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Abstract
Studying personality and its pathology as they change, develop, or remain stable over time offers
exciting insight in to the nature of individual differences. Researchers interested in examining
personal characteristics over time have a number of time-honored analytic approaches at their
disposal. In recent years there have also been considerable advances in person-oriented analytic
approaches, particularly longitudinal mixture models. In this methodological primer we focus on
mixture modeling approaches to the study of normative and individual change in the form of
growth mixture models and ipsative change in the form of latent transition analysis. We describe
the conceptual underpinnings of each of these models, outline approaches for their
implementation, and provide accessible examples for researchers studying personality and its
assessment.
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The study of personality is ultimately the study of persons. A central theme in personality
research has been the description of interindividual differences (i.e., between-person
differences) in characteristic patterns of thoughts, feelings, and behavior. Work in this
domain has often focused on identifying the key dimensions on which individuals differ, and
factor analysis (both exploratory and confirmatory) has long been the primary data-analytic
workhorse. However, it can be argued that characterizing intraindividual (i.e., within-
person) differences is equally important for understanding personality (Roberts, Caspi, &
Moffitt, 2001; Roberts, Wood, & Caspi, 2008). Leveraging time to study the manner in
which personality develops, changes, or remains stable within individuals holds immense
promise for psychological research, in part because dynamic processes offer researchers and
clinicians a window in to the mechanisms underlying differences among individuals. Indeed,
the ultimate goal is to understand between-person differences in within-person change
(Nesselroade, 1991).

The manner in which one conceptualizes change and stability dictates the appropriate
analytic tools for studying personality and psychopathology over time because distinct
analytic approaches speak to different aspects of change (Mortimer, Finch, Kumka, 1982;
Roberts & Caspi, 1999; Wright, Pincus, & Lenzenweger, 2012). Moreover, for a given study
one analytic approach may better capture the research question than others. Because the
general goal of personality assessment is to understand a person, it is worth considering the
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degree to which the available methods are person-oriented, or otherwise maintain a focus on
the individual. Many of the commonly employed longitudinal methods are extensions of
cross-sectional methods and are variable-oriented in nature (see e.g., Hallquist & Wright,
this issue). That is to say, their emphasis is on identifying the relationships among variables,
with the assumption that these relationships are similar across all individuals (Bergman &
Magnusson, 1997; Bergman, Magnusson, & El-Khouri, 2003). However, more person-
oriented longitudinal methods are also available, which can clarify different patterns of
within-person change. These generally fall under the rubric of mixture models and can
provide personality researchers the tools necessary to sift through observed heterogeneity to
uncover and describe unobserved (i.e., latent) change-groups.

Our goal is to provide an introduction to longitudinal mixture modeling in the context of
research on personality and its pathology. We first review common approaches to
longitudinal modeling in personality with a focus on models that try to resolve individual
heterogeneity in normative change (i.e., the latent growth model; LGM) and models that
seek to characterize ipsative stability (i.e., profile stability). In so doing, we outline
situations that challenge the suitability of these models and articulate some limitations in the
type of information they provide. We then place the LGM within a larger framework of
growth mixture models (GMMs) and discuss the benefits of using latent transition analysis
(LTA) for investigating transitions among personality profiles. It is our view that these
methods can augment the armamentarium of personality scientists and psychopathologists
interested in change over time. Finally, we present examples of how to apply and interpret
longitudinal mixture models. This is intended to be a non-technical treatment of longitudinal
mixture models, focused on the conceptual issues associated with model selection and
interpretation. As such, this is more of a menu than a recipe book. Many excellent
introductory and advanced texts exist that cover the mathematical underpinnings, estimation,
identification, and interpretation of these models in depth (e.g., Collins & Lanza, 2010; Jung
& Wickrama, 2007; Kreuter & Muthén, 2008; Muthén, 2002, 2003, 2004; Morin et al.,
2011; Nagin, 1999, 2010; Pickles & Croudace, 2010). Readers who intend to use these
analytic approaches are encouraged to consult these resources as well.

