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Abstract
Background—The time evolution and complex interactions of many nonlinear systems, such as
in the human body, result in fractal types of parameter outcomes that exhibit self similarity over
long time scales by a power law in the frequency spectrum S(f) = 1/fβ. The scaling exponent β is
thus often interpreted as a “biomarker” of relative health and decline.

New Method—This paper presents a thorough comparative numerical analysis of fractal
characterization techniques with specific consideration given to experimentally measured gait
stride interval time series. The ideal fractal signals generated in the numerical analysis are
constrained under varying lengths and biases indicative of a range of physiologically conceivable
fractal signals. This analysis is to complement previous investigations of fractal characteristics in
healthy and pathological gait stride interval time series, with which this study is compared.

Results—The results of our analysis showed that the averaged wavelet coefficient method
consistently yielded the most accurate results. Comparison with Existing Methods: Class
dependent methods proved to be unsuitable for physiological time series. Detrended fluctuation
analysis as most prevailing method in the literature exhibited large estimation variances.

Conclusions—The comparative numerical analysis and experimental applications provide a
thorough basis for determining an appropriate and robust method for measuring and comparing a
physiologically meaningful biomarker, the spectral index β. In consideration of the constraints of
application, we note the significant drawbacks of detrended fluctuation analysis and conclude that
the averaged wavelet coefficient method can provide reasonable consistency and accuracy for
characterizing these fractal time series.
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1. Introduction
The human body is comprised of many physiological systems which interact in a nonlinear
manner (Eke et al., 2000, 2002; Glass, 2001; Glenny et al., 1991; Goldberger and West,
1987; Huikuri et al., 1998, 2000; Ivanov et al., 1999). Accordingly, changes in functional
outcomes in a given physiological system may be caused by trends in either one or many
other systems (Eke et al., 2000, 2002; Peng et al., 1995b). Disease, aging, genetic disorders,
and trauma can have significant effects on many physiological functional outcomes like gait
(Hausdorff et al., 1999, 2000, 1997, 1995, 1996). The lo-comotor system consists of a group
of components from the central nervous, musculoskeletal, and other physiological systems.
Generally, locomotor system consists of the cerebellum, the motor cortex, and the basal
ganglia, as well as visual, vestibular, and proprioceptive sensors (Hausdorff et al., 1995,
1996). This may be seen as a generalized control system. The cerebellum and basal ganglia
receive information for processing, and sends control signals by the motor cortex. Current
state information and feedback are provided by internal and external inputs from
proprioceptive and sensory nerve and visual signals (Hausdorff et al., 1995, 1996; Eke et al.,
2002). In a healthy subject, a stable walking pattern is maintained by the constant dynamic
interaction between all of the components of the locomotor system.

Neurophysiological changes may alter the locomotor system’s ability to correctly modulate
dynamic changes in the gait process (Hausdorff et al., 1997). For example, decreased nerve
conduction velocity, loss of motor neurons, decreased proprioception, muscle strength, and
central processing capabilities are notable declines due to advancing age (Hausdorff et al.,
1997). Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease which severely
affects the function of the motor neurons of the cerebral cortex, brain stem, and spinal cord
(Hausdorff et al., 2000). Muscle weakness, increased fatigue and decreased endurance are
characteristic of ALS (Sharma et al., 1995; Sharma and Miller, 1996). Parkinson’s Disease
(PD) and Hunt-ington’s Disease (HD) are both neurodegenerative diseases which affect the
basal ganglia (Hausdorff et al., 1997). PD and HD are marked by irregular of central motor
control, the most apparent outcome of which is a chor-eiform or “dancing” like gait (Blin et
al., 1990; Hausdorff et al., 1997). The common consequence among all of these disorders is
increased stride interval time (Hausdorff et al., 1997). However, increased stride interval
time alone is generally not indicative of any neurodegenerative disease, so the fluctuations
of the stride interval must be considered to reveal any unique mechanisms of decline
(Hausdorff et al., 1997, 2000). It is apparent that in general, such changes to components of
the locomotor system from disease and aging result in abnormal gait. However, the identity
and severity of the underlying mechanism(s) causing the functional decline are still
unknown, and can be extremely difficult to identify and characterize due to the highly
nonlinear and complex interactions of the constituent physiological systems (Hausdorff et
al., 1997, 2000; Bassingthwaighte, 1988; Bassingthwaighte and Bever, 1991).

Stride interval time series, like many physiological processes, have been observed to possess
complex statistical properties (Glenny et al., 1991; Goldberger and West, 1987; Ivanov et
al., 1999; Hausdorff et al., 1997; Bassingthwaighte and Bever, 1991; Deligniéres et al.,
2004; Kantelhardt et al., 2002; Peng et al., 1995a; Shlesinger, 1987). This phenomenon is
due to the time evolution and complex interactions of many dynamical systems, imposed
with random fluctuations, resulting in chaotic processes (Bak and Chen, 1991). The goal of
fractal time series analysis is to establish a metric which can indicate this property and the
nature of the statistics, correlation, and other unique properties of time evolving system
parameters (Deligniéres et al., 2004; Mandelbrot, 1985; Mandelbrot and Van Ness, 1968;
Delignieres and Torre, 2009; Delignieres et al., 2006). The fractal description of patterns,
self similarity, and statistical properties at many time scales can reveal new meaningful
information about the process (Delignieres and Torre, 2009; Delignieres et al., 2006). Thus,
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these techniques are very useful when evaluating physiological variables which are the
outcome of complex dynamical system interaction.

