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Abstract
Each individual carries thousands of non-synonymous single nucleotide variants (nsSNVs) in their
genome, each corresponding to a single amino acid polymorphism (SAP) in the encoded proteins.
It is important to be able to directly detect and quantify these variations at the protein level in
order to study post-transcriptional regulation, differential allelic expression, and other important
biological processes. However, such variant peptides are not generally detected in standard
proteomic analyses, due to their absence from the generic databases that are employed for mass
spectrometry searching. Here, we extend previous work that demonstrated the use of customized
SAP databases constructed from sample-matched RNA-Seq data. We collected deep coverage
RNA-Seq data from the Jurkat cell line, compiled the set of nsSNVs that are expressed, used this
information to construct a customized SAP database, and searched it against deep coverage
shotgun MS data obtained from the same sample. This approach enabled detection of 421 SAP
peptides mapping to 395 nsSNVs. We compared these peptides to peptides identified from a large
generic search database containing all known nsSNVs (dbSNP) and found that more than 70% of
the SAP peptides from this dbSNP-derived search were not supported by the RNA-Seq data, and
thus are likely false positives. Next, we increased the SAP coverage from the RNA-Seq derived
database by utilizing multiple protease digestions, thereby increasing variant detection to 695 SAP
peptides mapping to 504 nsSNV sites. These detected SAP peptides corresponded to moderate to
high abundance transcripts (30+ transcripts per million, TPM). The SAP peptides included 192
allelic pairs; the relative expression levels of the two alleles were evaluated for 51 of those pairs,
and found to be comparable in all cases.
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INTRODUCTION
DNA sequencing technologies have allowed researchers to uncover an astounding amount of
genetic variation in humans, including a multitude of single nucleotide variations, insertions,
deletions, tandem repeats, inversions, translocations, and duplications.1 Among these
variations, single nucleotide variants (SNVs), the single nucleotide differences between two
genomes that occur on average about once every 860 base pairs, have been the most
intensely researched, mainly through genome-wide association studies that seek to uncover
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the sets of causative SNVs that are responsible for a disease or trait.1–3 Advances in sample
preparation, sequencing instrumentation, and computational data analysis have made it
easier for researchers to rapidly sequence and discover the millions of SNVs found within a
genome, and thus the challenge today is not how to discover these variations but how to sift
through them to find those with functional significance.4

One way to simplify the study of SNVs is to focus on those SNVs that lie within coding
regions, because these SNVs can cause a change in the protein amino acid sequence and are
thus most likely to modify the function of a protein. Coding SNVs can be classified into
three types: (1) synonymous, which does not change the corresponding amino acid, (2)
nonsense, which introduces a premature stop codon, and (3) non-synonymous, also called
missense, which changes the corresponding amino acid. While it is well accepted that
synonymous SNVs do not affect the protein function, and nonsense SNVs usually cause a
loss of function (because the protein is truncated)5, it is harder to determine what effect a
non-synonymous SNV (nsSNV) has on a given protein’s function.6

Current strategies employed to study the functional effects of nsSNVs include determining
statistical associations between well phenotyped populations (i.e. genome-wide association
studies), computationally predicting the functional effect of an SNV using programs like
SIFT and PolyPhen-27, 8, and, most recently, evaluating the nsSNV within the biological
system, such as in a protein-protein interaction or regulatory network9. These approaches
guide the prioritization of nsSNVs for subsequent validation and hypothesis testing using in
vitro and in vivo functional assays. Though these statistical and bioinformatic strategies have
aided the study of nsSNVs, another valuable piece of information is the direct measurement
of the variant-containing protein.

The direct detection of proteins containing single amino acid polymorphisms (SAPs)
encoded by an nsSNV can aid researchers in studying the functional significance of these
variants. Directly measuring these SAP-containing proteoforms10 is essential to
understanding how an SNV influences a variety of processes at the protein-level such as
post-translational regulation of protein expression (e.g. protein degradation and stability),
localization of the protein, modulation of protein-protein interactions, and influence of the
SAP on patterns of post-translational modifications (PTMs). Furthermore, understanding the
influence of SAPs across various cell states would be very difficult without technologies to
measure these protein variations. Fortunately, mass spectrometry-based proteomics has
undergone remarkable development in the past decade and can now be used to
comprehensively identify and quantify large portions of the proteome.11–13 MS-based
proteomics has tremendous potential to detect SAPs on a large scale, providing researchers
with valuable information regarding the relationship between genomic variations and the
ultimate protein products they encode.

The main impediment to the wide-spread adoption of variant peptide detection using mass
spectrometry has been the lack of proteomic databases that include sample-specific variant
sequences. The current practice in proteomics to identify peptides or proteins is to search the
mass spectra against the sequences contained in a reference proteomic database, which is
derived from either the human reference genome or cDNA sequence repositories14–17. Since
the reference protein sequences do not contain the amino acid variations specific to a
sample, a mass spectrum produced from a variant-containing peptide will not correctly
match to a sequence and, therefore, will fail to be detected.

Several researchers have addressed this problem by constructing proteomic databases that
include SAPs and then searching these databases against tandem mass spectra to detect SAP
peptides. One approach relies on the construction of an exhaustive SAP database which

Sheynkman et al. Page 2

J Proteome Res. Author manuscript; available in PMC 2015 January 03.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



includes amino acid changes resulting from every hypothetical nucleotide change in the
genome.18–20 Another approach relies on the construction of a database that includes every
SAP found within SNV or cancer mutation repositories, such as dbSNP or COSMIC.21–34

Both of these approaches successfully allowed the detection of SAP peptides that are absent
from the reference proteome and thus show the potential of proteomics to characterize
variant peptides. However, the databases are greatly increased in size by tens of thousands
of SAP-containing sequences, many of which are not expressed in the sample. This results
in a concomitant increase in the false positive rate and a decrease in peptide identification
sensitivity18, 21, 22. These problems were overcome in two studies that used RNA-Seq data
to build SAP databases customized for a sample, enabling the detection of dozens of SAP
peptides, including peptides containing novel variants resulting from either rare SNVs or de
novo mutations.35, 36 These studies showed how rapid advances in next generation
sequencing technologies and the ease with which scientists can empirically measure all the
coding SNVs in a sample can be harnessed to expand the detection of SAPs on a proteome-
wide scale.

