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Abstract
Objectives—Cognitive dysfunction is prevalent in older adults with bipolar disorder (BD). High
white matter hyperintensity (WMH) burden, a marker of white matter disease, detected on T2/
fluid-attenuated inversion recovery brain magnetic resonance imaging (MRI) has been
consistently reported in BD across all age ranges, including older adults. Yet, whether high WMH
burden is related to the excess cognitive impairment present in older adults with BD is unknown.
Therefore, we examine whether higher WMH burden is related to worse cognitive function in
older adults with BD.

Methods—This is a cross-sectional study of 27 non-demented BD patients aged ≥50 years and
12 similarly aged mentally healthy comparators (controls). Subjects underwent both brain MRI
and comprehensive neurocognitive assessment. We employed correlational analyses to evaluate
the burden of WMH and the relationship between WMH and cognitive function.

Results—Although BD subjects had worse performance in all cognitive domains, BD subjects
had less total WMH burden (t[13.4] = −3.57, p = 0.003). In control subjects, higher WMH was
related to lower global cognitive function (ρ= −0.57, n= 12, p = 0.05). However, WMH did not
correlate with neuropsychological performance in BD subjects. Further, BD and control subjects
did not differ with respect to total gray and hippocampal volumes.
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Conclusions—Cognitive dysfunction in late-life BD does not appear to be due primarily to
processes related to increased WMH or reduced gray matter volume. Future longitudinal studies
should examine other potential neuroprogressive pathways such as inflammation, mitochondrial
dysfunction, serum anticholinergic burden, and altered neurogenesis.
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Introduction
Bipolar disorder (BD) is an important cause of disability (Mathers et al. 2006). In older
adults with BD, the disability experienced may largely be related to cognitive deficits that
accumulated prior to old age (Gildengers et al. 2012). Cognitive dysfunction in older BD
patients appears to involve multiple pathologic processes, including glutamatergic,
dopaminergic, inflammatory, and oxidative stress that are inherent to BD (Berk et al. 2011).
These various processes may act synergistically with the high rates of concurrent metabolic
syndrome, cardiovascular disease, and other general medical problems highly comorbid with
BD (Young et al. 2004; Gildengers et al., 2008), worsening neuroprogression (Berk et al.
2011). We use the term neuroprogression rather than neurodegeneration to distinguish the
cognitive and brain changes related to BD from disorders such as Alzheimer's disease or
Huntington's disease (Andreasen 2010).

Geriatric BD patients are a unique population to study the long-term consequences of
neuroprogression and their effect on cognitive function (Delaloye et al. 2011; Gildengers et
al. 2012). Understanding the factors that lead to better (or worse) cognitive function in older
age has important implications for the clinical management of cognitive dysfunction in
patients with BD across the life span.

Emerging evidence suggests that cognitive deficits among older adults may also be
moderated by cerebral vascular disease, as measured by white matter hyperintensity (WMH)
burden detected on T2/fluid-attenuated inversion recovery (FLAIR) magnetic resonance
imaging (MRI). Greater WMH burden has been identified in children and adolescents with
BD, suggesting that they may result from neuropathologic processes associated with BD
itself (Beyer et al., 2009). The WMHs appear to represent dilated perivascular spaces and
oligemic or ischemic demyelination (Thomas et al. 2002). These abnormalities are not
specific to BD and have been identified in other psychiatric disorders (e.g., schizophrenia
and depression) and general medical illness (e.g., hypertension) (Kempton et al. 2008).
Recently, regional parietal WMHs were found to be associated with increased incidence
rates of Alzheimer's disease among community-dwelling older adults (Brickman et al.
2012). Similarly, a recent meta-analysis of structural imaging studies found that patients
with BD had more WMHs than control subjects (Kempton et al. 2008). The WMH burden
appears to be higher in late-onset BD patients than in those with early onset (Tamashiro et
al. 2008), but it is unclear whether cere-brovascular pathology is a cause or a consequence
of late-onset BD. Other studies have found that white matter tract coherence was reduced in
BD patients (Haller et al. 2011). The BD patients appear to have white matter abnormalities
in tracts connecting to the prefrontal cortex, such as the anterior thalamic radiation and
uncinate fasciculus (Lin et al. 2011). These regions are highly involved in visuospatial
ability, information processing, and executive dysfunction. A previous study by our group
found that the association between vascular disease burden and both executive dysfunction
and decreased information processing speed approached significance (Gildengers et al.
2007).
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Other aspects of structural brain abnormalities in late-life BD are either unclear or have not
been examined. Two studies have demonstrated that older adults with BD have lower total
gray and hippocampal volumes than the control subjects (Beyer et al. 2004; Beyer et al.,
2009), although one study did not find this result (Delaloye et al. 2009). Exposure to mood
stabilizing medications, such as lithium and valproate, has been found to be neurotrophic
and neuroprotective in adults (Schloesser et al. 2012), yet, the use of higher doses has also
been associated with cognitive deficits in older adults, especially on tasks involving
executive function (Forester et al. 2009). The relationship between gray matter volume,
cognitive function, and the medications used in late-life BD has not been well studied.