The first primary aim of this paper is to clarify the interpretations of time series analyses for
identifying the fractal properties of 1/fβ type scale invariant processes and highlight the
inherent limitations of common methods. To validate the concept of fractal time series
analysis, a number of established time, frequency, and time-scale domain estimation
techniques are implemented and tested. The tests include the entire range of 1/fβ processes,
with special consideration given to simulated signals most indicative of physiological
processes. A matter which is often obfuscated in other studies of fractal analysis was the
choice of a metric for the fractal characteristic. For consistency, the process parameter β,
also referred to as the spectral index, was used as a metric for the fractal characteristic. The
parameter β is convertible to other values commonly referred in the literature such as the
fractal dimension D, the Hurst exponent H, and the scaling index α (Eke et al., 2002). β was
chosen for use here for its ease in interpretation with respect to the power law spectrum of 1/
fβ processes.

A second aim is to address the applications of these techniques to time series obtained in a
physiological setting and their inherent constraints. A common limitation in acquiring
physiological data, such as gait stride intervals, is the time series length (Eke et al., 2002;
Delignieres et al., 2006; Bryce and Sprague, 2012). In many instances, the physical
limitations of the test subject, equipment design, and other factors of the experimental
setting limit the available length of acquired data. Accordingly, this paper will provide an
evaluation of the algorithms with respect to short and long time series. It has also been
recognized that the parameters of many physiological processes, such as stride interval time
series, are by nature not zero mean (Hausdorff et al., 1999, 2000, 1997, 1995, 1996). To
understand the effect of a time series with a nonzero mean, the estimation accuracy of each
method was considered under three cases: (1) the normalized signal (2) the normalized
signal with positive unit mean (3) a zero mean signal from the normalized signal minus its
mean. Finally, to verify the efficacy of the methods in the physiological setting, each method
will be applied to published gait stride interval time series. The spectral index is calculated
for gait time series from subjects with PD, HD, ALS and healthy controls (Hausdorff et al.,
2000, 1996). The calculated values provide a comparative basis with respect to other studies
aiming to determine long range correlations and fractal behavior of gait stride interval time
series (Hausdorff et al., 1995; Delignieres and Torre, 2009).

2. Power spectral densities of fractal process
It has been noted that the power spectral density is an informative perspective of fractal
processes, which exhibits inverse power law scaling behavior by S(f) = 1/fβ. Processes of
this type are henceforth referred to as 1/fβ processes (Eke et al., 2002; Delignieres and Torre,
2009; Shlesinger, 1987; Kasdin, 1995; Chen et al., 1997; Pilgram and Kaplan, 1998).
Generally 1/fβ process can be classified as belonging to one of two classes, fractional
Gaussian noise (fGn) or fractional Brownian motion (fBm) (Eke et al., 2002; Delignieres et
al., 2006). For fGn class signals, the probability distribution of a segment of the signal is
independent of the segment size and its temporal position in the signal (Eke et al., 2002).
Thus, the correlation structure and any statistical descriptions of the process do not change
over time, so the process is stationary (Delignieres and Torre, 2009). In an fBm signal, the
probability distribution in a larger segment is equal to a distribution in a smaller segment
when the distribution in the large segment is rescaled (Eke et al., 2002). Here, the inverse
power law relationship is observed for the calculation of some statistical measure m on the
segment of length n
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(1)

This implies the power law relationship where p is a proportionality factor and H is the
Hurst exponent and H∃[0, 1] . The Hurst exponent is a commonly used metric for indicating
the fractal nature of a fractional Gaussian noise or fractional Brownian motion process
(Cannon et al., 1997; Davies and Harte, 1987; Crevecoeur et al., 2010). These processes
have the property that the cumulative summation of an fGn signal results in a fBm signal
(Eke et al., 2002). As a result, a given process is interconvertible from one class to the other
by the integral or derivative (Eke et al., 2002; Shlesinger, 1987; Kasdin, 1995; Chen et al.,
1997; Pilgram and Kaplan, 1998). This necessitates a unique Hurst exponent specific to each
class of processes. These can be denoted HfGn∃[0, 1] and HfBm∃[0, 1] (Eke et al., 2002;
Delignieres et al., 2006). H = 0.5 in each class is the special case, where HfGn = 0.5 is white
Gaussian noise (β = 0) and HfBm = 0.5 is Brownian motion (β = 2) (Eke et al., 2002;
Delignieres and Torre, 2009). White Gaussian noise is the characteristic process of the
fractional Gaussian noise class of 1/fβ processes (Eke et al., 2002). The important property
of white Gaussian noise is that energy is equally distributed for all frequencies. Thus, it has
a flat power spectrum and β = 0. HfGn < 0.5 is anti-correlated Gaussian noise, and HfGn > 0.5
is correlated noise (Delignieres and Torre, 2009). Brownian motion is the characteristic
process for the fBm class. These processes exhibit a 1/fβ power spectrum where β = 2 (Eke
et al., 2002; Hausdorff et al., 2000). In this case, successive outcomes in the process are
correlated, and the process exhibits non-stationary time evolution (Delignieres and Torre,
2009). HfBm < 0.5 is anti-persistent Brownian motion, and HfBm > 0.5 is persistent Brownian
motion, where HfBm = 0 is pink noise of 1/f1 (Eke et al., 2002). Shown in Figure 1 (a) (c) and
(e) are fGn signals of H = 0, 0.5, 1 and their corresponding (cumulatively summed) fBm
signals Figure 1 (b) (d) and (f). This provides an overview of signals of each process class
and their interconvertible relationship.