Here, we build upon those studies by comprehensively investigating SAP peptide detection
in the Jurkat human cell line. This study follows from previous work in which we used
RNA-Seq data to detect novel splice-junction peptides.37 We collected deep coverage RNA-
Seq data from the Jurkat cell line, compiled the set of nsSNVs that are expressed, used this
information to construct a customized SAP database, and searched it against deep coverage
shotgun MS data obtained from the same sample. The SAP peptides identified from this
customized database workflow were of much higher quality as compared to those identified
using a larger aggregate database that incorporates all known nsSNVs (dbSNP). We
employed multiple protease digestions to increase proteomic coverage and, thus, the number
of SAP peptide identifications. These detected SAP peptides represent the most
comprehensive study to date. Using this dataset, we describe various characteristics of the
detected SAP peptides, including their corresponding transcriptional abundance, SNV
functional effect scores, and degree of allele-specific expression.

EXPERIMENTAL PROCEDURES
Mammalian cell culture

Jurkat cells (TIB-152) were grown in 10% Fetal Bovine Serum and 90% RPMI-1640 buffer
at 37°C to a concentration of ~1.3×106 cells/mL (cell line and media were purchased from
ATCC, Manassas, VA). In total, there were 12 flasks each containing 25 mL of Jurkat cell
suspension. Upon harvesting, cell viability for each flask was determined with the trypan
blue assay and cells were counted on a TC10 Automated Cell Counter system (BioRad,
Hercules, CA). All cell cultures had 95%+ viability.

Mass spectrometry sample preparation and data collection
The proteomic sample preparation has been described previously in detail.37 Briefly, Jurkat
cell suspension was pelleted and rinsed twice in cold PBS buffer before storage at −80°C.
Cell lysis was performed by following the FASP protocol.38 Pellets were solubilized in SDT
lysis buffer (4% w/v SDS, 100 mM DTT, 50 mM Tris-HCl), heated, sonicated, and 150 μg
aliquots of protein were transferred to a 100K MW Amicon Ultra filter (Millipore, Billerica,
MA). For this study, the FASP protocol was slightly modified to allow for multiple
enzymatic digestions. The FASP method was followed for initial wash steps, alkylation, and
the last three wash steps, which employed 50 mM ammonium bicarbonate. Then, each filter
was washed with two additional rounds of buffer compatible with a protease and the enzyme
was added directly to the filter as listed here: 3 μg of trypsin (50:1 protein to enzyme ratio)
in 50 mM ammonium bicarbonate at 37°C for 16 hours (Promega, Madison, WI); 1.5 μg of
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rLysC (100:1) in 25 mM Tris-HCl pH 8.5, 1 mM EDTA, 4 M urea at 37°C for 16 hours
(Promega, Madison, WI); 1.5 μg of ArgC (100:1) in 270 μL of 50 mM Tris-HCl pH 7.6, 5
mM CaCl2, and 2 mM EDTA and 30 μL of 50 mM Tris-HCl pH 7.6, 50 mM DTT, and 2
mM EDTA at 37°C for 16 hours (Promega, Madison, WI); 1.5 μg of AspN (100:1) in 50
mM sodium phosphate pH 8.0 at 25°C for 16 hours (Roche, Indianapolis, IN); 1.5 μg of
GluC (100:1) in 25 mM ammonium bicarbonate at 25°C for 16 hours (Roche, Indianapolis,
IN); and 1.5 μg of chymotrypsin (100:1) in 100 mM Tris-HCl pH 8.0 and 10 mM CaCl2 at
25°C for 4 hours (Promega, Madison, WI). At the end of the incubation time, each filter was
centrifuged at 14,000 g for 15 minutes and the amount of peptide recovered was quantified
via the Nanodrop UV-Vis spectrometer (Thermo Fisher Scientific, Wilmington, DE).

At least 100 μg of peptide digest was fractionated on a Shimadzu HPLC system (LC-10AD,
SCL-10A VP, SPD-10A VP, Shimadzu, Columbia, MD) using a Phenomenex C18 Gemini
3μ, 110Å, 3.0×150mm column (Phenomenex, Torrance, CA) and high pH mobile phases.
Mobile phase A (MPA) was aqueous 20 mM ammonium formate pH 10, and B (MPB) was
20 mM ammonium formate pH 10, in 70% acetonitrile. The HPLC flow was 0.5 mL/min
and the gradient was as follows: 0% MPB isocratic for 15 minutes (trapping step), linear
ramp to 100% MPB over 60 minutes, hold at 100% MPB for 5 minutes, to 0% MPB over 2
minutes, and equilibration at 0% MPB for 20 minutes. A Gilson 203 fraction collector
(Gilson, Middleton, WI) was used to collect 28 fractions for the tryptic digest and 11
fractions for each of the LysC, ArgC, AspN, GluC, and chymotrypsin digests during
detected (214 nm UV absorbance) peptide elution. Fractions were dried down using vacuum
centrifugal concentration (Savant SpeedVac, Thermo, Pittsburgh, PA) and stored at −80°C.

Each of the dried down fractions were reconstituted in 2% acetonitrile and 0.2% formic acid
in water and then chromatographically separated on a nanoAquity LC system (Waters,
Milford, MA) using a 20 cm reverse phase capillary column (100 μm i.d.) packed with 3 μm
MAGIC aqC18 beads (Bruker-Michrom, Auburn, CA). Mobile phase A was 0.2% formic
acid in water and B was 0.2% formic acid in acetonitrile. The full HPLC method was 180
minutes long and included online trapping, a 90 minute gradient, and re-equilibration time.
A Velos-Orbitrap mass spectrometer (Thermo Fisher Scientific, Bremen, Germany) was
programmed to collect a full scan (300–1500 m/z) at a resolution of 60,000 followed by the
top ten precursor HCD fragmentation spectra at a resolution of 7,500. Precursor
fragmentation repeat count was set to two and the dynamic exclusion was set to 60 seconds.
XCalibur software version #2.1.0 was used for data collection.