On the basis of the existing literature, our primary hypothesis was that in euthymic older
adults with BD, higher WMH burden would be independently associated with worse
performance on global and domain-specific cognitive abilities. In addition to the primary
hypothesis, we had exploratory hypotheses regarding BD, cognitive function, and
neuroimaging markers. First, we sought to determine whether BD patients had elevated
WMH burden in tracts associated with the prefrontal cortex and whether WMH burden in
this region was associated with worse cognitive function. Second, we wanted to assess
whether WMH burden, cognitive function, and gray matter volume correlated with BD
duration and severity, as determined by patient-report via the life chart method (Roy-Byrne
et al. 1985) and the retrospective chart review.

Methods
We have previously described the study subjects, diagnosis and treatment, recruitment, and
measures (Gildengers et al. 2012). The study involved non-demented individuals aged
50years and older who had comprehensive neuropsychological (NP) assessment. The NP
assessment encompassed 21 well-established and well-validated individual tests measuring
multiple cognitive domains that were organized into domain scores on the basis of a factor
analysis. Domains included information processing speed/executive, language, memory, and
visuospatial ability. A global cognitive function score was determined on the basis of all 21
individual tests. All subjects provided written informed consent, as required by the
Institutional Review Board at the University of Pittsburgh. The current report focuses on the
subset of participants (27 with BD and 12 mentally healthy comparators [control subjects])
who underwent neuroimaging. All subjects of the parent study were offered to participate in
neuroimaging, but 20 subjects with BD and 9 control subjects refused because of
contraindications (e.g., metallic implants) or reluctance to undergo neuroimaging MRI (e.g.,
claustrophobia). In the following section, we describe the neuroimaging methods and the
statistical analyses specific to this report.

Neuroimaging
The MR Brain imaging was performed in the University of Pittsburgh MR Research Center
by using a GE Signa 1.5 Tesla scanner (GE Healthcare, Waukesha, WI, USA). The MRI
protocol included T1-weighted, T2-weighted, proton density-weighted, high contrast FLAIR
imaging, and high-resolution volumetric spoiled gradient-recalled sequences. Imaging was
then processed in the Geriatric Psychiatry Neuroimaging Laboratory (www.gpn.pitt.edu)
under the supervision of Dr. Howard Aizenstein.

To determine the regional gray and white matter brain volumes, Dr. Aizenstein and
colleagues developed a procedure referred to as the automated labeling pathway (ALP). The
pathway combines a series of publicly available software packages (AFNI, BET, FLIRT,
and ITK) as well as some custom programs to implement atlas-based segmentation of MRI
images. Using ALP, anatomic regions of interest (ROIs), in this case, the bilateral
hippocampus from the automated anatomic labeling atlas (Tzourio-Mazoyer et al. 2002)
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defined on the reference brain (MNI, colin27) (Holmes et al. 1998) are transformed to fit
each individual's anatomic image, which are then segmented into gray, white, and
cerebrospinal fluid tissue types. After registration of the template to the individual subject
space, the ROIs from the template are applied to label regions on the subject's MRI. The
numbers of gray and white voxels in each of these regions, as well as the whole brain, are
then counted to produce a table of ROI volumes for each region and each subject.

To image WMH, FLAIR images described previously were used for WMH quantification
and localization. An automated method developed in Dr. Aizenstein's laboratory uses a
fuzzy connected algorithm to segment the WMH (Wu et al., 2006) and the ALP to localize
the WMH into the anatomical space (Wu et al. 2007). A fully deformable registration (Wu et
al., 2006) combines the piecewise linear registration for coarse alignment with demons
algorithm for voxel-level refinement. This method generates total WMH volumes, as well as
WMH volumes for each frontal and subcortical white matter tracts defined in the Johns
Hopkins white matter atlas (Mori and Crain 2005). Each normalized voxel measured
0.78×0.78 × 0.78 mm3. In our analyses, we have almost exclusively used total WMH
volume, except for one instance in which we explored WMH volume bilaterally in the
following prefrontal tracts (Lin et al. 2011): the anterior thalamic radiation, uncinate
fasiculus, superior longitudinal fasciculus, cingulum, and inferior fronto-occipital fasciculus.