In the case where β = 1, some correlation between timescales exists but is weak (Delignieres
et al., 2006). In summary, a given process can be classified as belonging to one of these two
distinct classes where β = 1 is the distinct boundary between each (Kasdin, 1995). The
relationship between each class’s Hurst exponent and the power spectrum 1/fβ can be
observed by the by the following relationships (Eke et al., 2002)

(2)

(3)

Thus, the range of all fGn and fBm processes for 0 < H < 1 correspond to −1 < β < 3, where
the boundary between each class lies at β = 1 (Eke et al., 2002; Delignieres et al., 2006).
Figure 2 gives an overview of an fGn Gaussian white noise (β = 0), pink noise (β = 1), and
fBm Brownian motion or red noise (β = 2). Adjacent to each signal is its its log-log power
spectrum, and the linear regression with slope indicating the corresponding β value.

Many well developed fractal estimation algorithms for finding the Hurst exponent are
specific to each process class. The choice of a method to evaluate the fractal properties of a
signal will accordingly be difficult in a setting where it is unclear which of the two classes
the signal belongs. If such methods are inappropriately applied, the calculated class specific
Hurst exponent will be incorrect. Consequently, its interpretation as a physiological
biomarker will be ambiguous and potentially misleading. Awareness of this hazard is
especially critical whenever the process lies at the boundary between fractional Gaussian
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noise and fractional Brownian motion. This case, when β = 1, a signal represents the type of
fractal process most typically exhibited by physiological systems (Eke et al., 2002; Glass,
2001; Goldberger and West, 1987; Huikuri et al., 1998, 2000; Ivanov et al., 1999; Peng et
al., 1995a; Sejdić and Lipsitz, 2013). As a result of this dichotomy, signal classification, the
choice of a fractal characterization method, and the interpretation of its result becomes a
critical yet inherently difficult procedure.

3. Algorithms for estimation of β values
For a 1/fβ process, β values can be estimated in time, frequency or time-frequency (time-
scale) domains. Here, we overview several most prominent implementations in literature
concerned with characterizing physiological phenomena.

3.1. Time Domain
This section overviews the three time domain fractal techniques implemented here. These
are dispersional analysis, bridge detrended scaled window variance (bdSWV), and detrended
fluctuation analysis (DFA).

3.1.1. Dispersional Analysis—For dispersional analysis, we refer to the proposal of this
technique by Bassingthwaighte, et al (Bassingthwaighte, 1988; Bassingthwaighte and Bever,
1991; Bassingthwaighte and Raymond, 1995, 1994). This time domain based algorithm
estimates the fractal characteristic by the variances of the mean of signal segments. Then,
the standard deviation on various intervals is plotted versus the interval lengths on a log-log
plot. A standard linear regression to this plot will have a slope indicating the fractional
Gaussian noise Hurst exponent HfGn, and the spectral index is found by β = 2HfGn − 1 (Eke
et al., 2002).

3.1.2. Scaled Window Variance—For evaluating processes by scaled window variance,
we refer the method proposed by Cannon, et al (Eke et al., 2002; Delignieres et al., 2006;
Cannon et al., 1997; Bassingthwaighte and Raymond, 1999). Similar to dispersional
analysis, the variance is found on increasing sized intervals of the signal. This method
introduced a modification to remove local trends on each interval. In this method, bridge
detrending is implemented to remove the local trend. The data in each interval is detrended
by subtracting the “bridge”, a line connecting the first and last points in the interval. Then,
the standard deviation is calculated for each detrended interval. Finally, the standard
deviation of each interval is plotted versus the interval size on a log-log plot.

A standard linear regression to this plot will have a slope indicating the fractional Brownian
motion Hurst exponent HfBm, and the spectral index is found by β = 2HfBm + 1 (Eke et al.,
2002).

3.1.3. Detrended Fluctuation Analysis—The approach for calculating the fractal index
by detrended fluctuation analysis (DFA) is provided by Peng, et al (Peng et al., 1995b,a,
1994), and it has been thoroughly evaluated by others for many applications (Kantelhardt et
al., 2002; Bryce and Sprague, 2012; Bardet and Kammoun, 2008; Caccia et al., 1997; Chen
et al., 2002; Heneghan and McDarby, 2000; Hu et al., 2001; Kantelhardt et al., 2001;
Schepers et al., 1992; Willson and Francis, 2003). DFA calculates the proposed “scaling
exponent” α which is a useful to indicate the randomness of a time series over the boundary
between fGn and fBm processes. The spectral index β is related to the DFA parameter α by
(Eke et al., 2002)

(4)
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Implemented here is general scheme where the smallest interval is restricted to  and

the largest interval to 

3.2. Frequency Domain
These techniques directly evaluate the power law scaling property of a fractal series’ power
spectral density. There are many available methods for performing the spectral estimation
required to evaluate a fractal process’s frequency domain 1/fβ power law (Pilgram and
Kaplan, 1998; Heneghan and McDarby, 2000; Fougere, 1985). Here, the periodogram
method and Eke’s lowPSDwe method are implemented (Eke et al., 2000, 2002; Delignieres et
al., 2006). The periodogram method is used in calculating S(f), the square of the FFT after
applying a Gaussian window. Eke improved on this method to more accurately characterize
β for both signal classes. First, for the time series mean is subtracted, a parabolic window
applied, and a bridge line connecting the first and last point of the signal is subtracted from
the series. After calculating the power spectral density by the periodogram, all frequency
estimates for f < 1/8fmax are omitted. Again, β is found by linear regression of the log-log
power spectral density (Eke et al., 2002).

