
diabetes with pancreatic cancer.

Materials and Methods
Study population and dataset

The study population was drawn from seven studies participating in the previously
conducted GWAS of the Pancreatic Cancer Cohort Consortium (PanScan) and the PanC4
Consortium (4, 5), including six case-control studies conducted at MD Anderson Cancer
Center, Mayo Clinic, Yale University, University of California at San Francisco, Memorial
Sloan-Kettering Cancer Center, and University of Toronto, and one nested case-control
study from the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort.
Cases were defined as patients diagnosed with primary adenocarcinoma of the pancreas; in
each study center, controls were matched to cases according to birth year, sex, and self-
reported race/ethnicity and were free of pancreatic cancer at the time of recruitment.

GWAS scanning was performed at the National Cancer Institute Core Genotyping Facility
using the Illumina HumanHap550 and HumanHap550-Duo SNP arrays and Illumina Human
610-Quad arrays (4, 5). Genotype data covering 562,000 and 621,000 SNPs from 4,195
study subjects (2,163 cases and 2,232 controls) was downloaded from the Database of
Genotypes and Phenotypes (dbGaP) website (http://www.ncbi.nlm.gov/gap) with the
approval of MD Anderson Institutional Review Board. We first conducted data cleaning and
quality control by removing SNPs with minor allele frequency (MAF) < 5%, deviating from
Hardy–Weinberg equilibrium (P < 0.001) or not genotyped in both SNP array platforms,
resulting in a final dataset of 468,114 SNPs. According to the International HapMap Project
genotype data (phase 3 release #3, NCBI build 36, dbSNP b126, 2010-05-28, MAF > 5%)
for CEU, JPT/CHB, and YRI (18), we used 10,155 high-quality markers (r2 < 0.004) in
STRUCTURE (19) and identified a total of 4,137 individuals (2,028 cases and 2,109
controls) with 0.75–1.00 similarity to CEU as the study subjects in the current analysis.
Then, we derived the top five principal components for population substructure in the
Caucasian subjects using the EIGENSTRAT (20).

Definition of pathways and genes
The pathways and genes used in the current analysis are defined as previously described
(11). A total of 214 human biological pathways were downloaded from the KEGG website
(21). Of these, 197 pathways with 10–500 genes each were considered in the analyses. Gene
lists were downloaded from the human genome database version18 (hg18) using the UCSC
Table Browser data retrieval tool (22). SNPs within 20 kb upstream or downstream of genes
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were included. In total, 5,127 genes annotated in the 197 pathways, covering 82,881 SNPs,
were tested for interactions with risk factors.

Exposure Variables
Exposure variables without personal identifiers were provided by each participating
institution to MD Anderson under IRB approvals and MTA agreements. Exposure variables
included age, sex, race/ethnicity, adulthood body mass index (BMI, weight/height2), history
of cigarette smoking, history of diabetes, and family history of cancer. All data were coded
according to a uniform data dictionary. Missing pack-years of smoking were imputed based
on study-age-sex means in 228 smokers. After merging and cleaning the data, we defined
the variables in this G x E analysis as follows: obesity (BMI ≤30 kg/m2 vs. >30 kg/m2) and
diabetes (yes vs. no). Other exposure variables that are adjusted in the multivariable models
included: age (continuous), sex, and smoking (0, <20 and ≥20 pack-years). Because of a
large number of missing value for family history of cancer, this variable was not considered
in the model.

