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Introduction

Bone marrow stroma contains pluripotent mesenchymal 
progenitor cells that can give rise to many mesenchymal 
lineages, including chondroblasts, adipocytes, or osteo-
blasts. At birth, hematopoietic red marrow occupies the 
bone marrow space while adipocytes are barely present 
but their number and size increase with aging [1–3]. In the 
elderly and in osteoporosis, the increased volume of mar-
row adipose tissue correlates with a decrease in bone mass 
[4] and many conditions that can induce bone loss, such 
as estrogen insufficiency, disuse, hindlimb unloading, and 
microgravity exposure show increased bone marrow adi-
posity [5–7]. The differentiation of mesenchymal stem cells 
(MSCs) into adipocytes or osteoblasts is tightly regulated 
by mechanisms promoting cell fate into one lineage while 
repressing the other. Interestingly, osteoblastic cells derived 
from trabecular bone fragments have the potential to differ-
entiate into multiple mesenchymal lineages including adi-
pocytes in vitro [8]. Furthermore, adipocytic cells cultured 
from marrow show the ability to revert to a more prolifera-
tive phase and then differentiate in an osteogenic direction 
[9, 10]. This suggests that adipocytic and osteogenic cells 
share a common precursor in adult marrow and that there 
is a high degree of plasticity between the two cell lineages 
even at the most advanced stages of maturation. Regula-
tion of adipogenesis and osteogenesis occurs at the level 
of the precursor cell in adult marrow, which has important 
implications for the etiology of not only osteoporosis but 
also several other diseases involving an imbalance between 
osteoblasts and adipocytes. Understanding the process 
of differentiation of osteoblasts and adipocytes and their 
trans-differentiation is crucial in order to identify genes and 
other factors that may contribute to the pathophysiology of 
such diseases.
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Pathological conditions associated with osteoblast–
adipocyte lineage plasticity

Several related genetic disorders have the common fea-
ture of superficial/dermal ossification with the formation 
of islands of heterotopic bone in skin and subcutaneous 
fat [11]. These diseases are associated with heterozygous 
inactivating mutations of guanine nucleotide-binding pro-
tein (α) stimulating activity polypeptide 1 (GNAS) and 
include progressive osseous heteroplasia (POH), Albright 
hereditary osteodystrophy/pseudopseudohypoparathyroid
ism (AHO/PPHP), pseudohypoparathyroidism (PHP), and 
osteoma cutis (OC). The tissue distribution of heterotopic 
ossification lesions in GNAS inactivation disorders such 
as POH suggests that the pathogenesis involves abnormal 
differentiation of MSCs and/or more committed precursor 
cells that are present in skin, subcutaneous fat, muscle, ten-
don, and ligament tissue. Considerable evidence supports 
the notion that tissues contain multipotential progenitor 
cells that can give rise to osteoblasts and adipocytes [12–
18]. In addition, vascular endothelial cells were reported to 
transform into multipotent stem-like cells [19].

Another example of a disease involving fat and bone 
tissue interaction is multiple myeloma (MM). Within the 
bone marrow microenvironment, MM cells interact with 
bone marrow stromal cells, endothelial cells, osteoclasts, 
osteoblasts, adipocytes, immune cells, and the extracel-
lular matrix [20]. MM cells suppress osteoblast differen-
tiation and thereby inhibit bone formation. Several mecha-
nisms appear to be involved, such as direct blocking of the 
activity of the osteoblast transcription factor Runt-related 
transcription factor 2 (Runx2) in mesenchymal and osteo-
progenitor cells through direct cell-to-cell contact with the 
involvement of very late antigen a (VLA-4)/vascular cell 
adhesion molecule 1 (VCAM-1).

In addition to energy storage, adipose tissue plays an 
important physiological role as an endocrine organ by 
secreting adipokines, such as leptin and adiponectin. There-
fore, dysregulation of osteoblastogenesis and adipogenesis 
may contribute to the pathophysiology of diseases such as 
obesity, atherogenesis, diabetes, and inflammation [21].