RNA-Sequencing
The RNA-Seq data collection has previously been described in detail.37 Briefly, total RNA
was extracted from a 2 mL aliquot of each Jurkat culture (~2.6×106 cells) using the TRIzol®
Reagent (Life Technologies, Grand Island, NY) and the RNA integrity was evaluated on a
2100 Agilent Bioanalyzer (Agilent, Santa Clara, CA). Illumina paired-end libraries were
prepared for each of 12 samples using the TruSeq RNA Sample Prep Rev. A (kit lot
#6849988, Illumina, San Diego, CA). Briefly, mRNA was isolated with poly dT beads,
fragmented, reverse transcribed to cDNA, and then cDNA ends were repaired, adenylated,
and ligated to Illumina adapters. The cDNA library was run on an Invitrogen 2% Size Select
Gel (Lot# R19090-01) and a ~350 base pair band was excised and sequenced on an Illumina
HiSeq 2000 in paired-end mode (2×100bp). An average of 12 million reads were generated
per sample, and some samples were run multiple times, resulting in a total of ~300 million
reads.
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RNA-Seq data analysis
Bowtie/Tophat RNA-Seq read alignment—RNA-Seq reads were aligned to the human
reference genome (hg19) using Bowtie (v0.12.7) and Tophat (v1.4.0).39, 40 Alignments were
performed within Tophat, which uses Bowtie. The Tophat mate inner distance was set to
150. All other parameters were default. RefSeq gene models were supplied in GTF format
and reads were aligned to both RefSeq genes and novel genes (option –G). RefSeq is
NCBI’s curated, non-redundant reference sequence database and includes DNA, RNA, and
protein sequences and annotations.41 The binary alignment or BAM file was used for
subsequent SNV calling.

SAMtools SNV calling—SAMtools (v0.1.18) was used to call SNVs, nucleotide
differences between the aligned RNA-Seq reads and the human reference genome. The
mpileup command was used with the –u and –D options. Bcftools was then used (-bvcg
options) to format the binary call format or BCF file. Finally, the SAMtools vcfutils.pl script
was used to create a variant call format or VCF file. Only SNVs with a read depth (DP)
higher than 10 and a quality score (QUAL) higher than 10 were used for subsequent
analysis. QUAL is a phred-scaled score that reflects the confidence of the SNV call.

All RNA-Seq data processing was performed on the Phoenix cluster at the University of
Wisconsin-Madison Chemistry department.

Retrieval of amino acid polymorphisms—The variant_effect_predictor.pl Perl script
(version 2.7) downloaded from Ensembl along with the human annotation file (Ensembl
v72) was used to convert the SNVs to amino acid coordinates and retrieve the calculated
SIFT and PolyPhen-2 scores.42 Only SNVs passing the DP and QUAL filters were used.
Each SNV coordinate contained the chromosome, chromosome position, forward strand
reference nucleotide, and forward strand alternative nucleotide. After analysis, the program
output a variant effect predictor (VEP) formatted file containing all the non-synonymous
SNVs, and each entry included the corresponding amino acid change, the amino acid index
within a RefSeq protein sequence, and the associated SIFT and PolyPhen-2 score.

Construction of a customized SAP database
SAP coordinate information was converted into a customized SAP FASTA database. Within
the VEP file output from the previous step, SNVs that resided within RefSeq protein coding
regions were retrieved. The RefSeq protein FASTA file was downloaded from NCBI’s FTP
site (ftp.ncbi.nlm.nih.gov/refseq/H_sapiens/mRNA_Prot/human.protein.faa.gz, release
59).41 For each coding SNV, the reference and alternative nucleotide and its position within
the genome was listed, as well as the reference and alternative amino acid and position
within a RefSeq protein entry (NP accession). An in-house perl script was used to extract an
80 aa substring containing the SAP and change the reference aa to the variant aa. A FASTA
header including the amino acid change and position within the RefSeq NP entry was linked
to each SAP-containing sequence and all these sequences were appended to the RefSeq
protein and cRAP FASTA file. cRAP or the common Repository of Adventitious Proteins is
a database of protein sequences that are found as contaminants in proteomics experiments
(http://www.thegpm.org/crap/).

Construction of a SAP database from the dbSNP repository
For comparison purposes, a FASTA file containing SAPs derived from NCBI dbSNP
repository was constructed. The ASN-1 flat file containing all 53,233,155 dbSNP rs entries
for human was downloaded from NCBI’s ftp site (/snp/organisms/human_9606, build 137)
and the 691,356 rs entries representing missense mutations (fxn-class = missense) were
retrieved. Each rs entry lists the reference and alternative amino acid position within a
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RefSeq protein entry. An in-house perl script was used to extract an 80 aa substring
containing the SAP and change the reference aa to the variant aa. A FASTA header
including the amino acid change and its position within the RefSeq NP entry was added to
each dbSNP-SAP-containing sequence and all these sequences were appended to the RefSeq
protein and cRAP FASTA file.

Mass spectrometry searching
Raw mass spectrometry files were searched against the customized SAP+RefSeq+cRAP and
the dbSNP-SAP+RefSeq+cRAP FASTA files using the SEQUEST/Percolator search
algorithm within ProteomeDiscoverer (v1.3.0.339, Thermo Fisher Scientific, San Jose, CA).
Default peaklist-generating parameters were used. Precursor m/z tolerance was set to 10
ppm and product m/z tolerance was set to 0.05 Da. Peptides with up to two missed cleavages
(proteolytic) were permitted. Variable methionine oxidation and static
carbamidomethylation were used. Using reversed sequences as a decoy database, peptides
passing both a 1% and 5% global FDR were used for downstream analysis. Validation was
based on q-values generated by Percolator. For identification of a protein using
ProteomeDiscoverer, protein grouping and strict parsimony principle was enabled, leucine
and isoleucine were considered equal, and only peptides passing a 1% FDR and having a
delta Cn higher than 0.15 were used. Each peptide identification counted only if that peptide
had a unique primary sequence. A minimum of two peptides per protein was required for
identification. MS data collected from alternative enzymatic digests were separately
searched against the customized SAP+RefSeq+cRAP FASTA file with identical parameters
to the trypsin search except with the relevant enzyme specificity.

Estimation of allele-specific protein expression
Using Skyline software (v1.4)43, MS1 extracted ion chromatograms were integrated for
heterozygous peptide pairs that had a high degree of structural similarity (same length, only
one amino acid difference). Only peaks that overlapped a target peptide MS2 identification,
contained minimal background interference, and had an appropriate chromatographic peak
shape were accepted. Default Skyline parameters for peak integration were used.