Studying Personality Longitudinally: Different Conceptions of Change
People are not static entities. Dynamic changes of various types unfold over multiple time
scales ranging from momentary shifts and rapid resolutions that reflect brief interactions
with environmental stimuli to the gradual but perceptible trends in personality development
that reflect maturation across the lifespan (Donnellan et al., 2007; Roberts, Walton, &
Viechtbauer, 2006). Regardless of the time-scale, individual dynamics are arguably of
central importance to understanding personality and its pathology. For example, young
adults who deviate from the normative maturational trend in personality trait development
are at risk for personality pathology in early adulthood (e.g., Wright, Pincus, &
Lenzenweger, 2011). Some individuals show a remitting course of psychopathology
symptoms, whereas others remain chronically impaired (e.g., Hallquist & Lenzenweger,
2013; Stoolmiller, Kim, & Capaldi, 2005). Some patients exhibit rapid shifts in their
symptomatic profile over time (e.g., depression gives way to generalized anxiety and back
again), whereas others are steady in their form of impairment (Cain, Epler, Steinley, & Sher,
2010; Lanza & Collins, 2008; Read, Bachrach, Wright, & Colder, 2013). Quantifying both
the normative pattern of intraindividual change and any interindividual heterogeneity in
longitudinal trajectories is important because it can elucidate psychological processes and
mechanisms that underlie change. Moreover, being able to predict differences in trajectories
of change may inform clinical prognosis.
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Five independent ways of operationalizing stability and change over time have become
commonplace in the personality literature (De Fruyt et al., 2006; Robins et al., 2001; Wright
et al., 2012): structural (i.e., factorial), differential (i.e., rank-order), normative (i.e., mean),
individual, and ipsative (i.e., profile) stability. These forms vary in the degree to which they
emphasize persons as opposed to variables. Structural stability can be understood as
measurement invariance across time and is most frequently tested using structural equation
modeling (SEM) where parameters are equated across time points. Structural stability is
squarely a variable-oriented technique, as it is fundamentally a question of the manner in
which variables covary. Differential stability measures the degree to which individuals
maintain their relative standing over time in a given domain compared to others in the
sample, and it is typically summarized using a single coefficient (usually a Pearson
correlation). As such, differential stability is only indirectly person-oriented, boiling down
change to one coefficient per scale or dimension and thereby retaining a focus on the
variables.

Normative stability summarizes the average change in a target variable within a sample. For
example, how does the average level of Extraversion change between childhood and early
adulthood (Roberts, Walton, & Viechtbauer, 2006)? An emphasis on a single normative
trajectory may mask distinct trajectories or pathways that characterize latent subgroups. As
we articulate below, longitudinal mixture models can be employed to uncover
fundamentally different latent subgroup trajectories and the individuals who follow them
(e.g., distinct pathways to antisocial behavior; Shaw, Hyde, & Brennan, 2012), thereby
increasing the analytic focus on the person. Individual stability is the degree of variability in
individual trajectories, and it is by definition a person-oriented approach, especially as
conceived in growth models (Singer & Willett, 2003). Yet, because many statistical models
assume that individuals in the analysis emerge from the same population, there is the
potential to misestimate individual variability when the latent distributions are severely non-
normal or when subgroups characterized by distinct patterns of change exist. Finally,
ipsative, or within-person profile change, is nothing if not a person-oriented approach, but as
we will show, many analytic approaches discard the kind of change that occurs, focusing
instead on the degree of change. Certain mixture models can simultaneously estimate the
degree and kind of change, making ipsative analyses potentially more informative. Thus, the
ultimate goal of person-oriented longitudinal modeling is to better articulate patterns of
change by discerning subgroups of individuals who follow fundamentally distinct shapes of
change and to identify those who belong to each subgroup. In what follows, we first discuss
GMM as a person-oriented approach to normative and individual change followed by a
treatment of LTA as an alternative approach to measuring ipsative change.