Transcriptional regulators of osteoblast–adipocyte 
differentiation

Genetic approaches in which genes are silenced or overex-
pressed reveal factors controlling the plasticity between the 
osteoblast–adipocyte cell lineages. This provides insight 
into the critical pathways that determine the fate of the 
bone marrow MSCs. Several transcriptional regulators 
have been shown to control the osteoblast and adipocyte 
lineages. Runx2 is expressed in osteoblasts at all stages of 

development and its targeted disruption abolishes the oste-
oblast lineage [22–24]. Also, inactivation of Osterix (Osx) 
by gene targeting results in a block in osteoblast develop-
ment downstream of Runx2 [25]. Activating transcription 
factor 4 (ATF4) [26] and activator protein 1 (AP-1) [17] 
further promote the transition to functional osteoblasts. 
Conversely, peroxisome proliferator-activated receptor 
gamma (PPARγ) is crucial for adipocyte differentiation and 
function [27], and members of the CCAAT/enhancer bind-
ing proteins (C/EBP) family of transcription factors have 
been implicated in controlling aspects of adipocyte biol-
ogy [28]. The balance between osteogenic and adipogenic 
transcription factors in multipotent mesenchymal precur-
sor cells regulates their quiescence and determines lineage 
commitment. Furthermore, osteogenic and adipogenic tran-
scription factors can affect each other; PPARγ is a suppres-
sor of Runx2 expression and transcriptional activity thus 
inhibiting osteoblast differentiation [29, 30].

Regulation of the commitment between the two cell 
lineages occurs through cross talk between complex sign-
aling pathways including those derived from parathyroid 
hormone (PTH) and parathyroid hormone-related pro-
tein (PTHrP), bone morphogenetic proteins (BMPs) and 
retinoic acid (RA), transforming growth factor β (TGFβ), 
wingless-type MMTV integration site (Wnt) proteins, 
hedgehogs (Hhs), delta/jagged proteins, fibroblastic growth 
factors (FGFs), insulin, and insulin-like growth factors 
(IGFs), and leptin (reviewed in [31, 32]). Additional factors 
that were identified to play an important role in osteoblast 
and adipocyte differentiation include ΔFBJ murine osteo-
sarcoma viral oncogene homolog B (ΔFosB), a naturally 
occurring truncated form of FosB [17], Msh homeobox 2 
(Msx2) [33], transcriptional coactivator with PDZ-binding 
motif (TAZ) [34], inhibitor of DNA binding 4 (Id4) [35], 
Sirtuin 1 (Sirt1) [36], and early B cell factor 1 (Ebf1) [37]. 
However, their specificity as determinants of age-related 
changes in bone homeostasis is unclear. In contrast, in the 
case of the retinoblastoma protein (pRB; [38]), V-maf mus-
culoaponeurotic fibrosarcoma oncogene homolog (Maf) 
[39] and vascular endothelial growth factor A (VEGF; 
[40]), also reported to control the balance between osteo-
blast and adipocyte cell fates in vivo, expression levels are 
reduced in mesenchymal cells during aging. Loss of the 
tumor suppressor gene retinoblastoma protein (Rb) favors 
adipogenesis over osteogenesis resulting in reduced lev-
els of calcified bone and increased levels of brown fat, 
and Rb-deficient preosteoblasts show multipotency at the 
expense of commitment to the osteogenic state. The basic 
leucine-zipper transcription factor Maf was demonstrated 
to be central to osteoblast lineage commitment through 
binding to Runx2 and directly regulating the osteocalcin-
coding gene bone gamma-carboxyglutamic acid-containing 
protein 1 (Bglap1). Furthermore, Maf disturbs adipocyte 
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differentiation by suppressing the interaction of Cebpδ 
and the cAMP response element-binding protein (CREB) 
gene (Crebbp). VEGF stimulates osteoblastogenesis at the 
expense of adipogenesis by regulating the expression lev-
els of Runx2 and PPARγ by mechanisms that appear to be 
affected by a functional interaction with the nuclear enve-
lope protein lamin A. Defective processing of lamin A by 
the enzyme Zmpste24 has also been linked to changes in 
osteoblastogenesis and adipogenesis in the bone marrow 
[41]. Furthermore, cell shape and cytoskeletal tension were 
reported to regulate stem cell lineage commitment to either 
osteoblastogenesis or adipogenesis by modulating endoge-
nous Ras homolog gene family, member A (RhoA) activity 
[42] or stress response pathways [43].