RESULTS
Overview

Each human cell line or tissue sample contains thousands of non-synonymous SNVs
(nsSNVs) that give rise to single amino acid polymorphisms (SAPs); however, these
variations are typically absent from generic proteomic databases. Therefore, sample-specific
peptides containing these SAPs fail to be identified during mass spectrometry searching.
Fortunately, RNA-Seq can be used to experimentally detect the nsSNVs in a sample, which
allows for the creation of a customized SAP database, thereby enabling identification of
SAP peptides.36

Here, we describe the comprehensive detection and evaluation of SAP peptides from a
human cell line. We created a customized SAP database using RNA-Seq data collected from
Jurkat cells that enabled the detection of 421 SAP peptides mapping to 395 nsSNV sites. For
comparison purposes, we constructed an all-inclusive SAP database derived from all known
human nsSNVs (NCBI’s dbSNP) leading to the identification of 891 SAP peptides. Though
there were a higher number of SAP peptides passing a 1% FDR using this all-inclusive
database, we show that the peptide spectral matches (PSMs) were of much lower quality,
indicating a false positive issue. After this finding, we proceeded to determine the extent of
SAP peptide detection using the customized database. We employed multiple protease
digestions to increase proteomic coverage and thus identified 695 SAP peptides mapping to
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504 nsSNV sites (9% of total nsSNVs, 504/5755). These SAP peptides corresponded to
transcripts with a median of 44 transcripts per million, indicating that they are derived from
moderate to high abundance transcripts. For all the SAP peptides, we report the
computationally predicted functional effect scores (SIFT, PolyPhen-2). And last, the
detected SAP peptides included 192 allelic pairs, in which the reference and SAP peptide
were both detected; we measured the relative allele-specific expression for 51 of these pairs.

Construction and use of the customized RNA-Seq database
RNA-Seq data was collected from Jurkat cell culture and used to create a customized SAP
database used for MS searching. The detection of variant peptides from SAP databases is
shown in Figure 1 and the bioinformatic workflow numbers are shown in Figure 2.

First, RNA-Seq and MS data was collected from Jurkat human cell culture. Total RNA was
extracted from several Jurkat cultures (95%+ viability, trypan blue) using the TRIzol®
method and each sample was used to create a barcoded Illumina cDNA library using the
TruSeq protocol. Each library was sequenced at least once on an Illumina HiSeq 2000,
resulting in a total of ~300 million paired end reads (350bp, 2×100bp). Protein was extracted
and digested from the Jurkat cultures using the FASP method and the resulting peptides
were fractionated via a high pH HPLC and run on a nanoLC-Velos Orbitrap operating in
data-dependent mode. Approximately 500,000 mass spectra were collected.

The RNA-Seq data were analyzed to find Jurkat cell-specific SNVs. Bowtie and Tophat
were used to align the RNA-Seq reads to the human reference genome (hg19). RefSeq gene
models were used to guide alignment, but reads that aligned to novel genes were also
allowed. 82.8% of the singletons (one member of the read pair) and 67.7% of the full read
pair were successfully aligned. All read alignments were stored within a binary alignment
(BAM) file (61.41 GB). Next, SAMtools (mpileup command) was used to call SNVs. Here,
the genome is traversed one nucleotide at a time and for each nucleotide position, the reads
overlapping a nucleotide is examined. If there is evidence that the nucleotide sequence
within the RNA-Seq reads differ from the nucleotide in the reference genome with statistical
significance, an SNV is “called” or reported. After SNV calling, several quality metrics are
used to filter SNVs, including the quality of the nucleotides at the SNV site, the score of the
read alignment, and the depth (i.e. coverage) of the reads. From the mapped reads in this
study, a total of 473,868 SNVs were called while 234,129 SNVs passed quality filters—read
depth (DP) of 10 or higher and quality score (QUAL) of 10 or higher. Figure 3 shows the
distribution of read depth versus quality score for all the SNVs called, with filtered out
SNVs shaded in gray.

Of the 234,129 SNVs that passed quality filters, 12,817 SNVs were found to reside within
RefSeq protein coding regions. 6,535 (52%) were synonymous SNVs and 6,083 (47%) were
non-synonymous SNVs (nsSNVs). These percentages are similar to percentages reported by
the 1000 Genomes Project (55% synonymous, 45% non-synonymous; average values from
1,092 individuals).1 The high proportion (94.5%) of SNVs that did not reside in coding
regions were predominantly located within UTRs or introns, and this was especially true for
nucleotides near the 3′ end of the transcript. This suggests that many untranslated SNVs are
detected from incompletely spliced mRNAs that were isolated during the polydT bead
enrichment step of the Illumina library preparation protocol.

The set of nsSNVs found in the RNA-Seq data was used to derive all SAP-containing
polypeptide sequences in RefSeq. To accomplish this, each amino acid position and index
within the RefSeq protein sequence (NP accession number) was retrieved. For each SAP, a
custom Perl script was used to extract an 80 aa subsequence containing the SAP position,
and the amino acid at that position was changed to the variant form. In a few cases (5%) the
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RefSeq protein sequence corresponded to the SAP encoded by the nsSNV. This is because
of minor discrepancies between the RefSeq and hg19 sequence data, due to their different
origins—hg19 is the product of genome sequencing efforts, whereas RefSeq is derived from
cDNA sequencing data. 5,755 SAP-containing sequences mapping to 3,837 distinct NP
accessions were extracted and appended to the RefSeq protein (35,930 entries) and cRAP
(155 entries) databases to create a customized SAP database. The SAP entries marginally
increased the size of the database by 2.2% (442,740 aa added to 19,899,407 aa). 38% (2,162
entries out of 5,755) of the SAPs were not present in dbSNP and are likely to represent
undocumented variations, including somatic mutations, rare variants, and variations
exclusively in the RNA from RNA editing or RNA polymerase nucleotide
misincorporations.

The RefSeq+cRAP+SAP database was searched against the MS data using the Percolator/
SEQUEST algorithm. 73,552 peptides (each with unique sequences) were identified at a 1%
FDR. From these, there were a total of 421 SAP peptides mapping to 395 unique SNVs,
corresponding to 0.6% of all peptides. This percentage, representing the proportion of SAP
peptides detected in a shotgun proteomics experiment, is similar to previous findings36;
however, the present study identified over ten times the number of SAP peptides. The
significantly higher number of SAP peptides identified is likely due to the deep proteomic
sampling achieved in this study. This suggests that even more SAP peptides could be
discovered by the collection of deeper-coverage proteomics data. A list of the SAP peptide
identifications may be found in Supplementary Table S1 in the Supplementary Information
(SI).