Part 1: Normative and Individual Change – Latent Growth and Growth Mixture Models
Throughout this section, to place these models on a firmer base, we refer to a hypothetical
example of examining the naturalistic trajectories in borderline personality disorder (BPD)
symptoms over seven years in early adulthood (e.g., ages 18–25) in an at-risk sample. A
large body of research now demonstrates that the DSM-defined symptoms of BPD are not
stable over time, but relatively little work has explored the heterogeneity in those trajectories
(cf. Hallquist & Lenzenweger, 2013). Below we consider how each longitudinal model
represents between-person differences in longitudinal trajectories, culminating in a complete
example.

The Latent Growth Model: Parameterizing Normative Change
GMMs build directly on a traditional LGM framework (Bollen & Curran, 2006; McArdle,
2009; Preacher, Wichman, MacCallum, & Briggs, 2008; Singer & Willett, 2003). The LGM
has a number of attractive features, but chief among them is that it provides information not
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only about the mean level of change, as with repeated-measures ANOVA, but also the
degree of interindividual heterogeneity in the observed trajectories. Moreover, LGMs can be
adapted to model various non-linear patterns of change (Bollen & Curran, 2006; McArdle,
2009; Ram & Grimm, 2009), such as polynomial, exponential, or piecewise growth patterns
that capture the unique patterns of the data (McArdle, 1986; McArdle & Bell, 2000).

At its most basic level, the LGM is a factor model.1 Specifically, it is a factor model where
the indicators are repeated measures of the same observed variable (e.g., BPD symptoms
assessed each year in our example) and which imposes a specific factorial structure. Figure 1
provides an example of a common LGM parameterization, which resembles a standard CFA
model. In an LGM, change in the observed variables (Y) over time (i.e., the growth curve) is
estimated as a function of growth factors (η). The basic linear LGM includes an intercept
factor that reflects the average level of the curve at a given time point (most commonly the
initial observation, but this is flexible) and at the minimum one slope factor that reflects a
linear rate of change. Alternative shapes of change (e.g., quadratic or cubic) can be captured
by adding additional factors. The shape of the estimated growth curve is defined by the
pattern of factor loadings (Λ) for all the growth factors, which are fixed by the researcher to
specific values.

As shown in Figure 1, the intercept is estimated by fixing all loadings to 1.0, and the slope
factor loadings are most commonly fixed to reflect the distance in time between observation
points. Time is thus coded in the model by the slope factor loadings, and the mean of the
linear slope factor represents the average change in the dependent variable per unit time
(e.g., change in BPD symptoms per year). In the case of Figure 1, the slope factor loadings
reflect an equal spacing of measurements, with the loading for the first time point fixed to
0.0, and increasing by unit values across the remaining time points. By fixing the slope
factor loading for the first time point to 0.0, and all intercept loadings to 1.0, the intercept is
assigned to the start of the series and reflects the average level of the variable (e.g.,
personality trait) at the first time point. This is by no means the only parameterization, and
the slope could just as easily be centered on the final time point by fixing the final loading to
0.0, and the remaining loadings to −4.0, −3.0, −2.0, and −1.0, respectively, starting with the
initial assessment. Such an approach would lead to an intercept term that would reflect the
average level of the trajectory at the end of the study, and as a result the intercept/slope
covariance would change, but the estimate of the slope (i.e., mean and variance) would
remain identical. Unequal schedules of measurement can be accommodated through uneven
spacing of slope loadings (e.g., 1.0, 1.5, 3.0). Quadratic factors are estimated by fixing the
factor loadings to the square of the linear slope loadings, and so on (see Figure 1). Residuals
(ε) capture time-point specific variability in observed scores unaccounted for by the
estimated growth curve.