Epigenetic mechanisms involved in osteogenic–
adipogenic differentiation

Recently, Scheideler et al. [44] found that gene repression 
is most prevalent prior to commitment in both osteoblast 
and adipocyte cell lineages, and computational analy-
sis suggested that gene repression before commitment of 
MSCs is mediated by microRNAs (miRNAs). Thus, miR-
NAs were proposed to be involved in regulating differen-
tiation and cell fate decisions [45]. So far, only a few key 
miRNAs controlling the balance between osteogenesis and 
adipogenesis have been identified, such as miR-22 [46], 
miR-31 [47], miR-106a [47], miR-148a [47], miR-424 
[47], miR-637 [48], miR-705 [49], miR-3077-5p [49], and 
several members of the miR-17 family [50]. Different fami-
lies of miRNAs affect osteoblast–adipocyte differentiation 
by targeting distinct downstream targets, including histone 
deacetylase 6 (HDAC6), Osx and BMP2 for miR-22, miR-
637, and the miR-17 family members miR-17-5p and miR-
106a, respectively, as well as Runx2, core binding factor β 
(Cbfβ) and BMPs for miR-31, miR-106a, miR-148a and 
miR-424.

Accumulating evidence suggests that epigenetic mecha-
nisms involving post-translational and covalent modifica-
tions of histones in chromatin may be a central mechanism  
controlling gene transcription. Histone modifications 
can occur during specification into a cell lineage and in 
response to changes in the extracellular environment. For 
example, a change in cell fate from adipogenesis to osteo-
blastogenesis of bone marrow MSCs was shown to occur 
as a result of transactivation of agonist-bound PPARγ 
being repressed by a non-canonical cascade. Wnt5a was 
reported to activate Nemo-like kinase (NLK), which in turn 
phosphorylates a histone methyltransferase, SET domain 
bifurcated 1 (SETDB1), leading to the formation of a co-
repressor complex that inactivates PPARγ function through 
histone H3-K9 methylation [51]. This indicated a novel 

molecular mechanism where a signal from a cell membrane 
receptor leads to altered histone modification and changes 
in gene regulation and cell-lineage decisions.

Co-factors promoting adipocyte differentiation while 
suppressing osteoblast differentiation were identified as 
zinc finger protein 467 (Zfp467), which may function by 
recruiting a HDAC associated co-repressor complex to sup-
press target gene transcription [52], and HDAC3, which 
mediates numerous developmental signaling pathways 
[53]. Furthermore, histone demethylases KDM4B and 
KDM6B were shown to epigenetically regulate commit-
ment of MSCs to the osteoblast–adipocyte lineage [54]. 
Depletion of KDM4B or KDM6B significantly reduced 
osteogenic differentiation and increased adipogenic differ-
entiation by controlling DLX (by removing H3K9me3) and 
homeobox (HOX) expression (by removing H3K27me3), 
respectively.

Controlling osteoblast–adipocyte lineage plasticity  
and consequent therapeutic implications

The data reviewed above suggest that the relationship 
between osteoblastogenesis and adipogenesis is complex 
[55] [56] (Fig.  1). Osteoblastogenesis is dominant over 
adipogenesis in the bone marrow of young animals and 
the cell-differentiation balance between the two cell fates 
is usually reversed in bone marrow of older or osteoporo-
tic animals [57]. The differentiation of MSCs towards 
a specific lineage is dependent on activation of specific 
transcription factors (see Fig.  1) by local, hormonal and 
mechanical factors [58], including VEGF, BMPs, TGFβ, 

Fig. 1   Osteoblast–adipocyte lineage plasticity is a complex, multi-
factorial process that shapes tissue development, maintenance, and 
pathology. Mesenchymal stem cells (MSCs) differentiate into mature 
osteoblasts and adipocytes via intermediate precursor cell stages that 
are subjected to transdifferentiation. Local, hormonal and mechani-
cal factors in MSCs result in the activation of transcription factors 
(TF) and epigenetic mechanisms, which jointly control the balance 
between osteoblastogenesis and adipogenesis
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Wnts, FGFs, IGFs, 1,25-dihydroxyvitamin D3, PTH, glu-
cocorticoids, insulin, and leptin. Recently, elegant genetic 
pulse-chase experiments indicated that osteoblastic cells 
are short-lived and nonreplicative, requiring replenishment 
from bone marrow-derived precursor cells [59]. Thus, it 
will be crucial to fully understand the precursor cell micro-
environment during tissue development, maintenance and 
pathology in order to identify targets for pharmacological 
intervention in diseases related to osteoblast–adipocyte  
lineage plasticity.
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