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Abstract
Objectives—Newly developed techniques for understanding brain connectivity have emerged
with the application of graph theory-based measures to neuroimaging modalities. However, the
cognitive correlates of these measures, particularly in the context of clinical diagnoses like major
depression, are still poorly understood. The purpose of this study was to compare four measures of
network efficiency derived from novel techniques for understanding white matter connectivity on
their associations with aging, depression, and cognition.

Design—Cross-sectional neuroimaging study

Setting—General community

Participants—We recruited 43 healthy comparison subjects and 40 subjects with major
depressive disorder who volunteered in response to advertisements.

Measurements—Brain network efficiency measures were generated from diffusion tensor
imaging-derived structural connectivity matrices using the Brain Connectivity Toolbox
(www.brain-connectivity-toolbox.net). Information processing speed and decision making were
assessed with the Trail Making Test and the Object Alternation task, respectively.

Results—All four network efficiency measures correlated negatively with age. In the depressed
group, normalized global efficiency was negatively correlated with depression severity while
increasing global efficiency was associated with poorer performance on Object Alternation.

Conclusions—Brain network efficiency measures may represent different aspects of underlying
network organization depending on the population and behaviors in question.

Objective
Diffusion tensor imaging (DTI) has emerged as a popular way to explore white matter
integrity in healthy as well as disease populations. With DTI, white matter tracts can be
constructed and virtually dissected to analyze individual differences in structural
connectivity. One of the novel ways that DTI tractography has been used recently is in the
application of graph theory-based network analysis. In brief, graph theory-based network
analysis models ‘the brain as graph’ characterized by nodes (i.e., brain regions) and edges
(i.e., functional or structural connections between regions) that connect nodes. Once the
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brain has been modeled in this manner, various network metrics can be calculated that
elucidate the function and organization of the brain as a network (22). For instance, studies
using this technique have detected differences in disease populations in the organization of
the brain in terms of modules or communities thought to reflect pathological brain changes
associated with the disease (9,24). A frequently used measure associated with this technique
is network efficiency, a measure of network integration. Network efficiency represents the
number of steps required to get information from one part of the derived brain network to
another. It is thought that highly efficient networks require very few steps or shorter path
lengths, while inefficient networks require multiple steps. There are two ways networks can
increase their efficiency, integration and randomization. With network integration,
distributed information is easily combined throughout a network with strategically placed
connections (22). With network randomization, an increase in randomly placed connections
can reduce the path length and thus increase network efficiency.

Network efficiency can be measured using a number of different neuroimaging modalities.
Structural brain networks are often created using data from DTI or the structural covariance
of gray matter volumes. Functional brain networks can be generated from resting-state
functional magnetic resonance imaging (rs-fMRI). One of the first studies to examine the
association of age with this concept of network efficiency published by Achard and
Bullmore demonstrated reduced efficiency in older adults using rs-fMRI (1). Contrary to this
result, using DTI-derived networks, Gong et al demonstrated that global efficiency as a
function of network cost (integrated global efficiency) did not decline with age (10).
However, a study by Wen et al utilizing similar DTI-based methods confirmed earlier
findings by Achard and Bullmore that global network efficiency declines with age (26).
Further complicating the picture, in a study looking at gray matter structural covariance
networks in three age groups, younger subjects (14–40 years) had lower global efficiencies
compared to older subjects (61–80 years) (27).

There are similarly conflicting reports demonstrating alterations in global efficiency in
various disease states including depression. In our own recent study using gray matter
structural covariance, we found untreated late-life depressed subjects had significant lower
global efficiencies compared to healthy elderly subjects (2). Using rs-fMRI to generate
functional connectivity graphs, global efficiency was reported to be significantly higher in
younger first-episode, depressed subjects compared to healthy comparison subjects (29). In
contrast, using DTI-generated networks, it has been shown that global efficiency was
reduced in population of remitted geriatric depression subjects compared to healthy elderly
control subjects (3). These differences could be due to MRI modalities employed in graph
theory analyses and/or the populations evaluated; however, more work needs to be done
exploring the types of network efficiency available for interrogation and their associations to
study-specific populations in question.