3.3. Time-Scale Domain
Proposed time-scale techniques by the wavelet transform are implemented (Eke et al., 2002;
Audit et al., 2002; Jones et al., 1999; Simonsen et al., 1998; Veitch and Abry, 1999;
Arneodo et al., 1996). The Average Wavelet Coefficient (AWC) method described by
Simonsen and Hansen (Simonsen et al., 1998) is conveniently implemented for this function.
For the continuous wavelet transform of signal where in this case a twelfth order Daubechies
wavelet is used (Simonsen et al., 1998). The number of levels for the Mallat algorithm
discrete wavelet transform is chosen with respect to the signal length, determined here as
never lower than 23 or greater than 27 (Mallat, 1989). The result of the transformation
provides the scale and transpose coefficients for the signal at the each of the prescribed
levels. To find the averaged wavelet coefficient, the arithmetic mean with respect to the
translation coefficient is calculated. The average coefficients versus the levels are plotted on

a log-log plot. A standard linear regression to this plot will have a slope , and the
spectral index is found by β = 2HfBm + 1 (Eke et al., 2002).

4. Evaluation of Algorithms
4.1. Discrete 1/fβ Process Generation

The first step in the analysis was the generation of a 1/fβ fractal process. Li, et al proposed a
method to create a filter of fractional order for generating fBm fractal processes by
stochastically fractional differential equations (Li, 2010; Li and Lim, 2006; Li and Chen,
2009). Kasdin extended this method for a generalized fractional filter inclusive of fGn and
fBm signals, or 1/fβ processes (Kasdin, 1995). This method was implemented for this
numerical analysis of 1/fβ processes. The transfer function of the fractional system that
follows the power law of β is given by

(5)

The realization of the process x(n) is found by the convolution operation
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(6)

where w(n) is randomly generated Gaussian white noise.

4.2. Numerical Analysis of Simulated Data Sets
The basis of this computational evaluation is the generation of 1/fβ power law processes. For
completeness, β is calculated for all possible Hurst exponents in fGn and fBm classes for a
total range −1 ≤ β ≤ 3. This is inclusive of fractional Gaussian noise and fractional Brownian
motion processes for 0 < H < 1. However, the anti-correlated fGn (β < 0) and persistent fBm
(β > 2) regime signals are not be a matter of serious consideration in regard to physiological
processes. The methods are evaluated over a range of time series lengths in order to observe
the relationship between signal length and calculation accuracy for each fractal method.
Given the length limitations of previously recognized physiological data sets, time series
lengths of 50, 100, 200, 400, 600, 800, 1,000, 2,500, 5,000, 7,500, and 10,000 points are
considered. Given the stochastic nature of these processes, the procedure of signal
generation and calculation is implemented in a Monte Carlo scheme, where each realization
is repeated 1,000 times. In each iteration for a set signal length, the time series is normalized
and evaluated by each of the methods. Next, and a unit mean offset is added, and this signal
reevaluated by each method. Then the mean of the series is subtracted from the offset series,
resulting in a zero mean signal, and reevaluated. These three cases are calculated for each
signal length for 1,000 realizations, and the mean value of β from each estimation is
calculated. This computational scheme is the basis of the theoretical qualification of the
fractal characterization algorithms, with strong consideration of the two recognized
constraints of signal length and mean. Over the range of β, processes of the given length are
generated for [−1,3] incremented by 0.01.

4.3. Numerical Analysis of Stride Interval Data Sets
Lastly, the published data sets are re-examined. First considered are right foot gait stride
interval time series from normal subjects, consistent with previous investigation by
Hausdorff, et al in the study of long range correlations in stride interval fluctuations
(Hausdorff et al., 1996) and reconsidered by Deligieneras (Delignieres and Torre, 2009).
Each of 10 healthy adult subjects walked at a self selected slow, normal, and fast pace,
providing 30 total time series. This study, henceforth referred to as Study I, implemented a
power spectral analysis and DFA to find β and α respectively (Hausdorff et al., 1996) to
qualify and compare each method for fractal dynamics in gait. The mean time series length
for the ten healthy control subjects is 3,179 points. Given the signals’ significant length,
these are considered to be a basis set for evaluating the algorithm performance under
sufficiently long signal lengths. For consistency with the previous investigations, only the
first 2,048 points are used for calculation.

The second set comes from an investigation of gait dynamics in neurode-generative
diseases. The data was obtained by Haussdorf, et al in investigations of healthy and
pathological correlations in stride interval time series (Hausdorff et al., 2000, 1997, 1996).
The signal lengths are considerably constrained due to the physical limitations of the
subject. An example of healthy and pathological (ALS) time series provided by Studies I
and II are shown in Figure 3 with their corresponding PSDs and regression lines.

In the investigation henceforth referred to as Study II, α was calculated by DFA. To again
retain consistency with the previous investigation, only the right foot stride interval time
series is considered for calculation. Listed in Table 1 are the total number and mean length
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of time series for each of the cases of pathology and the control. The evaluation here is
aimed to demonstrate the algorithm performance in the regime of short time series.

For Study I, we fit a linear mixed model with estimated beta coefficient as the dependent
variable; walking speed, calculation method and their interaction as fixed effects; and a
participant random effect (Table 2). For Study II, we fit a similar model with participant
group, calculation method and their interaction as fixed effects (Table 3). We used
appropriately constructed means contrasts to obtain statistical significance of between-
method comparisons of interest.

5. Results
Presented in this section are the results of the numerical analysis scheme. Secondly, the
results from the evaluation of the published physiological data sets of long time series from
healthy individuals and shorter time series of neurodegenerative disease subjects are
examined. From the results of the numerical analysis, this paper seeks to indicate which of
the estimators can most effectively evaluate fractal nature of the physiological time series
under the various constraints. The importance of accurately measuring β of the physiological
time series is also presented in this section, so the calculations of the physiological data are
compared with previously published results.