Statistical analysis
Descriptive statistics were generated to characterize BD and the control subjects. To
determine how the groups differed with respect to basic demographic and clinical variables,
Student's t-tests or Fisher's exact tests were used as appropriate. In BD and control subjects,
we determined the relationship between NP scores and the total WMH burden by using
Spearman's correlations. Correlational analyses were also used to assess associations
between the following parameters: (i) prefrontal WMH burden and NP scores and (ii) the
total WMH burden and NP scores with BD duration and severity. To assess statistical
significance, a two-tailed α of 0.05 was used. All analyses were performed using SAS 9.3
statistical software (SAS Institute Inc., Cary, NC).

Results
Twenty-seven BD subjects and 12 control subjects underwent neuroimaging and NP testing.
The BD and control groups of this study did not differ from each other with respect to age,
sex, race, education, or body mass index. Compared with the control subjects, BD subjects
had significantly higher Cumulative Illness Rating Scale for Geriatrics scores, as well as
lower NP scores globally and in speed/executive and memory domains. The BD subjects
had less total WMH burden but no difference in total or hippocampal gray matter volume
(Table 1).

Among the BD subjects, overall WMH burden did not correlate with global cognitive
function or function in any specific domain. However, in control subjects, higher overall
WMH burden was significantly associated with lower global cognitive function (Table 2).

We also tested the exploratory hypotheses. When considering the white matter tracts
associated with the prefrontal cortex (Lin et al. 2011), among the control subjects, higher
WMH burden in these specific tracts correlated significantly with worse memory ability and
global cognitive functioning, which was not the case in BD subjects (Table 3). The actual
amount of prefrontal WMH burden was lower in BD subjects than in controls (0.0005 [SD =
0.0004] vs. 0.0011 [SD = 0.0006] normalized voxel counts, t[37] = −3.41, p = 0.02).
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In the parent study, the Life Chart Method (Roy-Byrne et al. 1985) had been obtained on
subjects with BD (n = 21) to quantify the potential effect of total duration and severity of
illness. Neither the total duration of illness nor the number of psychiatric hospitalizations
correlated with cognitive performance, WMH burden, total gray matter volume, or
hippocampal gray matter volume. There was no difference in total and hippocampal gray
matter volume between BD subjects and the control subjects. In both BD and control
groups, neither the total gray nor the hippocampal volumes correlated with cognitive
performance.

Discussion
In our study, among older individuals with BD, overall WMH burden was not related to
global cognitive function or cognitive function in any specific domain. In contrast to
individuals with BD, among mentally health comparators, higher total WMH burden was
related to lower global cognitive function. Although BD patients had worse cognitive
function (globally and among specific cognitive domains), they surprisingly had less total
and prefrontal WMH burden than the mentally healthy comparators, which, may simply be a
result of sampling bias or the relatively small control group. However, our findings, when
taken together, suggest that overall WMH burden or lower gray matter volume may not be at
the core of neurocognitive impairment in older adults with BD. Previous studies have
identified a number of pathways that may be involved in BD-related neuroprogression
including inflammation, mitochondrial dysfunction, serum anticholinergic burden, and
altered neurogenesis (Mulsant et al. 2003; Berk et al. 2011).

Further, even though previous studies in younger adults with BD have shown an association
between poorer cognitive function and both elevated serum amyloid levels (Piccinni et al.
2012) and presence of Apolipoprotein-ε4 (Soeira-de-Souza et al. 2010), our data suggest
that cognitive impairment in late-life BD is not likely due to comorbid Alzheimer's disease
or amnestic mild cognitive impairment. A recent study demonstrated that regional WMH
burden, but not hippocampal volume, is associated with increased rates of Alzheimer's
disease (Brickman et al. 2012). In our data, the control subjects with higher overall or
prefrontal WMH had worse global and memory function, domains often affected in
Alzheimer's pathology, but this was not the case for BD patients. Thus, the relationship
between WMH burden and cognitive function may more purely reflect aging and vascular
burden in control subjects. Even using alternative conceptual models of Alzheimer's-related
cognitive deficits (Jack et al. 2010), BD and the control subjects in our study did not have
different hippocampal or total brain volumes. This may also explain why cholinesterase
inhibitors may not be effective in treating cognitive dysfunction in late-life BD (Gildengers
et al., 2008).