The relative quality of peptide spectral matches (PSMs) was compared between RefSeq and
SAP peptides. When MS searches are performed against proteomic databases that are
augmented with putative sequences (e.g. splice junction sequences), there is an increased
chance of false positives37. A typical indication that there are false positive issues is when
peptides matching the non-canonical database (e.g. SAP peptide) have lower than expected
MS search scores. Therefore, the average MS search scores—in this case, the SEQUEST
XCorr score that represents the degree of match (via the cross-correlation function) between
the theoretical and experimental MS2 spectra—were compared between RefSeq and SAP
peptides. Surprisingly, the SAP peptide XCorr scores, on average, were actually higher than
the RefSeq peptide scores, indicating that the SAP peptide identifications are of high quality.
Figure 4 shows these comparisons.

Construction and use of the dbSNP database
The nsSNVs listed in dbSNP were used to create an exhaustive SAP database, which was
then used for MS searching. Key bioinformatic workflow numbers describing this process
are shown in Figure 5.

NCBI’s dbSNP is one of the largest repositories of known SNVs consolidated from various
sources of data such as sequence tagged sites, Genbank, and the 1000 genomes project33.
dbSNP was used to create an exhaustive SAP database for proteomic searching. A human
dbSNP ANS-1 flat file containing all 53,555,486 entries was downloaded from NCBI’s FTP
site (May 3rd, 2013). Of those entries, 679,490 were classified as non-synonymous SNVs
(fxn-class=missense) and 378,986 as synonymous (fxn-class=synonymous). The 679,490
non-synonymous SNVs mapped to 33,557 distinct RefSeq NP sequences and, therefore, the
dbSNP nsSNVs covered nearly all RefSeq protein sequences.

A SAP-containing polypeptide sequence was created from the SNV coordinate information
listed in each dbSNP entry. Using the dbSNP nsSNV coordinate information, a custom Perl
script was used to extract, from the RefSeq protein entry, the 80 amino acid stretch of
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protein sequence containing the SAP and to change the amino acid to reflect the variant
form. Each entry was created in FASTA format and the header included the chromosome
and protein position of the nucleotide and amino acid change, respectively. In total, 691,356
dbSNP-SAP entries were created. Some dbSNP entries contained two or more alternative
alleles, thereby generating multiple SAP entries from a single dbSNP. The dbSNP-SAP
entries were appended to the RefSeq protein (35,930 entries) and cRAP (155 entries)
databases to create the dbSNP-SAP database. The dbSNP-SAP entries drastically increased
the size of the database by 268% (53,233,115 aa added to 19,899,407 aa).

The RefSeq+cRAP+dbSNP-SAP database was searched against the MS data using the
Percolator/SEQUEST algorithm. 72,250 RefSeq peptides (each with unique sequences) were
identified at a 1% FDR. A total of 891 dbSNP-SAP peptides were identified. An additional
652 dbSNP-SAP peptides were identified at a 5% FDR threshold. A list of the dbSNP-SAP
peptide identifications may be found in Supplementary Table S2 in the SI. Though at first
glance it may seem that more SAP peptides were identified with the dbSNP-SAP database,
there were false positive issues that bring into question the quality of these peptide
identifications. This topic is discussed in the next section.

Comparing RNA-Seq and dbSNP-derived SAP peptides
The dbSNP-SAP database represents all the nsSNVs found in any number of different
human cell and tissue types, whereas the custom SAP database derived herein is from a
single sample-matched RNA-Seq dataset and represents the set of nsSNVs that exist in this
particular single cell-line. Although use of an aggregate database, such as the set of dbSNP-
derived SAPs, obviates the need to collect sample-specific RNA-Seq data, these databases
contain an extremely large number of polypeptide sequences that do not exist in the sample.
Inclusion of a large number of extraneous sequences in proteomics databases increases the
probability that a theoretical mass spectrum derived from an extraneous peptide sequence
falsely matches to an experimental mass spectrum by mere chance, a well-known
phenomenon.44

A strong disadvantage of using an aggregate database, like the dbSNP-derived SAP
database, is that there are many false positives in the set of SAP peptides identified.
Evidence for this phenomenon can be seen in the comparison of MS search score
distributions of the RefSeq and SAP peptides. Figure 4A shows that for peptides passing a
1% FDR, the median XCorr score for RefSeq (canonical) peptides was 3.0: The custom SAP
peptides had a median value of 3.6, which was even better than the RefSeq median, but,
notably, the dbSNP-SAP peptides had lower XCorr scores, a median of 2.8. These trends for
RefSeq, custom SAP, and dbSNP-SAP were even more pronounced when comparing
median XCorr scores for peptides passing a 5% FDR, that is, 2.9, 3.6, and 1.8, respectively
(Figure 4B), underscoring both the high quality of RNA-Seq derived custom SAP peptide
identifications, and the low quality and higher number of false positives within the dbSNP-
SAP peptide identifications. Note that the peptide posterior error probabilities (PEP) and q-
values for the peptide groups also showed similar trends (Figures S1 and S2).

We examined the extent of overlap in peptide identifications between RNA-Seq versus
dbSNP-derived SAP peptides. Venn diagrams are shown in Figure 6. A large fraction of the
RNA-Seq SAP peptides (42% of peptides passing a 1% FDR) were not present in the dbSNP
database, showing that despite dbSNP’s large size, it still does not include every SNV in this
particular human cell line. Moreover, it is reasonable to assume that aggregate databases, as
they stand today, would fail to detect a number of variants in other cell or tissue types, as
many SNVs are yet to be documented. Conversely, a large fraction of dbSNP-SAP peptides
(73% of peptides passing a 1% FDR, and 84% passing a 5% FDR) lacked evidence of
expression in the deep coverage RNA-Seq data and, hence, are most likely false positives.
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This would suggest that the nominal false discovery rates for 1% and 5% FDR passing
dbSNP-SAP peptides are actually 73% and 84%, respectively. While the total number of
dbSNP-SAP peptides identified is greater than the number of RNA-Seq SAP peptides
identified, the exceedingly high actual false positive rate compromises their utility.