In addition to disease states, studies have revealed that brain network efficiency is associated
with aspects of cognitive function in both healthy and clinical populations. Initial studies
demonstrated that IQ was positively associated with global efficiency in healthy adults
(17,25). Older healthy adults demonstrated that both local and global efficiency (measures
of network segregation and network integration, respectively) were positively associated
with a composite index of executive function and information processing speed (26). In a
study of mild cognitive impairment, Shu and colleagues demonstrated that global efficiency
was positively correlated with information processing speed (23). Similar findings have
recently been reported in type 2 diabetes (21). Little to no work associating network
efficiency metrics and cognition in depression has been reported despite the relatively well-
established link between executive function and information processing speed in this
population.
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While the aforementioned studies have examined altered network efficiency associated with
aging, depression across the lifespan, and cognition, it is not clear whether increased
network efficiency more closely reflects network integration (as suggested by aging studies)
or network randomization (implied by the functional studies of major depression). The
purpose of this study was to conceptually evaluate four different measures of network
efficiency derived from white matter connectivity analyses on their associations with aging,
depression, and cognition. We examined three measures of global efficiency and local
efficiency previously documented in the literature and compared a depressed versus never
depressed sample ranging from age 30 to 88, on measures of information processing speed
and decision making. We hypothesized that if efficiency reflects network integration, then
brain network efficiency would be negatively associated with age and depression severity
and positively associated with information processing speed and executive function.

Methods
Subject Recruitment

We recruited 40 subjects with major depression and 43 healthy comparison subjects from
the greater Chicago area through flyers and local advertisements as part of a larger ongoing
neuroimaging study at the University of Illinois at Chicago (UIC). The inclusion criteria for
all subjects were 30 years of age and older, medication-naive or anti-depressant free for at
least two weeks (in the case of our depressed subjects) and no history of unstable cardiac or
neurological diseases. The exclusion criteria included: schizophrenia, bipolar or any
psychotic disorders; history of anxiety disorder outside of major depressive episodes; history
of head trauma; history of substance abuse; contraindications to MRI such as metal
implants. This study was approved by the University of Illinois-Chicago Institutional
Review Board, and written informed consent was obtained from each participant.

All eligible subjects were assessed by a trained research assistant with the Structured
Clinical Interview for Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition
(DSM-IV). The severity of depression was quantified by a board-certified/board-eligible
psychiatrist (AK or OA) using the 17-item Hamilton Depression Rating Scale (11). At the
time of enrollment, depressed subjects met DSM-IV criteria for MDD and required a score
of 15 or greater on the HAM-D. Subjects were also administered the Center for
Epidemiologic Studies of Depression (CES-D) scale as an independent measure of
depression severity (20). The CES-D was used for correlation analyses as the HAM-D was
the measure used in the determination of subject eligibility for depression.