The key parameters of change in the LGM are the factor means (α) and variances/
covariances (Ψ). Factor means capture the average level and rate of change (i.e., normative
change) for the sample, whereas the factor variances represent individual variability in the
pattern of change (i.e., individual change), which is assumed to be normally distributed.
Covariances represent the association between scores at the time-point of the intercept and
rate of change over time. Because LGMs model individual differences in change with factor
variances, these models are to some degree person-oriented in nature. We note, however, the

1Latent growth modeling, more generally, has been referred to as individual growth curve modeling, multilevel growth curve analysis,
latent trajectory analysis, mixed effects models for change, and other names. Some of these approaches have emerged from the SEM
and some from the multilevel regression tradition. Although there are notable benefits in certain instances associated with adopting
one approach over the other (i.e., SEM vs. MLM), they are ultimately at their core the same model with slightly different
parameterizations. Here we discuss LGMs in terms of the SEM approach.
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individual trajectories are not directly estimated, but rather are represented as normally
distributed deviations from the mean growth trajectory. The statistical significance of
growth factor means can be tested to determine if the average intercept and rate of change
are significantly different from zero. Likewise, factor variance estimates can also be tested
to determine whether there is significant interindividual variability. It is not uncommon to
obtain an LGM with a mean slope that does not differ significantly from zero, but has
significant slope variance, indicating that the average level of the construct is stable over
time, but some individuals increase, whereas others decrease (e.g., the average severity of
BPD symptoms does not change over time, but this reflects remission in some individuals
and exacerbation in others). Alternatively, it may be the case that the mean slope is a large
positive value, but with a non-significant variance, indicating that change is positive and
homogenous across the sample.

If we were to fit a LGM to the hypothetical repeated measurement of BPD scores, we might
fix the intercept at age 18, and estimate a linear pattern of growth up until age 25. We would
then examine the means of the intercept and linear growth factors. Given that the sample is
at risk, the intercept mean and variance may both be significant, suggesting that average
symptoms in the sample are above zero, but there is significant variability in symptom
severity at baseline. We may also find a significant negative mean for the growth factor and
a significant variance, suggesting that individuals typically decline in BPD symptoms from
ages 18–25, but they vary in the rates of change. It would not be uncommon to find that on
the average symptoms decline, but there are those with steep declines, those that remain
stable, and those that increase over the course of the study. Thus the basic LGM is a
powerful tool for understanding between-person differences in within-person change.

However, despite its strengths, there are situations when the basic LGM struggles to
adequately reflect the true form of change in the sample—for example, in the case where the
latent distribution of trajectories is decidedly non-normal, as can be the case when a large
portion of the sample retains a score at the extreme (e.g., zero symptoms) over the course of
the study. Alternatively, in conventional LGMs the mean curve may be misleading, the
model may fit the data poorly, and parameter values may be misestimated when there are
unobserved subgroups of individuals who cannot be summarized by the same model of
growth. For instance, if there is one group of individuals whose growth trajectory is best
described with a quadratic trend, and another group that remains flat, or only changes in a
linear fashion, a model that summarizes change using a single average latent trajectory may
result in poor fit and misleading results. If scenarios of these types are either predicted by
theory, or are suggested based on a visual analysis of longitudinal data plots or by plotting
the histograms of the variance components, mixture models may be able to better capture the
heterogeneity by estimating a model composed of more homogenous subgroups of change
patterns.

Growth Mixture Modeling: A General Framework
Growth mixture models (GMMs) can be understood as a general umbrella term for mixture
models applied to the estimation of growth trajectories in latent subgroups. Although
specific types of GMMs have been developed, discussed, and evaluated in isolation (e.g.,
Nagin, 1999), treating these as a general class of models (Muthén, 2004) clarifies their
relationship to each other and allows for their flexible application. In particular, we would
like to draw a loose parallel to a recent conceptual framework for understanding factor
mixture models. Masyn and colleagues (2010) organized factor mixture models along a
dimensional-categorical spectrum, ranging from factor analysis, a purely dimensional model
at one pole of the spectrum, to latent class analysis (LCA), a purely categorical model at the
other extreme (see also Hallquist & Wright, this issue). We extend this organizing approach
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to GMMs. Recall that the standard LGM is fundamentally a factor analytic model, and so by
extension, GMMs are special cases of the factor mixture model with repeated measures data
and growth parameterizations. At the dimensional end of the GMM spectrum we find the
standard LGM, which is a single-class model (i.e., no latent categories) with a fully
dimensional parameterization of variability in change trajectories. At the categorical end of
the spectrum, we find the repeated measures latent class analysis (RMLCA; Lanza, 2003;
Lanza & Collins, 2006), which captures trajectories of change exclusively by means of a
categorical latent variable.2 In between these extremes are a virtually infinite number of
variations of GMM.