Next, we asked if the dbSNP-SAP peptide false positive issue could be remedied by
applying more stringent peptide identification thresholds. It is well known that MS searches
against extremely large databases tend to produce many false positive peptide
identifications, and various strategies have been developed to reduce the incidence of false
positives, including sequential (multi-tiered) MS searches and calculation of local
FDRs44, 45. We calculated a local FDR for the dbSNP-SAP peptides by utilizing posterior
error probability (PEP) values (see Supplemental Table S2)37, 46. We found that even with
the application of a local FDR threshold, the dbSNP-SAP peptide score distributions were
still slightly shifted to lower values (Figure S3). And, more importantly, applying the local
FDR cut-off did not eliminate many false positive dbSNP-SAP peptides, as shown in the
Venn diagrams in Figure 6B, where more than 70% of dbSNP-SAP peptides were not
present in the RNA-Seq data and are therefore likely to be false positives.

The coverage and accuracy of the SAP peptide identifications must be high to be of use in
biological applications such as the confirmation of nsSNV translation. These results show
that utilizing sample-matched RNA-Seq data to identify SAP peptides offers significant
advantages in these respects.

Multiple protease digests to expand SAP peptide detection
It was shown above that 395 SNV sites were detected at the protein level from searching the
custom (RNA-Seq derived) SAP database against MS data collected on tryptically-digested
lysate. As far as we know, this is the largest number of SAP peptides detected for a single
human cell line. However, these SAP peptides represent only 6.9% (395/5755) of all
possible translated nsSNVs. Of the 5755 total SAP sequences, 4325 contain SAP peptides
that are between 6 and 39 amino acids, the typical range of peptide lengths that are identified
in shotgun proteomics studies. Using this reduced number, a larger fraction of length-filtered
SAP peptides were identified, specifically 9.7% (395/4325). Assuming that the nsSNVs
detected at the RNA level are indeed translated into protein, these results provide a good
estimate of the proportion of nsSNVs corresponding to detectable SAPs.

We asked what fraction of nsSNVs could be detected at the protein-level with shotgun
proteomics. To explore this question, we collected high coverage proteomics data by
employing multiple protease digestions. Jurkat cell lysate was separated into five aliquots
and was digested with either LysC, ArgC, AspN, GluC, or chymotrypsin. Each of the five
peptide digests were fractionated on a high pH HPLC and analyzed on a Velos-Orbitrap
mass spectrometer in data dependent mode, and each dataset was searched against the
RefSeq+cRAP+SAP database. Similarly to the trypsin-derived SAP peptides, the SAP
peptides had higher XCorr distributions than RefSeq peptides on average (Figure S4). Figure
7 shows the peptide and SNV site identification results. Note that the trypsin dataset was
based on 28 high pH HPLC fractions whereas the datasets for the other enzymes were based
on 11. The number of SAP peptides with unique sequences was calculated for cumulative
combinations of proteolytic search results. For example, 508 unique SAP sequences were
found with combined trypsin and LysC data and 547 unique SAP sequences were found
with combined trypsin, LysC, and ArgC data. When the multiple protease data was
compared with the original tryptic dataset, the number of unique SAP peptides increased by
65% while the number of unique nsSNV sites for which there was direct peptide evidence
increased by 28%. In other words, while data from all six enzymes detected 695 unique SAP
peptide sequences, these peptides corresponded to only 504 unique nsSNV sites. These
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results suggest that higher coverage shotgun proteomics data increases the number of
identified SAP peptides with unique sequences, but that many of these SAP peptides are
repeatedly sampling the same set of SNVs. All multiple protease SAP peptide search results
may be found in Supplementary Table S3 in the SI.

Transcript abundances for detected SAP peptides
With high coverage proteomic data, 8.8% (504/5755) of the total number of possible
nsSNVs were identified at the protein level. This represents a much higher fraction of
detected SAP peptides as compared to previous studies21, 22, 24, 27, 36, but it lags in
comparison to the SNV detection sensitivity afforded by next generation sequencing
technologies. MS-based proteomics can only detect a small fraction of all possible protein-
level variants within a sample. To understand why, the abundance distribution, in transcripts
per million (TPM), was plotted for all transcripts and for transcripts in which the
corresponding protein was identified (Figure 8). The median TPM for transcripts with a
protein identification was much higher than the median TPM for all transcripts. Two reasons
for this are: first, some lower abundance transcripts are not translated, especially for
transcripts that are stochastically expressed, and, second, mass spectrometry is not as
sensitive as RNA-Seq and the sampling depth of peptides is limited by many factors such as
peptide ionization efficiency, sample complexity, and the MS duty cycle. The abundance
distribution for transcripts in which there was a detected SNV was also plotted and
compared to the abundances of transcripts for which there was a detected SAP peptide
(Figure 8B). This plot shows that SAP peptides are primarily detected from highly expressed
transcripts and suggests that as MS sensitivity and sampling depth increases, the number of
SAP peptides detected will also increase.

The transcript versus protein abundance was plotted for all genes detected in the Jurkat cell
line (Figure S5). The degree of transcript ~ protein correlation (Spearman’s rank correlation
coefficient = 0.62) was similar to those reported in previous studies.11–13

Computationally predicted functional effect scores
The functional consequence of a given SNV can be computationally predicted using a
variety of tools such as SIFT and PolyPhen-27, 8. SIFT examines the degree of evolutionary
conservation of the nucleotide polymorphism and depends on the assumption that an SNV
found in a highly conserved genomic region is more likely to affect the function of the
protein. PolyPhen-2 examines the physicochemical properties of the amino acid change and
how much this change affects conserved protein domains. Because the number of discovered
SNVs far exceeds the number of SNVs that can be biologically validated, both SIFT and
PolyPhen-2 are ubiquitously used to analyze and rank SNVs discovered in genome research.