Statistical methods
We used principal component analysis (PCA) to reduce the dimension of SNPs within a
gene or pathway before the interaction analysis (11, 23). Briefly, PCA was performed to
decompose the genetic variation in a gene into orthogonal components, called eigenSNPs;
the eigenvalues were calculated to identify principal components (eigenSNPs) that explained
at least 85% of the observed genetic variation within a gene. Prior to pathway-by-
environment interaction analyses, we used the global likelihood-ratio test (LRT) to
determine if genes represented by the eigenSNPs were marginally associated with disease
status, and only those genes with nominal P values ≤ 0.10 were retained in the pathway
(PCA-LRT) screening. The eigenSNPs of genes with marginal effects were included in the
pathway-environment interaction analyses, along the same line as the two-step approach for
SNP x SNP/SNP x environment interaction analysis proposed by (24) and (25). The gene/
pathway and environment interaction was analyzed using LRT in nested logistic regression
models. The full model included age (continuous), sex, study sites (categorical), five
principal components (quantitative) capturing population structure, smoking (pack years),
genetic factors (eigenSNPs), the risk factor of interest, and the interaction terms (the
products of risk factor of interest and eigenSNPs). The interaction terms were removed from
the reduced model.

For G x E analysis at the pathway level, in total 172 pathways having at least two genes with
marginal effect were identified through the PCA-LRT screening (Supplementary Table 1).
Genes with a PG x E value < 0.05 in the interaction analysis were considered as the major
contributing gene(s) to the pathway. We also performed a simulation study to demonstrate
that the LRT method can effectively control the Type I error for the interaction analysis
(Supplementary Text).

For G x E analysis at the gene level, a total of 5,127 genes were tested using LRT and
logistic regression. SNPs with PG x E value <0.05 were defined as the contributing SNPs to a
gene. After screening all 5,127 genes, we also took the “gene to pathway” approach by
conducting Ingenuity Pathway Analysis (IPA) on the genes with a PG x E value ≤ 0.05 to
identify over-represented canonical pathways (Ingenuity® Systems, www.ingenuity.com).

For G x E analysis at the SNP level, we analyzed the interactions of 82,881 SNPs with
obesity or diabetes on the risk of pancreatic cancer using LRT in nested logistic regression
model. SNPs were coded as 0, 1 or 2 for counts of the minor allele.
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To control the problem of false positive findings associated with multiple testing, we applied
the Bonferroni correction for G x E interaction analysis at the pathway level. P values < 1.45
× 10−4 (0.05/(2 × 172)) were considered statistically significant at the pathway level.
Because of the large number of genes/SNPs, we used the value method with false discovery
rate (FDR) at 0.10 as the significance threshold for G x E analysis at the gene/SNP level
(26).

Results
The characteristics and exposure variables of the study populations are described in Table 1.
There are no significant case-control differences in the distributions of age, race and sex (all
P > 0.10). More than 99% of participants were self-reported non-Hispanic whites. Case-
control association did not suggest any population stratification (adjusted lambda = 0.999)
(27). The prevalence of obesity (BMI > 30 kg/m2) was 21.1% vs. 16.6%, and diabetes was
20.3% vs. 9.5% in cases and controls, respectively. Obesity, diabetes, and smoking (≥20
pack years) were significantly associated with increased risk of pancreatic cancer, with
adjusted odds ratios (AOR) and 95% confidence intervals (95% CI) 1.22 (1.02–1.47), 2.35
(1.94–2.84), and 1.60 (1.38–1.86), respectively.

G x E interactions at pathway level
Among the 172 pathways tested, 40 pathways showed nominal interactions (P < 0.05) with
obesity (Supplementary Table 2) and 18 with diabetes (Supplementary Table 3). One
pathway (contributing genes) remained statistically significant and one nearly so after
Bonferroni correction: The chemokine signaling pathway (GNGT2, RELA, and TIAM1)
interacting with obesity (P = 3.29 × 10−6), the calcium signaling pathway with diabetes
(GNAS) (P = 1.57 × 10−4) (Table 2). In addition, four additional top pathways, i.e.
interaction of obesity with pathways in cancer, cytokine-cytokine receptor interaction
pathway, as well as interaction of diabetes with MAPK signaling pathway and pathways in
cancer are also shown in Table 2. We checked the sensitivity of the statistical method (LRT)
to pathway size and found that the significance levels were unrelated to pathway size (data
not shown). Furthermore, as a complementary approach to the above PCA-LRT analysis, we
performed IPA analysis on nominally significant genes (P < 0.05) in G x E interactions at
the gene level (next section). Several pathways that were highly significant at P < 10−8 were
identified: the role of RIG1-like receptors in antiviral innate immunity canonical pathway
and the role of PI3K/AKT signaling in the pathogenesis of influenza were most over-
represented in obesity-interacting genes, while molecular mechanisms of cancer pathway
was most over-represented in diabetes-interacting genes (Table 3).