MRI Image Acquisition
All brain MRI data were acquired using a Philips Achieva 3T scanner (Philips Medical
Systems, Best, the Netherlands) with 8-element SENSE (Sensitivity Encoding) head-coil.
Subjects were fitted with soft ear plugs, positioned comfortably in the coil, and instructed to
remain still. Foam pads were used to minimize head motion. For each subject, DTI images
were acquired using single-shot spin-echo echo-planar imaging (EPI) sequence (field of
view or FOV=240mm; acquired voxel size = 2.21×2.21×2.20mm; reconstructed voxel size =
0.83×0.83×2.2mm; TR/TE=6,994/71ms; Flip angle=90°). Sixty seven contiguous axial
slices aligned to the anterior commissure–posterior commissure (AC-PC) line were collected
along 32 gradient directions with b=700s/mm2 and one minimally diffusion-weighted scan
(the b0 image). Parallel imaging was utilized with p-factor of 2.5 to reduce scan time to
approximately 4 minutes.
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Network Analysis
To generate brain network data, a pipeline was constructed which integrates multiple image
analysis technique based on previously published methods (14,23). Diffusion weighted
images were eddy current corrected using the automatic image registration tool in DTI-
Studio (http://www.mristudio.org;12) by registering all diffusion-weighted images to their
corresponding b0 images. Two eddy current correction (ECC) techniques were employed:
rigid body (rotation and translation, 6 parameters) and affine (rotation, translation, scaling
and shear, 12 parameters). This was followed by the computation of diffusion tensors then
deterministic tractography using the Fiber Assignment by Continuous Tracking (FACT)
algorithm built into the DTI-Studio program. For each subject, tractography was first
performed by tracking the whole brain, initiating tracts at each voxel. Fiber tracking was
stopped when FA value falls below 0.15 or a turning angle becomes larger than 60°.

T1-weighted images were used to generate label maps using the FreeSurfer image analysis
suite (http://surfer.nmr.mgh.harvard.edu/) for volumetric segmentation (6–8). Each label
map is composed of 87 different gray matter regions of interest (ROIs), which include
cortical and subcortical regions as well as the brainstem and cerebellum.

Brain structural networks were generated by counting the number of reconstructed
streamlines from the white matter tractography data connecting every pair of gray matter
ROIs (i.e. the “nodes”) defined by Freesurfer’s parcellation atlas. The resulting matrices
were then analyzed using a set of Matlab-based functions implemented in the Brain
Connectivity Toolbox (http://brain-connectivity-toolbox.net/) to generate our measures of
global and local network efficiency (22). Three measures of global network efficiency were
obtained. Native global efficiency (Enative) was calculated as the global efficiency of the
actual network with no thresholding. Normalized global efficiency (Enorm) was the ratio of
the Enative to the global efficiency of a random network of equal size and cost to the actual
network. Integrated global efficiency (Eint) measured global efficiency as a function of cost.
Network cost was calculated as the number of edges in the network as a fraction of all
possible edges in the network. Local efficiency (Eloc)is the efficiency of a subnetwork
containing a particular node and its network neighbors. Table 1 outlines these metrics in
greater detail.

Neuropsychological Battery
In addition to neuroimaging, subjects completed a comprehensive neuropsychological
protocol. Of relevance to the present study were measures of executive function and
information processing with timed components. To this end, we focused on the Trail Making
Test Part A and B (TMTA; TMTB) and Object Alternation (OA). TMTA, a measure of
attention and information processing speed, involves rapidly connecting consecutively
numbered circles. TMTB, an executive function task, requires rapidly connecting alternating
numbers and letters in sequence (16). Performance is measured in time (i.e., seconds) to
completion.

OA is another executive test that relies on the ability to establish and maintain set based on
visual and auditory feedback (18,28). OA in the present study was computerized and
consisted of the computerized presentation of a red circle and a blue square on each trial.
Participants were instructed to find the star hidden under either the red circle or the blue
square with aforementioned feedback providing clues as to the object of the game – alternate
between the two objects and get the star every trial. OA concluded upon the completion of
10 consecutively correct trials or maxed out at 50 trials. The dependent variables were trials
to completion, number of perseverative errors relative to total trials to completion and
average reaction time per trial.
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Statistical Analysis
Demographic, clinical, and network variables were analyzed for between-group differences
using an independent sample t-test for continuous variables and chi-squared test for
categorical variables. Levene’s Test for Equality of Variances were used for all t-tests (15).
Bivariate correlations were used to analyze the relationship between network efficiency
measures and age both regardless of age and by group. Local efficiency correlation analyses
– given the number performed in comparison to the global efficiency analyses – were
adjusted for multiple comparisons using the false discovery rate (4) with a significance
threshold set at q < .05. Additionally, two-tailed partial correlations were used to examine
the relationship between network efficiency and depression severity, as well as network
efficiency and cognitive function (adjusting for age, sex and predicted verbal IQ) both
regardless of and by group distinctions. All statistical analyses were performed in the SPSS
software, version 18.0 (SPSS, Somers, NY).