We were interested in evaluating the functional predictive scores for both the RNA and
protein-level SNVs. We used Ensembl’s Variant Effect Predictor (VEP) program to retrieve
the SIFT and PolyPhen-2 scores for each nsSNV (see Supplementary Table S4 in SI). The
distribution of SIFT and PolyPhen-2 scores for nsSNVs detected at the RNA level and the
subset of nsSNVs that was detected at the protein level, as evidenced by a SAP peptide ID,
were similar. Figure 9 shows histograms of both SIFT and PolyPhen-2 score distributions.
27% of all nsSNVs and 29% of nsSNVs with peptide evidence had a SIFT score less than
0.05, which is categorized as “deleterious”. 16% nsSNVs and 14% of nsSNVs with peptide
evidence had a PolyPhen-2 scores greater than 0.903, which is categorized as “probably
damaging”.
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RNA and protein allele-specific expression
In diploid organisms such as human, there are two copies of each chromosome, and thus
each RNA or protein is derived from one of two alleles. When the gene is homozygous, the
sequence of the allelic pair is identical and there is no way to distinguish which
chromosomes the gene products come from. But when the gene is heterozygous, the
sequences of the allelic pair are different and it is possible to track which gene an RNA or
protein arose from by detecting the RNA-Seq read or SAP peptide containing the SNV or
SAP, respectively. Additionally, it is possible to quantify allele-specific expression (ASE).
The ASE at the RNA-level can be estimated by comparing the depth of reads mapping to the
reference and alternative SNVs47. Analogously, the ASE at the protein-level can be
estimated by quantifying the amount of reference and SAP peptide48. Previously, a SILAC-
based approach was developed that allowed global quantification of ASE in yeast49.

We examined the RNA-Seq and mass spectrometry datasets to identify, at the protein-level,
the number of detected allelic pairs and to measure ASE. At least one SAP peptide was
detected for each of 504 nsSNV sites, as shown in an earlier section of this paper. Both the
reference and SAP peptides were detected for 38% (192 out of 504) of those nsSNV sites
showing that a significant number of heterozygous peptide pairs are readily detected by
shotgun proteomics. The amino acid sequences of the heterozygous peptide pairs were either
significantly different (e.g. the SAP introduces a lysine causing the SAP peptide to be much
shorter than the reference peptide) or highly similar (e.g. the SAP is a single amino acid
change in the middle of the peptide sequence). 74 heterozygous peptide pairs were found in
the latter category. The peptides in these pairs have highly similar sequences (i.e. a
difference of only one amino acid). They could be considered structural analogues of each
other; the predicted HPLC retention time using SSRCalc50 and the predicted ionization
efficiency using ESPPredictor51 between these pairs were found to be near-identical. We
estimated the relative SAP to reference peptide concentrations by integrating the area of
MS1 extracted ion chromatograms using the Skyline program43.

Figure 10 displays a plot of the estimated allelic expression for peptide and RNA-level
heterozygous pairs. The reference to alternative peptide ratio was distributed around 1:1, for
both the nsSNVs (RNA-Seq reads) or SAPs (peptide) measured. As expected, allele-specific
peptide expression shows greater variability than allele-specific RNA expression due to MS
variables such as electrospray current and complexity of the sample matrix (i.e. co-eluting
peptides). Future work could utilize heavy-labeled internal standards and employ more
precise methods of quantification to further explore allele-specific expression. All ASE
results can be found in Supplementary Table S5 in the SI.

DISCUSSION
The full repertoire of SNVs expressed in RNA can be detected using the latest sequencing
technologies but the power to detect the corresponding SAPs at the protein level has been
lagging. Direct detection of the SAP within a peptide (or protein) is important for
understanding how variants influence biological phenomena such as post-transcriptional
regulation and differential allelic expression. Little work has been done to date to measure
SAP peptides on a large-scale using mass spectrometry because the conventional strategy
for identifying peptides is through database searches against a generic proteomic database
that does not include the variant sequences.

We have described the large-scale detection of SAP peptides made possible through the
construction of a customized SAP database from sample-matched RNA-Seq data. With the
customized database, we confirmed the translation of hundreds of non-synonymous SNVs
that were specific to the Jurkat cell line, representing the most comprehensive set of SAP
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peptide identifications to date. To determine how many SAP peptides are detectable by
shotgun proteomics, we employed multiple protease digestions and collected even higher
coverage proteomics data, allowing us to detect 695 sequence-unique SAP peptides
corresponding to 504 unique nsSNV sites, or ~10% of all RNA-level nsSNVs (504/5755).
These results illustrate that a significant number of SAP peptides are detectable through
shotgun proteomics, but also indicate that further improvements in proteomics technologies
are needed for them to equal the coverage of variants that can be obtained at the RNA level
with next generation sequencing technologies.

The unusually high number of SAP peptides identified in this work along with the sample-
matched RNA-Seq data provided us with the opportunity to analyze properties of nsSNVs
and the SAP peptides identified via mass spectrometry. The SAP peptides, similarly to all
peptides identified, corresponded to moderate to high abundance transcripts (30+ transcripts
per million, TPM). The distribution of these detected SAP peptides’ computationally
predicted functional effects (e.g. SIFT, PolyPhen-2) was similar to the distribution for the
complete set of all possible SAPs, indicating no selection of particular SAP types. Finally,
for 192 out of the 504 SNVs, we detected both the reference and SAP peptides, confirming
that a significant fraction of heterozygous alleles are expressed at the protein level. Related
to this finding, we also investigated the feasibility of quantifying differential allelic
expression on a large scale. Previously, SRM methods employing stable isotope labeled
peptide standards were developed to quantify three allelic peptide pairs52 and a small
number of related mutant peptides48, 53. Here, we presented preliminary label-free
quantification of allele-specific expression based on the integrated MS1 extracted ion
chromatograms from 51 allelic peptide pairs.

We compared the number and quality of SAP peptide identifications resulting from MS
searches against (1) an aggregate SAP database derived from NCBI’s dbSNP repository and
(2) a customized SAP database derived from sample-specific RNA-Seq data—which
contained only those nsSNVs detected in the human cell line of study (Jurkat cells). There
were many clear advantages to using a customized database, including its smaller size
(reducing the incidence of false positive peptide IDs), inclusion of nsSNVs not yet in public
SNV repositories, and the ability to compare RNA and protein nsSNV expression. The
aggregate database may be an option in the case that NGS data cannot be collected, but we
found that the large database size (over 100 times larger than the customized database)
caused the identification of many false positive SAP peptides, a problem not remedied by
application of stringent MS search cut-offs (e.g. local FDR). In light of these findings, it is
recommended to use some strategy for condensing or customizing proteomic databases
when searching for novel protein variations.

An issue that will become important as methodology for the detection of sample-specific
SAP peptides is adopted is that the various genetic, transcriptomic, and proteomic databases
have discrepancies in sequence. These sequence discrepancies make it difficult to assess the
incidence and extent of protein variations in samples. The genomics community has solved
this problem by calling an SNV when there is a nucleotide that is different from the human
reference genome that is maintained by the Genome Reference Consortium54. No such
convention has yet been implemented in the area of proteomics. For example, many
proteomics researchers use protein databases containing sequences that are not derived from
the human reference genome, such as UniProt, so the set of SAPs called from the reference
genome will be different from those called from UniProt.