G x E interactions at gene level
Among the 5,127 genes tested, 335 and 263 genes showed nominal interactions with obesity
and diabetes, respectively (P < 0.05, Supplementary Tables 4 and 5). After adjusting for
multiple comparisons, none of these interactions remained statistically significant. Twelve
genes with the smallest P values (<0.001) are listed in Table 4, including seven genes
interacting with obesity and five genes interacting with diabetes. To overcome the reverse
causality problem, we analyzed gene interactions with diabetes after excluding subjects with
new onset diabetes (≤ 2 years), but no significant change in the results was observed (data
not shown).

G x E interactions at SNP level
A total of 3,859 and 3,551 SNPs exhibited nominal interactions with obesity and diabetes,
respectively (P < 0.05), which were identified as the contributing SNPs to the genes with
nominal interactions. Among these SNPs, 810 interactions with obesity and 758 interactions

Tang et al. Page 5

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



with diabetes at the level of P < 0.01 are presented in Supplementary Tables 6 and 7,
respectively. There are seven interactions with obesity and six with diabetes that had a p
value of <10−5 (Table 5). One SNP (rs10818684) of the PTGS1 (aka COX1) gene actually
had a q value of 0.06, which was significant at FDR < 10%. Notably, all of the top 13 SNPs
displayed a differential effect on risk of pancreatic cancer between exposed (obese or
diabetic) and unexposed (non-obese or non-diabetic) groups and none of them had marginal
effect on risk of pancreatic cancer when the analysis was conducted in the combined dataset
of exposed and unexposed individuals (Table 5).

There are a total of 120 SNPs genotyped for GNGT2 (8 SNPs), RELA (5 SNPs) and TIAM1
(107 SNPs), the three major contributing genes in the chemokine signaling pathway. We
first conducted likelihood ratio test (LRT) in the logistic regression model for each SNP and
found 17 SNPs were significant at the 0.05 level. We further analyzed the interaction pattern
of the 17 SNPs using standard interaction analysis method and identified 8 synergisms, 4
antagonisms and 5 undefined (Supplementary Table 8).

In light of the strong linkage between obesity and diabetes, we investigated the overlap
between genes/SNPs interacting with obesity and diabetes on the risk of pancreatic cancer,
as well as the overlap between genes/SNPs marginally associated with these two risk factors
(Supplementary Table 9). At the significance level of 0.001, there were no overlapping
genes/SNPs between obesity and diabetes; at a less stringent significance level of 0.01, there
was a moderate 1% to 3% overlapping genes/SNPs. As a result, our analyses here did not
support strong overlap between genetic factors interacting with obesity and diabetes on the
risk of pancreatic cancer.

Discussion
In this large G x E analysis in pancreatic cancer, two approaches, from pathway to gene and
from gene to pathway, suggest consistent findings that highlight the interactions of
inflammatory response pathways with obesity and insulin resistance or cancer-related
pathways with diabetes in modifying the risk of pancreatic cancer. We also observed that
SNPs without marginal effects had strong differential effects on cancer risk between
exposed and unexposed individuals. These preliminary findings underscore the potential
value and the challenges of comprehensive G x E analysis in revealing molecular
mechanisms that may underlie complex disease.