Results
Between-Group Comparisons

The clinical and demographic characteristics are summarized in Table 1. There were no
significant differences in age, sex distribution, or predicted verbal IQ scores. There were no
significant differences between in any global or local efficiency measures. Depressed
subjects performed significantly worse on the OA task with more trials to completion,
longer reaction times, and more errors per trial. There were no significant differences on
Trails A or B performance.

Global Network Efficiency and Age
The three global efficiency measures were significantly correlated with other (Enative and
Enorm: r = .307, p = .005, df = 81; Enative and Eint: r = .809, p < .0001, df = 81; Enorm and
Eint: r = .381, p < .001, df = 81). All measures of network efficiency were significantly
associated age. Eint demonstrated the largest negative association (r = −.425, p<.0001, df =
81; Figure 1), followed by Enative (r = −.410, p<.0001, df = 81) and normalized global
efficiency (r = −.310, p =.003, df = 81). These correlations remained significant by subject
group. Thus, in healthy comparison subjects, age was associated with native and integrated
global efficiency (r = −.496, p = .001; r = −.416, p = .006, df = 41) and not associated with
normalized global efficiency (r = −.299, p = .052, df = 41). In MDD, all three measures were
significantly correlated with age (Enative: r = −.348, p = .028; Enorm: r = −.314, p = .048,
Eint: r = −.423, p = .007, df = 38).

Global Network Efficiency and Depression
Across the entire sample, there were no significant correlations between efficiency measures
and depression severity. When analyzed by group, only normalized global efficiency was
negatively correlated with depression severity within the depressed sample (r = −.343, p = .
033, df = 37).

Global Network Efficiency and Cognitive Function
Integrated global efficiency was significantly associated with OA trials to completion (r = .
255, p = .028, df = 72), reaction time (r = .254, p = .029, df = 72), and errors per trial (r = .
273, p = .018, df = 72). Native global efficiency was only significantly correlated with OA
errors per trial (r = .315, p = .006, df = 72). These overall sample correlations were driven
by the depressed group as there were no significant correlations between cognitive and
global efficiency measures in healthy comparison subjects. Thus, in the depressed group,
both native and integrated global efficiency were significantly associated with OA trials to
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completion (Enative: r = .370, p = .024, df = 34; Eint: r = .427, p = .009, df = 34) and OA
errors per trial (Enative: r = .483, p = .003, df = 34; Eint: r = .427, p = .009, df = 34). There
were no significant correlations with any global efficiency measures and TMTA and TMTB.

Local Network Efficiency
Across the total sample, local efficiency correlated with age in predominately temporal
regions, as well as bilateral precentral cortex and the right rostral middle frontal gyrus in the
dorsolateral prefrontal cortex (Figure 2a). In HC subjects, age was negatively associated
with local efficiency in the left entorhinal cortex, right precentral gyrus, and bilateral
fusiform gyri (Figure 2b). In MDD subjects, bilateral hippocampal local efficiencies were
associated with age (Figure 2c). There were no significant correlations between Eloc and
depression severity or cognitive measures.

Discussion
To our knowledge, this is the first study to examine differential results of specific network
efficiency metrics let alone within the context of clinical/cognitive correlates in major
depression. Consistent with previous studies (26), we found that global network efficiency
declines with age in both healthy controls and depressed subjects. Normalized global
efficiency was the only measure to exhibit declines with increasing depression severity and
only in depressed subjects. This was despite no between-group differences in this metric.
Results may reflect the fact that the normalization associated with this global efficiency
measure adjusts for fundamental organizational network properties like randomization; an
aspect of network disorganization that may be more prevalent in individuals with
depression. By controlling for this randomization, results for normalized global efficiency
revealed a negative relationship between depression severity and global efficiency. In
contrast, this same depressed group showed a positive relationship between native as well as
integrated network efficiency and poor performance on the OA task. This highlights the
differential associations of the various global efficiency measures examined in the present
study as they relate to clinical populations’ overall behavioral presentation.