Prior to explicating GMM variants, we briefly cover some basics of mixture models. These
models were designed to discern whether there are unobserved subgroups/classes of
individuals who share very similar patterns of scores. At the most basic level, a mixture
model treats an observed distribution of scores as a mixture of two or more distributions
from discrete subpopulations (McLaughlin & Peel, 2000). Mixture models can be extended
to mean and covariance structure modeling (i.e., SEM), with the assumption that an
observed mean vector and covariance matrix arises from the combination of a finite number
of class-specific mean vectors and covariance structures. Maximum likelihood-based
estimation can be used to estimate unique growth parameters in several latent trajectory
classes, the subgroup size and membership for each class, and the posterior probability that
any given individual belongs to a class. This final point warrants some elaboration. Each
individual in the sample receives a probability of membership in each estimated class, and
these probabilities sum to 1.0 for each individual. In this sense, standard (i.e., non-mixture)
latent variable models, which treat the entire sample as arising from the same latent
population, can be considered a special case of the mixture model with a single class, for
which all individuals have a probability of 1.0 for class membership.

With some basic background in place, we now turn to the description of a series of GMMs.
These models differ primarily in how much they constrain patterns of change across growth
classes. When estimating a GMM, any of the parameters can be constrained or allowed to
vary across classes, including the factor means (α), variances/covariances (Ψ), factor
loadings (Λ), and even residual item variances/covariances (ε; Enders & Tofighi, 2008).
Here we focus on some of the most scientifically useful models that have emerged in the
literature. We start with the most restrictive GMM and progress by describing models with
increasing freedom in the form of growth across classes.

The Unique Means GMM: The Latent Class Growth Model
The latent class growth model (LCGM; sometimes referred to as group-based trajectory
modeling; Nagin, 1999, 2005) can be understood as a mixture of LGMs in which only the
factor means are free to vary across classes, whereas the factor variances and covariances
are constrained to be zero in each class. Whereas LGMs accommodate individual
differences in change with normally distributed variability around latent growth factors (e.g.,
intercept, slope, quadratic, etc.), LCGMs account for heterogeneity in growth with discrete
latent trajectories (i.e., classes of individuals who are assumed to share the same latent
trajectory of change). Any within-class variability in the observed growth curves is
understood as error around the true latent scores, which are assumed to be identical across
individuals within each class. A typical result for an LCGM applied to our sample of at-risk
adults with BPD would be to find an elevated group that maintains their symptoms over

2Note that RMLCA is not generally considered a GMM, the latter conventionally referring to models that estimate change using a set
of parameterized curves. However, RMLCA can nonetheless be considered an approach for estimating trajectories of change that does
not specify a growth shape. An alternative way of conceptualizing the RMLCA is as a GMM where the factor loadings are all fixed at
0.0, such that growth factors do not influence the shape).
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time, a group that starts high and quickly remits, a group that starts at a moderate level and
remits more slowly, and a group that starts at a moderate level and increases. This result
would be interpreted as there being four types of change over time in BPD symptoms among
at-risk adults, and within each group the individuals would be assumed to share the same
number of initial symptoms and rate of change.

The LCGM is among the most popular of the GMMs due in large part to its early description
in the methodological literature, its conceptual accessibility, and its stability in model
convergence. At the same time, the LCGM is in many respects a highly constrained model
that may not adequately represent the actual heterogeneity in individual growth trajectories
—in particular, the assumption of within-class homogeneity in latent trajectories is often not
plausible. Moreover, as we demonstrate below, the restricted parameterization can
sometimes lead to spurious classes. Thus, limitations in the LCGM motivate more complex
GMMs.