5.1. Overall Theoretical Performance
Considered first is the estimation accuracy of the algorithms for − 1 ≤ β ≤ 3. This presents
the performance of the general scheme, which calculates the mean spectral index β of 1,000
random fractal signals of lengths varying from 50 to 10, 000 points. This is under a
normalized condition. Shown are the mean-square error (MSE) of the estimators on the
range −1 ≤ β ≤ 3 for signal lengths of of 100 and 10,000 points in Figure 4(a) and (b),
respectively.

The results of the analysis indicate that some estimators are indeed not class independent.
Figure 4(a) shows the MSE of the estimators on the range −1 ≤ β ≤ 3 for signal length of
100. For a short signal length, it is clear that bdSWV and dispersional analysis estimators are
fBm and fGn class dependent, respectively. The bdSWV method exhibits very high MSE for
the fGn class (β < 1) and dispersional analysis shows high MSE for all fBm class signals (β
> 1). Similar error in the fGn class is noted for the AWC method, and the error decreases for
β > 1. DFA exhibits relatively high MSE values for both fBm and fGn processes with a
relatively flat profile on this range. However, DFA demonstrates slightly greater accuracy
than AWC method for signals close to white Gaussian fGn signals. Both power spectral
density methods, the periodogram (PSD) and the modified method lowPSDwe show quite
consistent accuracy for all signal classes with a relatively flat MSE profile across the range
of β. Interestingly, for short signal lengths, the basic periodogram (PSD) method is more
accurate than the lowPSDwe method. However, the MSE of the PSD increases significantly
for persistent fBm type signals (β > 2).

Considering the case of long time series length of 10,000 points given in Figure 4(b) it is
clear that the bdSWV method has significantly high MSE for all fGn class signals (β < 1).
Similarly, dispersional analysis demonstrates high MSE for all fBm class signals (β > 1).
AWC shows relatively consistent MSE for both classes, though the MSE decreases as the
signal type approaches Brownian motion (β = 2). There is though an observable MSE
increase for persistent fBm signals. DFA similarly demonstrates class independent behavior,
with lower MSE for fGn class signals. Again in the long signal length case, DFA indicates
DFA exhibits a relatively consistent MSE in both the fGn and fBm class. Both power
spectral density methods, the periodogram (PSD) and the modified method lowPSDwe
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demonstrate similar MSE, which is lowest for white Gaussian noise fGn processes. Higher
MSE is observed for fBm class signals, though the error is not as high as in the class
dependent dispersional and bdSWV methods. The modified PSD method shows higher
accuracy than the standard periodogram for persistent fBm type signals (β > 2).

Given the clear relationship of the MSE and the signal length, examined next is the MSE
value over a range of signal lengths. Each value is the 1,000 realization ensemble mean
MSE for the given length. For conciseness, anti-correlated fGn (β = −1) and persistent fBm
(β = 3) evaluations are excluded. Shown in Figure 5(a) is the mean-square error (MSE) of
the estimators on the range 50 ≤ N ≤ 10,000 for white Gaussian noise fGn signals of β = 0.

For the white Gaussian noise case of fGn class signals β = 0, the MSE of the bdSWV
method is high regardless of signal length. The MSE for dispersional analysis decreases as
signal length increases, and at long signal length is among of the most accurate estimators
for this signal class. Interestingly, DFA shows diminishing returns in accuracy beyond N =
1,000. AWC consistently shows increasing accuracy as signal length increases. For the
white Gaussian case of fGn signals, the power spectral density methods again exhibit the
lowest overall MSE which decreases for greater signal length.

The mean-square error of the estimators on the range 50 ≤ N ≤ 10, 000 is observed in the
critical case of the boundary of fGn and fBm signals for 1/fβ processes of β = 1. Here, it is
expected to see that regardless of signal length, both class dependent methods bdSWV and
dispersional analysis exhibit crossover and a similar order of MSE. DFA shows initially
high MSE that decreases as signal length increases, though again with quickly diminishing
returns. The power spectral density methods show a similar profile. AWC again shows
increasing accuracy as the length is increased. For shorter length signals cases, the MSE of
AWC, DFA, and spectral methods are clustered closely together.

The third case consideration is the MSE versus length for Brownian motion fBm signals of β
= 2. For the Brownian motion process indicative of the fBm class, the MSE of dispersional
analysis is high regardless of signal length, indicating its class dependence. The MSE of
bdSWV is lower than in the fGn class, though it is still significantly greater than other
methods. DFA reaches its maximum accuracy at N = 1,000 points. AWC exhibits the
sharpest drop off in error of all methods, and regardless of signal length has generally the
lowest error for Brownian motion fBm class signals. The spectral methods show low MSE
for very short time series, but quickly diminishing returns for signals greater than 1,000
points.

Considering the class dependence of the bdSWV and dispersional analysis methods,
subsequent observations of the results will not consider findings for these methods. This is
in the interest of determining a robust class independent estimator. Accordingly, lowPSDwe is
considered class independent for its modifications which allow a more accurate estimation
of fBm processes than the unmodified periodogram method. In conclusion, further
elaborations on the MSE, mean error (ME), and standard deviation (SD) of techniques will
consider DFA, lowPSDwe, and AWC.

Figure 6 shows the mean-square error of the estimators DFA, lowPSDwe, and AWC on the
range −1 ≤ β ≤ 3 for signal length of 100, 600, 2,500, and 10,000. For the two short series
sets (N = 100, N = 600), all methods exhibit a relatively consistent profile of MSE over the
entire range of β. For short time series, AWC is most accurate in the fBm class,
and lowPSDwe is most accurate in the fGn class. DFA is generally less accurate than AWC
and lowPSDwe. Though DFA may be more accurate than AWC at estimating a white
Gaussian fGn process, the accuracy of lowPSDwe is still preferable. A similar observation
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can be made in longer time series of length 600, 2,500, and 10,000. DFA shows preferable
performance to AWC near white Gaussian noise, and here the accuracy of lowPSDwe is
always favorable. An important characteristic of AWC is its relatively flat MSE over the
range of β for all signal lengths. A notable increase in MSE exists for lowPSDwe in the fBm
class as the length is increased, due to the effects of more low frequency content in these
signals.