As outlined in the introduction, it would be beneficial if MS-based proteomics could detect
and quantify all the translated nsSNVs in a human sample. In this study, we show that up to
~10% of nsSNVs identified in RNA were also detected at the protein level, meaning that
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there are many SAP peptides that are not presently detected. Two factors could improve
SAP detection: higher proteomic coverage and increased MS sampling sensitivity. With
high proteomic coverage, there is a better chance of detecting a peptide corresponding to an
nsSNV. In this study, we used multiple proteases and increased the number of detected SNV
sites by ~25%. With increasing sensitivity, there are improved chances of detecting SAPs
that are expressed at lower levels. Whereas MS instrument sensitivity is an inherent feature
of each MS platform, another factor affecting sensitivity that we can control is the sampling
depth, that is, the ability for the instrument to choose precursor peptides of low ion intensity
(within a complex matrix) for subsequent MS2 fragmentation. For example, one solution to
increase the number of SAP peptides detected would be to employ a targeted approach by
using selected reaction monitoring (SRM) assays55, SAP peptide inclusion lists during data
dependent acquisition, or even intelligent data acquisition (IDA) strategies56. These SAP
peptide targeting approaches could be employed in future work to detect a larger fraction of
translated nsSNV sites.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Acknowledgments
We thank Gergana Hinrichs and William Horvat for technical assistance with the cell culture and proteomics
sample preparation. This work was supported by NIH grants 1P01GM081629 and 1P50HG004952. This research
was also supported in part by National Science Foundation Grant CHE-0840494 through use of the University of
Wisconsin-Madison chemistry computing resources. RNA-Sequencing work was performed at the University of
Wisconsin—Madison Biotechnology Center. GMS was supported by the NIH Genomic Sciences Training Program
5T32HG002760.

ABBREVIATIONS

ASE allele-specific expression

ATCC American Type Culture Collection

BAM binary alignment file

BCF binary call format

cDNA complementary DNA

COSMIC catalogue of somatic mutations in cancer

cRAP The common Repository of Adventitious Proteins

DAE differential allelic expression

DP read depth

DTT dithiothreitol

EST expressed sequence tags

FASP filter-aided sample preparation

FDR false discovery rate

GTF gene transfer format

IDA intelligent data acquisition

MPA mobile phase A

NCBI National Center for Biotechnology Information
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NGS next generation sequencing

NP RefSeq protein sequence accession

nsSNV non-synonymous single nucleotide variant

PBS phosphate buffered saline

PolyPhen-2 polymorphism phenotyping version 2

PSM peptide spectral match

SAP single amino acid polymorphism

SDT SDS/DTT buffer (see other abbreviations)

SIFT Sorting Intolerant From Tolerant

SNP single nucleotide polymorphism

SNV single nucleotide variant

SRM selected reaction monitoring

TPM transcripts per million

VCF variant call format

VEP variant effect predictor

XIC extracted ion chromatogram
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Figure 1.
Overview of sample-specific SAP peptide detection from custom databases. Single
nucleotide variants (SNVs) are detected directly from RNA-Seq reads by finding differences
between the transcript and human reference genome nucleotide sequences. The set of non-
synonymous SNVs are converted into amino acid sequences that are consolidated into a
customized protein database that is used for MS searching. Here, both the reference and
variant (SAP) peptides are detected, demonstrating that both allelic forms are expressed at
the protein level.
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Figure 2.
Bioinformatic workflow numbers for customized SAP database construction and subsequent
MS search results.
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Figure 3.
Plot of RNA-Seq read depth versus quality score for each called SNV. This graph shows the
distribution of depth and quality scores for the SNVs called using SAMtools, with discarded
SNVs highlighted in gray. The bimodal shape is due to the presence of homozygous (top
portion) and heterozygous (bottom portion) alleles. The nsSNVs that resulted in a SAP
peptide identification are dark blue. These nsSNVs tend to be of higher read depth and
quality.
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Figure 4.
Comparison of average XCorr scores for peptides matching the RefSeq protein, dbSNP-
SAP, or custom (RNA-Seq) SAP database. SAP peptides identified from the custom
database tended to have higher XCorr scores than those identified from the dbSNP database.
Score distributions for peptides passing a 1% FDR (A) and 5% FDR (B) are shown.
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Figure 5.
Bioinformatic workflow numbers for the dbSNP-derived SAP database construction and MS
search. Though more SAP peptides were detected using the dbSNP database, the peptide
identifications had low peptide spectral match (PSM) scores, indicating a false positive
issue.
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Figure 6.
Comparison of dbSNP versus RNA-Seq derived SAP peptide identifications. Venn diagrams
show the overlap of SAP peptides identified from MS searching. For example, 245 SAP
peptides passing a 1% FDR were identified in both the dbSNP and RNA-Seq SAP database
searches. (A) dbSNP-SAP and RNA-Seq SAP peptides passing global FDRs, (B) dbSNP-
SAP peptides re-analyzed to pass a local FDR and then compared to the same RNA-Seq
SAP peptides. The terms “local” and “global” FDR are explained by Käll, et al. 57.
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Figure 7.
Cumulative number of identified SAP peptide and nsSNV sites with consolidated protease
digest data. The enhanced protein coverage afforded by multiple protease digestions
increased the number of translated nsSNVs detected by 28%.
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Figure 8.
Distribution of transcript abundances for transcripts encoding detected proteins and
transcripts encoding detected SAP peptides. (A) The abundance distribution for all
transcripts (light blue) versus just those transcripts with a protein identification (dark blue).
(B) The abundance distribution for transcripts with an nsSNV (light blue) versus just those
transcripts with a detected SAP peptide (dark blue).
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Figure 9.
Comparing SIFT and PolyPhen-2 functional effect prediction scores between all nsSNVs
and nsSNVS with a SAP peptide ID. The distributions were similar between the two groups.
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Figure 10.
RNA and protein-level allele-specific expression. A line corresponding to 1:1 allelic
expression has been overlaid. For both RNA (A) and protein (B), the expression levels for
allelic pairs are roughly the same. Protein-level expression had higher variability.
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