Using LRT-logistic regression analysis, the current study identified a statistically significant
interaction of the chemokine signaling pathway with obesity in modifying the risk of
pancreatic cancer. This association was supported by findings from another statistical
approach, i.e. IPA analysis. The major contributing genes to the chemokine signaling
pathway and the top two canonical pathways identified by IPA (Table 3), e.g. RELA,
GNGT2, NFKB1, NFKB2, and IFNA or interleukin genes, suggest a central role of the
NFκB (Nuclear Factor kappa B) signaling mediated inflammatory and immune responses in
obesity-related pancreatic cancer (2). GNGT2 (guanine nucleotide binding protein (G
protein)), gamma transducing activity polypeptide 2) has been shown to mediate β-arrestin
1-induced Akt phosphorylation and NFκB activation (28). The RELA gene encodes the p65
protein which binds to NFκB1 forming the most abundant form of NFκB (29). NFκB is
activated by many proinflammatory cytokines, and it is constitutively activated in pancreatic
cancer. Increased NF-κB activity inhibits apoptosis and promotes growth, tumorigenesis,
angiogenesis, invasion, and metastasis (30). Observations from this study suggest that
genetic variations conferring pro-inflammatory responses may act in concerts with the
chronic inflammatory state of obesity in increasing the risk of pancreatic cancer.
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The current study found a nearly significant interaction of diabetes with calcium signaling
pathway in modifying the risk of pancreatic cancer. In addition, nominal interactions of
MAPK (mitogen-activated protein kinase) signaling pathway and pathway in cancer with
diabetes were also observed. IPA analysis found that genes in molecular mechanisms of
cancer were most overrepresented among diabetes-interacting genes. The physiological and
biochemical roles of calcium signaling range widely, and how this pathway interacts with
diabetes in modifying the risk of pancreatic cancer remains unclear. The single significant
gene contributing to this pathway was GNAS (GNAS complex locus, aka adenylate cyclase-
stimulating G alpha protein), which encodes the G protein α unit that couples receptors to
the generation of intracellular cyclic AMP (cAMP). GNAS mutations have been reported in
multiple types of endocrine neoplasms (31). High frequency of GNAS mutations were also
found in intraductal papillary mucinous neoplasm of the pancreas, but not in pancreatic
ductal cancer (32). However, studies in mice indicate that mutations of this gene lead to
obesity, glucose intolerance and insulin resistance (33). It is possible that GNAS variants
contributed to diabetes-associated pancreatic cancer via the mechanism of altered cAMP
signaling transduction or enhanced insulin resistance. In addition to the calcium signaling
pathway, the most notable interaction of diabetes was with genes or pathways involved in
cancer, which was consistently identified by both PCA-LRT and IPA approaches. The major
contributing genes to these interactions included the oncogenic FOS (FBJ murine
osteosarcoma viral oncogene homolog), the tumor promoting gene EPAS1 (endothelial PAS
domain protein 1, aka hypoxia-inducible factor 2 alpha), a tumor suppressor DAPK3 (death-
associated protein kinase 3) and MAP2K7 (aka MEK7, JNKK2, and SKK4) (34). MAP2K7
mediates the cellular responses to proinflammatory cytokines, and environmental stresses
with a strong preference for activation of the JNK (c-Jun N-terminal Kinase) pathway (35).
JNK signaling plays a central role in obesity and insulin resistance (36) as well as in
regulating apoptosis (37). FOS proteins can dimerize with c-Jun, thereby forming the
transcription factor complex AP-1 that regulates cell proliferation, differentiation, and
transformation as well as apoptosis (38). Overall, the results of our study highlight pathways
and genes that have been implicated in cancer development, especially those associated with
insulin resistance and apoptosis, in diabetes-related pancreatic cancer.