There are potential implications of our exploratory analyses. Even though BD patients had
less WMH burden and worse NP scores, we did not find a correlation between WMH
burden, neurocognitive function, and either BD duration or severity. This suggests that the
Life Chart Method may not be well suited to retrospectively ascertain the past duration and
severity of BD in older adults with BD because of the problems inherent in accurately
recalling number, severity, and duration of mood episodes, especially in individuals who
have experienced multiple episodes. This finding is consistent with other studies in adult
mood disorder patients (Simon et al. 2012), adding to the evidence that patient recall may be
inadequate in characterizing duration and severity of illness.

Limitations
Our neuroimaging study had a number of important limitations. Foremost was the small
sample size. Further, despite our recruitment efforts, almost half of the patients in the parent
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study did not participate because of the contraindications or reluctance to undergo MRI. The
small sample size did not permit examination of medication effects on brain structure or
cognitive function. Additionally, this was a tertiary care research sample, which may not be
representative of older BD patients treated in the community. Also, recruiting control
subject with comparable cardiovascular burden to BD subjects may have made the groups
more similar in WMH burden. Had the control subjects had lower WMH burden, this would
have arguably accentuated the cognitive differences between the groups. We note that there
may be limitations to combining Cumulative Illness Rating Scale-Geriatrics heart and
vascular items as a measure of vascular burden. However, we did not obtain the requisite
information to use more widely accepted measures, such as the Framingham Stroke Risk
Profile (Wolf et al. 1991). Further, when comparing cross-sectional brain volumes, intra-
individual variability is so large that it may obscure potential effects of illness severity or
medication exposure. Last, we were unable to examine microstructural white matter
abnormalities with diffusion tensor imaging because these scanning sequences were not
obtained in this study.

Conclusions
On the basis of our current data, the cognition dysfunction experienced in late-life BD does
not appear to be primarily because of the processes related to increased WMH or reduced
gray matter volume. Our results should be validated in larger, longitudinal studies including
rigorous measurement of illness duration, severity, and pharmacotherapy with repeated
neuroimaging in individuals across different age groups along with other measures of white
matter disease (e.g., diffusion tensor imaging of white matter microstructural abnormalities).
Future research should also examine other neuroprogressive pathways such as inflammation,
mitochondrial dysfunction, serum anticholinergicity, and altered neurogenesis, especially in
prefrontal brain regions. It is possible that these neuroprogressive mechanisms act
synergistically to affect cognitive function on in late-life BD. A clinical implication of our
data is that if cognitive dysfunction in older adults with BD is only partly related to vascular
disease burden, then simply addressing vascular disease in these patients will likely not be
adequate to treating cognitive dysfunction. Hence, interventions addressing alternate
pathological pathways need to be investigated. Once the etiology of cognitive impairment in
late-life BD is better understood, it may become possible to develop rational therapeutic
strategies and prevent cognitive decline in this population.
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Key points

• In this group of older adults with BD –

• Cognitive dysfunction did not appear to be primarily related to overall white
matter hyperintensity burden or reduced gray matter volume.

• White matter hyperintensity burden was not related to lifetime illness duration
or severity.
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Table 2
Spearman's correlation between white matter hyperintensity and neuropsychological
scores

Bipolar disorder Controls

N =27 N=13

Global −0.23 (p = 0.24) −0.57 (p = 0.05)

Speed/executive −0.07 (p = 0.75) −0.33 (p = 0.30)

Visual −0.19 (p = 0.33) −0.37 (p = 0.24)

Language −0.30 (p = 0.13) −0.25 (p = 0.43)

Memory −0.34 (p = 0.08) −0.53 (p = 0.08)
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Table 3
Spearman's correlation between white matter hyperintensity in tracts related to
prefrontal cortex (anterior thalamic radiation, uncinate fasciculus, superior longitudinal
fasciculus, cingulate (upper and lower), and inferior longitudinal fasciculus) and
neuropsychological scores

Bipolar disorder (n = 27) Controls (n = 12)

Global −0.25 (p = 0.20) −0.63 (p = 0.03)

Speed/executive −0.11 (p = 0.58) −0.38 (p = 0.22)

Visual −0.23 (p = 0.26) −0.31 (p = 0.33)

Language −0.32 (p = 0.10) −0.29 (p = 0.37)

Memory −0.30 (p = 0.12) −0.62 (p = 0.03)
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