The Unique Means Shared Variance GMM
To move beyond the notion that there is complete homogeneity of trajectories within class,
GMM growth factor variances and covariances can be estimated, but constrained to equality
across classes. Such a model allows for a number of unique latent trajectory classes and also
permits interindividual variability within each class, but assumes that the degree of such
variability is similar across classes. This parameterization is often more theoretically
plausible than LCGM, but also has important model estimation implications. First, by
constraining the variances and covariances to be equal across classes, estimation of this type
of model is often more stable than GMMs with unique variance estimates in each class
(described below), and so a precise estimation of within-class heterogeneities is balanced
with the pragmatics of model estimation. As models become more complex (i.e., more
parameters are allowed to vary across classes), they can become increasingly difficult to
estimate and frequently result in inadmissible or under-identified solutions (Wang, Brown,
& Bandeen-Roche, 2005). Second, the constraints across classes in GMM affect the
trajectory classes that emerge, and class variances/covariances have important implications
for this issue (Morin et al., 2011). Specifically, less constrained models may require fewer
classes to model the interindividual differences in growth, and LCGM can often result in an
over-extraction of classes to accommodate heterogeneity (Bauer & Curran, 2004; Muthén &
Muthén, 2000). For example, a common result in LCGM is to obtain two highly similar
trajectory classes that differ only in intercept, but not slope. These may best be collapsed
into one class that permits variability around the intercept term, resulting in a more
parsimonious solution.

If this type of model were fit to the hypothetical BPD data, a possible result might be to find
three growth classes, an initially elevated mean and rapidly declining symptom group, an
initially elevated mean but stable symptom group, and initially moderate mean symptoms
and stable group. Although the classes differ in their average levels of initial symptoms and
rates of change, the magnitude of interindividual variability around these class-specific
means is estimated to be equal across classes.

The Unique Means and Variances GMM
Constraining the variances and covariances to be equal across GMM classes may be too
restrictive in some instances, and so the next conceptual step is to allow these, too, to vary
freely across classes. This may be a desirable approach when there is a large class with
considerable variability in one or more of the growth factors, along with a “tighter,” more
homogeneous class with a different growth pattern. For example, some individuals may
have few, if any, symptoms of personality dysfunction over time, resulting in a low slope
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variance, whereas a separate latent class may exhibit symptom declines over time, but with
significant heterogeneity in the rate of remission. It would be unreasonable to assume that
these classes could be considered to have the same slope variance, and this can be
accommodated with unique means and variances GMM.

The Unique Means, Variances, and Patterns GMM
Thus far we have considered GMMs that differ in the degree to which they accommodate
individual differences in variability across classes. We now consider GMMs that allow for
differences in the shape of change, which offer a compelling reason for considering these
models. For example, it may be hypothesized, based on theory or past research, that there is
a group whose pattern of change is quadratic (e.g., an accelerating rate of change), whereas
others in the sample might adopt a linear trajectory. In this instance, it may be worth
considering a GMM with differences in pattern across classes. There are two general
approaches that can be adopted here. In the first, the researcher can specify a different factor
structure across classes (e.g., one includes a quadratic slope factor, the other only a linear
slope factor, etc.). This can be specified a priori or, alternatively, by first estimating the most
complex form of change under consideration in each class and then trimming the
unnecessary parameters from the model (e.g., when there is a non-significant mean and
variance for a quadratic term in a given class).