In depressed subjects, both Enative and Eint were positively associated with poor performance
on the OA task with Eint associated with all aspects of performance and Enative associated
with errors relative to total trials only. This provides evidence that in the context of major
depression, increased network efficiency is a reflection of a more random network that could
explain poor performance. Global network efficiency reflects different aspects of underlying
network organization depending on clinical and cognitive context. For example, in
depression, increased network efficiency may represent a tendency towards a more random
organization. Optimized brain networks have a balance of integration (combining distributed
functions) and segregation (separating distributed functions). If additional network
connections are not organized according to function, random networks can have increased
efficiency or network integration at the cost of decreased network segregation. Further
suggestive of this notion is that gamma, a measure of network segregation (22), was
negatively correlated with OA trials to completion (r = −.372, p = .026, df = 34) and OA
errors per trial (r = −.429, p = .009, df = 34) in depressed subjects.

Focusing on local efficiency, our primary findings demonstrated significant correlations
with age – predominately within temporal lobe regions for the entire group. It should be
noted, however, that the breakdown of affiliated regions differed based on the presence or
absence of a clinically diagnosed depression. For example, local efficiency declined with
age in bilateral hippocampal regions in major depression while more subtle alterations in the
entorhinal cortex were seen in healthy controls. Previous studies in aging populations would
suggest that hippocampal complex findings – particularly as they relate to behavioral
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manifestations of learning and memory deficits – are only seen in the presence of
pathological entities such as dementia and/or depression (13). Our work with network
efficiency metrics would suggest that local efficiency measures derived from graph theory
may be more sensitive to alterations in hippocampal subregions than more traditional
measures of brain structure. The association to learning and memory remains to be
determined but holds promise given the strong r-values displayed in our healthy control
group. The decreased local efficiency seen in these vulnerable temporal regions can be
conceptualized as a reduction in network segregation or less functional specialization.
Consistent with this notion, one of the brain regions that declined with age in healthy
comparison subjects, the fusiform gyrus, has been shown to exhibit less stimulus-specific
activation (namely, faces) with age (19).

In conclusion, while all measures of global efficiency significantly correlated with age, not
all measures of global efficiency correlated with behavior. It follows that not all global
efficiency metrics derived from graph theory are equivalent. Thus, the interpretation of
network-based measures across the lifespan depends on the age and the clinical
characteristics of the sample under study as well as the cognitive/affective functions being
measured. Furthermore, several local metrics of hippocampal efficiency may prove valuable
in preclinical states of pathological aging – an area of increased study with the advent of
NIH-based initiatives to understand this predominantly mid-life state (5). In sum, our study
highlights the importance of acknowledging the clinical and cognitive context within which
networkbased metrics of neuroimaging are to be used in various aging populations.
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Figure 1. Integrated global efficiency correlated with age
Correlation of age and integrated global efficiency. Age was negatively associated with
integrated global efficiency in both subject groups (healthy comparison: dotted line; major
depression: dashed line) and the total sample (solid line).
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Figure 2. Local efficiency correlated with age
Correlation of age and local efficiency on an inferior view of the brain (A: Anterior, P:
Posterior, L: Left, R: Right). a) Total sample, b) HC: healthy comparison group, c) MDD:
major depression group. All nodes indicated in red, significantly associated nodes after false
discovery rate correction are indicated in green. Each node represents a Freesurfer-defined
brain region with the node placed at the coordinates of each brain region’s centroid.
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