The definition of MSE necessarily combines the bias and variance into one value. To
distinguish the individual effects of bias and variance in the notion of the estimators’ MSE
on this range, the bias (mean error) and variance (standard deviation) will be examined
separately in the following figures. Figure 7 shows the mean error (ME) of AWC, lowPSDwe,
and DFA on the range −1 ≤ β ≤ 3 for signal lengths of 100, 600, 2,500, and 10,000.

Figure 7 indicates that for short time series, the MSE of AWC is largely influenced by bias.
This effect is diminished in the fBm regime. The mean error of DFA is lower than lowPSDwe
and AWC for the fGn class. The MSE of DFA is consistently influenced by bias in the fBm
range. lowPSDwe exhibits less overall fluctuation, and estimation bias increases with β. This
is likely due to the influence of more low frequency components when evaluating the linear
regression of the power spectral density. For subsequently longer signal lengths of 600,
2,500, and 10,000, the bias effects on the MSE of DFA and AWC are comparable beyond β
= 0.

Figure 8 shows the standard deviation (σ) of DFA, lowPSDwe, and AWC on the range −1 ≤ β
≤ 3 for signal length of 100, 600, 2,500, and 10,000. For short signal length, the standard
deviation of DFA is significant. The standard deviation of lowPSDwe and AWC are very
consistent on the range of β. lowPSDwe shows the overall lowest standard deviation for both
signal classes for all signal lengths. For longer signal lengths, the standard deviation profile
of DFA is relatively unchanged. The profile of AWC is flat in each case, with increasing
accuracy with signal length. DFA exhibits lower standard deviation than AWC for fGn class
signals of length 600 and 2,500, though the accuracy of lowPSDwe is still preferential.

5.2. Effects of Nonzero Mean
5.2.1. Added Unit Mean—Presented in this section are findings for realizations of the
algorithms for the complete range −1 ≤ β ≤ 3 on an extension of the previously described
scheme where a the signal is normalized and unit mean is added. Figure 9 (a) and (b) show
the mean-square error of the estimators on the range −1 ≤ β ≤ 3 for biased signal length of
100 and 10,000, respectively.

Compared to the original normalized signal condition shown in Figure 9, the additional unit
mean affects only the MSE of the frequency and time-scale domain methods. The
adjustments introduced to the power spectral density method by lowPSDwe avoid the error
effects of nonzero mean. It is critical to note that a significant DC component from a series
mean will largely influence a low frequency range of the power spectral density, and
subsequently the linear regression estimation for the spectral estimators. However, the
constant unit mean has diminishing influence on increasingly non-stationary processes, and
thus the effect is diminished as β increases. This observation is reflected in the findings of
the dependence of the MSE on signal length with nonzero mean. Inaccuracy in the AWC
method is significantly influenced in the fGn class, and error is still generally present for all
fGn and fBm class signals. The nonzero mean has no effect on the time domain methods.

5.2.2. Removal of Mean—Finally observed is the estimation accuracy when the series
mean is removed. These results are from the third extension of the numerical analysis
scheme. From the second case where the signal is normalized and unit mean is added, the
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mean of the resulting signal is calculated and subtracted from the time series. Shown in
Figure 10 (a) and (b) are the mean-square error of the estimators on the range −1 ≤ β ≤ 3 for
a zero mean signal length of of 100 and 10,000, respectively.

Figure 10 indicates that when the mean is removed by simply subtracting the mean value of
the series, the estimation accuracy returns to the original profile. Thus, removing the series
mean is valid to avoid errors in series estimation by methods which are sensitive. The
original mean square error, mean error, and standard deviation profiles are realized when the
series mean is removed and the series is reevaluated.

5.3. Gait Stride Interval Analysis
This section presents the results of the application of these techniques to experimentally
measured gait stride interval time series. To keep the analysis concise, the methods
implemented were those of the lowest MSE from each domain class. Thus, β was calculated
by DFA, lowPSDwe, and AWC. For the AWC calculation, the preprocessing step of mean
removal is performed. For a thorough evaluation of Study I, β is calculated and converted to

α by the relationship . For clarity, these calculated values of β and α are presented
separately in Table 2, showing the values (mean ± standard deviation) from the study and
our calculations for DFA, lowPSDwe, and AWC. Furthermore, the calculated values were
statistically different (p < 0.03) among the used approaches, except between AWC and DFA
for fast and normal walks (p > 0.07).

Considered next are calculations for shorter time series of pathological gait conditions from
Study II. Due to the physical limitations of the patients under investigation, the shortness of
the time series length given in Table 1 is noted when considering the results of these
calculations. Again, the spectral index β is calculated by DFA, lowPSDwe, and AWC and
converted to the DFA scaling exponent α. The series mean has been removed for calculation
by AWC. Table 3 shows the published and calculated values (mean ± standard error) of β
and the corresponding of α for the calculations by DFA, lowPSDwe, and AWC methods.
Furthermore, the AWC values were statistically different from the values calculated by DFA
and lowPSDwe (p < 0.04) in all cases. However, the values calculated by DFA and lowPSDwe
were not statistically different in any of the cases (p > 0.09).