The second approach offers even more flexible possibilities for differences in change
trajectories. This type of GMM is based on LGMs with freely estimated factor loadings
(Bollen & Curran, 2006; McArdle & Nesselroade, 2003). Above we discussed LGMs that
imposed a structure on the growth factors by specifying the factor loadings for the slopes. It
is also possible to estimate growth factor loadings to capture unique patterns of change in
what has been termed the latent basis model (McArdle & Epstein, 1987; Meredith & Tisak,
1990). Note that for model identification, two loadings must always be specified (i.e., fixed
to a value by the researcher). If the pattern of change is expected to be very complex, and
not conform to common polynomial models, freeing the factor loadings may be a good
option. There are a number of ways to free factor loadings — a topic that is beyond this
primer. However, to illustrate one variant of the latent basis model, there is only one slope
factor, which has the first loading fixed to 0.0 and the final loading fixed to 1.0. The
intermediate loadings are freely estimated, and their values represent the proportion of
cumulative change up to that time point (see McArdle & Nesselroade, 2003). To extend this
model to GMMs, the factor loadings for the first and final time points are fixed to 0.0 and
1.0, respectively, across each class, and the remaining loadings are allowed to vary across
classes, which contributes to different patterns of change across classes (see Ram & Grimm,
2009).

Were we to apply a model that allowed for differing shapes of change across classes to the
hypothetical longitudinal BPD data, we might find that the group that previously emerged as
having a steep linear decline actually has a quadratic trend, such that there is an initially
steep rate of change that decelerates as symptoms remit. In contrast, the remaining classes
might maintain their linear shape.

Allowing for differences in shape or pattern of change across classes is an appealing
approach in part because a misestimation of the shape of change can lead to improper class
structure (Bauer & Curran, 2004; Voelkle, 2008). However, we caution that these models
can be difficult to estimate and interpret in some scenarios. For example, freeing the growth
factor loadings in GMM can lead to idiosyncratic patterns of change that offer little
conceptual clarity, such as trajectories with slight deviations from linear change.
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Nonparametric Change: RMLCA
An alternative approach to capturing unstructured patterns of change or non-parametric
growth is RMLCA (Lanza, 2003; Lanza & Collins, 2006; Collins & Lanza, 2010). RMLCA
applies a standard LCA3 model to repeated measures of the same observed variable as
opposed to distinct variables at one time point. In LCA, the relationship among observed
variables is represented as differences in mean profiles across latent classes (Collins &
Lanza, 2010). In the case of RMLCA, the mean profiles represent distinct non-parametric
growth trajectories that describe the repeated-measures data. Compared to the models above,
this approach is the least restrictive in terms of structuring change, and the emerging profiles
are entirely data-driven (i.e., the investigator imposes no assumptions of a parametric growth
curve). Neither did RMLCA emerge from the GMM tradition because it is a fully
categorical latent variable model. Nevertheless, there is good reason to include RMLCA
within the same conceptual family as GMM because it holds promise for instances when
highly nonlinear patterns of change are hypothesized or as an exploratory tool to understand
the forms of change in the dataset.

An RMLCA approach to the hypothetical BPD change data might reveal two latent classes,
one of which shows a triangular pattern over time (i.e., symptoms that fluctuate above and
below the initial level without any linear trend) and the other that exhibits a rapid drop in
symptoms between ages 18 and 19, followed by gradual decreases from 19–25.

GMM Model Estimation, Evaluation, and Selection
We briefly cover issues related to model estimation, evaluation, and selection, and refer the
reader to our cross-sectional companion piece (Hallquist & Wright, this issue) for a more
detailed and technical treatment of these issues.

Given the large number of possibilities for different parameterizations of GMMs, a general
heuristic to model estimation and evaluation is warranted. Ideally, the application of GMMs
should be motivated by an articulated hypothesis about the class structure that is anticipated
to emerge. However, we also recognize that in many instances strong hypotheses are not
available, and yet there remains an interest in searching for potentially interesting
unobserved growth trajectory classes in an exploratory fashion. Even when this is the case,
we recommend that the researcher establish, a priori, which forms of GMM are plausible for
their data. As we alluded to above, models can quickly become highly complex, both in
terms of computation and interpretation. Therefore our recommendation is that researchers
first outline the number of classes that they anticipate to emerge, and how these classes may
differ from each other with respect to mean, variance, and trajectory shape (Ram & Grimm,
2009).