Several studies have previously suggested the possibility to increase statistical power of G x
E analyses by focusing on genes with marginal effects only (24). Our findings that SNPs
with the smallest P value for interaction were those without any marginal effect suggest that
G x E analysis limited to such genes/SNPs may miss genetic variants that have a true impact
on disease risk among exposed individuals only, consistent with a recently reported SNP by
alcohol intake interaction influencing the risk of esophageal squamous-cell carcinoma
(ESCC)(39, 40). Thus, comprehensive G x E analysis of GWAS data using multiple
analytical methods with complementary strengths as undertaken here and suggested by
previous research (41) may be a necessary and useful approach to unveiling missing
heritability of complex disease such as pancreatic cancer (42). It would be interesting to
develop hybrid strategies, in line with that of (25), for pathway by environment interaction
analysis in the future.

Our study has several strengths and limitations. This is the largest G x E analysis in
pancreatic cancer with the most comprehensive analysis of all biological pathways identified
from KEGG using an agnostic approach. We used a PCA approach to reduce the
dimensionality of the GWAS data and increased the probability of finding useful
information. The analysis was based on high quality genotype and exposure data with
extensive quality control measures. We also applied stringent criteria to control false-
positive reporting. However, our sample size is still relatively small for a full G x E GWAS
analysis. Our findings cannot be replicated due to the lack of available datasets. Thus, the
possibility that some associations are spurious findings cannot be excluded, which limits the
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generalization of the results. Nevertheless, the pathways and genes found interacting with
obesity and diabetes are highly relevant to pancreatic cancer and are supported by other
experimental evidence. Our results underscore the interactions of inflammation-related
genes with obesity and insulin resistance or cancer-related genes with diabetes in modifying
the risk of pancreatic cancer. G x E analysis offers an opportunity to identify genetic factors
linking obesity and diabetes to pancreatic cancer. Such information would provide scientific
rationales for the development of novel strategies in personalized prevention of pancreatic
cancer.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 1

Distribution of demographics and risk factors among cases and controls

Variable Case (n = 2,028)
n (%)

Control (n =2,109)
n (%) P(χ2) AOR(95%CI)a

Age group

 ≤50 199 (9.81) 236 (11.19)

 51–60 563 (27.76) 575 (27.26)

 61–70 710 (35.01) 713 (33.81)

 >70 556 (27.42) 585 (27.74) 0.49

Raceb

 Non-Hispanic Whites 2,008 (99.26) 2,092 (99.19)

 Hispanics 8 (0.40) 13 (0.62)

 Blacks 0 (0) 2 (0.09)

 Others 7 (0.35) 2 (0.09) 0.12

Sex

 Female 920 (45.36) 968 (45.90)

 Male 1,108 (54.64) 1,141 (54.10) 0.73

Smokingc

 Never 801 (39.63) 1,008 (47.91) 1.00

 Ever 1,220 (60.37) 1,096 (52.09) <0.001 1.43 (1.26–1.63)

Pack-yearsc

 0 801 (39.63) 1008 (47.91) 1.00

 <20 463 (22.91) 485 (23.05) 1.23 (1.04–1.45)

 ≥20 757 (37.46) 611 (29.04) <0.001 1.60 (1.38–1.86)

History of diabetesd

 No 1,583 (79.71) 1,877 (90.50) 1.00

 Yes 403 (20.29) 197 (9.50) <0.001 2.35 (1.94–2.84)

BMI (kg/m2)e

 ≤25 764 (37.95) 885 (42.45) 1.00

 25–29.9 824 (40.93) 854 (40.96) 1.07 (0.93–1.24)

 ≥30 425 (21.11) 346 (16.59) <0.001 1.22 (1.02–1.47)

Abbreviations: AOR: adjusted odds ratio; 95% CI: 95% confidence interval; BMI: body mass index.

a
OR was adjusted for age, sex, smoking/pack years, history of diabetes or BMI (categorical) and study sites.

b
missing values from 5 cases;

c
missing values from 7 cases and 5 controls;

d
missing values from 42 cases and 35 controls;

e
missing values from 15 cases and 24 controls.
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