6. Discussion
6.1. Simulated Signals

From the results of the theoretical evaluation of these techniques, distinct limitations and
benefits of each of the methods can be observed. When determining an appropriate
technique to evaluate the fractal nature of a process, it is critical to consider the time series
length, any apparent mean, and in some cases the range on which the process’s spectral
index might exist. It is therefore apparent from our analysis that making a conclusion about
the fractal nature of short physiological time series can be quite tenuous. The nature of
physiological data sets and their relationship to ideal 1/fβ profiles should be a significant
consideration when drawing conclusions about the results of these analyses.

In the interest of determining class independent estimators, the dispersional and bdSWV
methods are clearly not viable. Though developed for consideration of fGn and fBm class
signals respectively, these methods can provide incorrect results for signals typical of
physiological processes at β = 1. The recommendation to favor class independent methods is
to effectively reduce the burden of determining the signal class before evaluation. DFA is a
candidate, as it indicates no preferential performance in either class. Additionally, the
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evaluation is unaffected by a non-zero series mean. However, the results for DFA have
significantly large mean-square error and standard deviation for short time series (Bryce and
Sprague, 2012). It is apparent that DFA has little utility for short time series, and exhibits
diminishing returns in accuracy for longer series, as other investigations have observed
(Delignieres et al., 2006; Bryce and Sprague, 2012; Bardet and Kammoun, 2008).

A significant limitation of the frequency domain methods is the effect of low frequencies
and DC on the accuracy of these methods. Indeed, a the critical property of fractal processes
is that the power spectral density is not convergent for (ω = 0), and this presents some
problems for analysis (Li, 2010). However, removing DC and low frequency content from
the spectrum risks destroying low frequency information, and thus some scale invariant
features of the process. Additionally, the significantly lower MSE observed in the spectral
methods for white Gaussian fGn processes is likely an artifact of the time series generation
by the same principle (Kasdin, 1995). Regardless, accurately estimating the properties of
white Gaussian processes does not present any significant utility with respect to the interest
of fractal characterization of physiological processes, where a simple autocorrelation
analysis or Lilliefors test may suffice.

AWC has a more uniform performance for the range of fGn and fBm class signals. Though
AWC was significantly affected by non-zero mean signals, this effect is corrected by the
removal of the time series mean before evaluation. Unlike the modifications to spectral
methods to eliminate ill-fitting due to DC or high frequency noise, this is a straightforward
preprocessing step easily integrated with the main algorithm. This combination also
provides intact frequency and scale dependent information of the series. DFA presents
significant risk for short time series and provides no clear advantage in many instances,
where lowPSDwe can likely provide a more accurate complement to AWC analysis. In
general, given these two primary constraints of non-zero mean and short time series in gait
stride interval signals, AWC can provide uniformly accurate characterization for short and
long biased data series. Regardless, discretion of the desired precision and accuracy,
illustrated by the mean error and standard deviation, is encouraged in all applications.
Generally, the MSE of all estimators indicate that AWC is a generally robust method,
consistent under many circumstances and favorable especially under conditions of
physiological interest.

6.2. Stride Intervals Time Series
The analysis of the physiologically extracted time series provides perhaps the most
significant indication of the applicability of these methods in a physiological setting. Table 2
shows the fractal characterizations for long time series of ten healthy adults walking at self
selected paces. In these time series, the mean amplitude is 0.2025 and the mean of the series
is 1.1481, indicative of the inherent non-zero mean offset. The effects of these signal
characteristics are observed in our evaluation of these time series by DFA, lowPSDwe, and
AWC. For the self selected slow, normal, and fast time series, the DFA and AWC methods
evaluate a mean spectral index of 0.88 ± 0.15 and 0.98 ± 0.15 respectively. To validate this
disparity, consider the results of the simulated time series for length of 100 and β = 1. The
MSE of AWC is preferable in this instance, and is exemplified by observing the substantial
standard deviation of DFA here. The underestimation of the spectral index here by lowPSDwe
is noted. Considering physiologically eaningful conclusions from the pathological gait data
is more difficult given the inherently short length of the time series. These evaluations given
by Table 3 show the findings for short time series of ALS, Huntington’s Disease,
Parkinson’s Disease, and control subjects. For all series, the mean time series length is 190
points. The mean amplitude is 0.2788 and the mean of the series is 1.0866, again showing a
non-zero mean offset. For pathological gait time series, more stationary fGn type
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characteristics may be expected. Given the MSE for β on the range of [0,1] for length of
100, the accuracy of DFA, AWC, and lowPSDwe are generally comparable on the order of
10−1. Table 3 still show disparity between each estimator, error largely affected by the time
series length.

The drastic underestimation of the spectral index by the frequency do-main based method is
observed in both studies. To avoid error in the es-timation introduced by noise,
the lowPSDwe necessitates removal of high frequency components of 1/8 * fmax. The
underestimation of the spectral index in the power spectrum indicates a greater effect of the
high frequency content of the signal, so this adjustment did not quite nullify the effects of
high frequency biasing. Though the MSE of AWC and DFA are similar, the AWC method is
similarly biased but has much lower standard deviation. DFA on this range again presents
significant standard deviation. This highlights the critical concern of the application of DFA
to pathological time series of short length. It is therefore concluded here that the results
provided by AWC are more tenable.

It is clear that DFA and spectral methods in many instances require extensive modification
to properly assess the data. It is seen that necessity of such modifications as a potentially
hazardous burden which could render results incorrect and obfuscate interpretations. Indeed,
in the proposal of these methods for gait stride interval analysis by Haussdorf, the window
sizes and fitting ranges for DFA and the frequency range for the spectral method linear
regression required significant scrutiny to achieve a desired result (Hausdorff et al., 1996;
Delignieres et al., 2006). In this case, the relationship between the scales of the significant
physiological frequencies and noise frequencies can be inferred in a general sense. However,
it is not always possible to make a clear distinction between noise and physiologically
meaningful frequency content in all physiological and experimental settings. DFA similarly
requires adjustment of the bounds of window size. This adjustment can significantly impacts
the final calculation, and varies between applications depending on the amplitude of
fluctuations in the chosen window. This would require specific specialization of this method
for each application. The risks and burdens of specialization of these methods can be
effectively reduced given the generally favorable performance AWC. It is noted that the
only requirement to avoid errors in AWC is preprocessing the signal by subtracting the
mean.

7. Conclusions
The objective of this study was to provide a comparative analysis of fractal characterization
algorithms of 1/fβ time series with respect to physiological applications. Primarily, the
numerical analysis allowed us to provide insight into the time series lengths and signal
classes on which previously proposed algorithms returned acceptably accurate results. If
fractal characteristics are of interest for some arbitrary physiological process, it is critical to
choose a class independent algorithm with consistent accuracy and precision. When signal
class is not given a priori or classification is not possible, the application of class dependent
estimators is not feasible. The evaluation of these algorithms, bdSWV and dispersional
analysis, has shown that the limited utility of these methods in this setting. However, these
are still relatively valid evaluations if a signal class can be determined. Once a process can
be classified as fGn or fBm by a more robust consistent and accurate estimator such as
AWC, a class specific estimator may provide a useful complementary analysis. In contrast to
the findings under simulation, the inherent nature of experimentally derived physiological
signals present further challenges in evaluating fractal properties. The sensitivity of power
spectral methods to a non-zero mean and high frequency were observed, and necessitate the
task of distinguishing the range of physiologically meaningful frequencies from noise.
Similarly, the potential errors influenced in DFA from large local fluctuations in small
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window sizes are noted. However, the application of a method requires the recognition of
several key characteristics of pathological gait time series. First, the understood composition
and function of the locomotor system insists that the statistical properties of the gait
outcome can be analyzed to have fractal properties. It has been shown that aging and
neurodegenerative diseases result in decreased central processing capabilities,
proprioception, muscle strength and endurance, and significant dysfunction in motor
neurons, the cerebral cortex, brain stem, and spinal cord. Accordingly, diminished function
to any components of the locomotor system caused by aging or disease will affect these
statistical outcomes and thus the fractal characteristic. Another key characteristic of
pathological time series is the typically shortened length. In light of the results of the
numerical analysis, the AWC method is recommended as a useful tool for measuring the
fractal characteristic of time series. This is a useful tool which can more rapidly and
accurately track functional changes in stride interval dynamics. Clinically, this translates to a
biomarker of a potentially hidden pathology or decline due to disease or aging that can be
quickly and reliably monitored and inform susbsequent therapeutic intervention. A final
advantage of this application recognized by the comparative evaluation of these algorithms
is the relief of the burden of specific adjustments for each application. This numerical and
corresponding gait stride interval physiological analyses provide a justifiable basis for the
applications of AWC to a variety signals of interest for a more informative indicator of the
fractal nature of these processes.
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• Many physiological systems can be modeled as fractal processes.

• We investigated various approaches for estimation of spectral behavior.

• The averaged wavelet coefficient method yielded the most accurate results.
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Figure 1.
Range of fGn and fBm class signals: (a) HfGn = 0; (b) HfBm = 0; (c) HfGn = 0.5; (d) HfBm =
0.5; (e) HfGn = 1; and (f) HfBm
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Figure 2.
Sample time series and corresponding PSD with regression: (a) time series for β = 0; (b)
PSD of β = 0 time series; (c) time series for β = 1; (d) PSD of β = 1 time series; (e) time
series for β = 1; and (f) PSD of β = 2 time series.
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Figure 3.
Sample stride interval time series and the corresponding PSDs: (a) Study I (healthy) time
series; (b) PDS of Study I (healthy) sample time series; (c) Study II (ALS) time series; and
(d) PSD of Study II (ALS) time series.

Schaefer et al. Page 21

J Neurosci Methods. Author manuscript; available in PMC 2015 January 30.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
MSE vs β: (a) n = 100 points; (b) n = 10,000 points. ◊ AWC; + bdSWV; □ DFA; * Disp; ×
PSD; ○ lowPSDwe
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Figure 5.
MSE vs n: (a) β = 0; (b) β = 1; (c) β = 2. ◊ AWC; + bdSWV; □ DFA; * Disp; × PSD;
○ lowPSDwe
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Figure 6.
MSE vs β: (a) n = 100 points; (b) n = 600 points; (c) n = 2,500 points; and (d) n = 10,000
points. ◊ AWC; □ DFA; ○ lowPSDwe
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Figure 7.
ME vs β. (a) n = 100 points; (b) n = 600 points; (c) n = 2,500 points; and (d) n = 10,000
points. ◊ AWC; □ DFA; ○ lowPSDwe
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Figure 8.
σ vs β: (a) n = 100 points; (b) n = 600 points; (c) n = 2,500 points; and (d) n = 10,000 points.
◊ AWC; □ DFA; ○ lowPSDwe
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Figure 9.
MSE vs β, added unit mean: (a) n = 100 points; (b) n = 10,000 points. ◊ AWC; + bdSWV; □
DFA; * Disp; × PSD; ○ lowPSDwe
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Figure 10.
MSE vs β, zero mean: (a) n = 100 points; (b) n = 10,000 points. ◊ AWC; + bdSWV; □ DFA;
* Disp; × PSD; ○ lowPSDwe
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Table 1

Number of time Series and mean length, Study II. ALS = Amyotrophic Lateral Sclerosis, HD = Huntington’s
Disease, PD = Parkinson’s Disease, CO = Control.

ALS HD PD CO

Number of Series 13 20 15 16

Mean Length 196 242 184 255
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