There are three basic sources of information that can influence the selection about which
forms of GMM might be optimal in terms of the number of classes and within-class variance
and shape. Naturally, if there is an available theory about the number and type of classes that
might exist, this is the preferred place to start. It is often the case, however, that theory may
be mute on the latent trajectory issue, but there exist compelling prior empirical results that
warrant clarification in a new sample or with new measures. In either case, the researcher is
likely to include among their models the structure dictated by theory or put forward by prior
findings. In addition to these, near neighbors in class number or variance structure may
warrant consideration (e.g., if a three class structure of depression course was hypothesized,

3Traditionally a distinction has been made between LCA, which uses categorical observed variables, and latent profile analysis, which
uses continuous observed variables. Here we make no such distinction, focusing on the conceptual similarity in the categorical nature
of the latent variable shared across both methods.
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two- and four-class models should also be tested). In the absence of strong theory or prior
results, the only option may be to proceed in an exploratory fashion. Given the danger of
uncovering growth classes that are spurious or sample specific, we recommend that
researchers engaging in exploratory work seek to replicate or cross-validate their class
solutions if sample size allows. Options for this include randomly splitting the sample in
half, or comparing groupings across which classes would not be expected to differ (e.g.,
gender, pairs of twins, etc.).

Whether proceeding in a confirmatory or exploratory approach, a third source of information
should come from the data itself. We strongly encourage a visual scan of longitudinal plots
of the raw data prior to beginning modeling exercises. What does the average pattern of
change look like? Are there discernible differences in the patterns of change? In this regard,
it is often useful to fit an LGM prior to any of the GMMs, in part because the growth factor
variances in LGM are assumed to be normally distributed, an assumption that can be
explored visually. If a histogram of the variance estimates for the slope factor is quite
bimodal, for example, this may provide initial evidence for a GMM approach. We
recommend initially fitting and thoroughly evaluating an LGM first, which can provide
important information about model fit, shape of growth, and whether assumptions of
variance normality are tenable. Subsequently, we have found that running an RMLCA can
be very useful as an exploratory technique to get an initial sense of the potential class
structures embedded in the data prior to estimating other forms of GMM.

Once the types of GMMs under consideration have been identified, model estimation and
comparison can proceed. It is common to estimate a series of models that vary in the number
of classes within each type of GMM. For example, models with two, three, four, and five
classes would be estimated for the LCGM, unique variances GMM, and unique shape
GMM, for a total of 12 models. Model comparison would then proceed in a two-step
approach, where the models of different numbers of classes are first compared within each
type of GMM, followed by comparing the preferred model within each type across different
types of GMM. However, alternative approaches are viable, and may be better suited for
some research questions.

Adjudicating between GMMs can be a complex endeavor. The types of difficulties that arise
are not unlike those that arise in factor analyses, where researchers are often faced with
conflicting evidence about which model to select. Accordingly, we, like others before us
(Bauer & Curran, 2004; Muthén, 2003) want to emphasize that theoretical interpretability
should always be the final arbiter of model selection, and blindly following a given fit index
or criterion is not advisable. With this in mind, there are a number of tools available to select
among models.

Recall that a common statistical approach to comparing nested latent variable models is the
likelihood ratio test (LRT; i.e., the χ2 difference test; Bollen, 1989). Although mixture
models that are equivalently parameterized but that differ only in the number of classes are
in fact nested, they violate the assumptions of the standard LRT (i.e., they are at the
boundary of parameter space and the differences in their log-likelihoods most likely are not
χ2 distributed), and therefore these are generally not appropriate (see Collins & Lanza, 2010;
McLaughlin & Peel, 2000; and Nylund, Asparouhov, & Muthén, 2007 for detailed
discussions). Recent simulation work (Henson, Reise, & Kim, 2007; Nylund et al., 2007;
Tofighi & Enders, 2008) supports the use of a variety of indices. These include the Akaike
Information Criterion (AIC; Akaike, 1974) and its sample size-corrected variant, the AICC
(Sugiura, 1978), the Bayesian Information Criterion (BIC, Schwartz, 1978), and the
bootstrapped likelihood ratio test (BLRT; McLaughlin & Peel, 2000). We strongly
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recommend the use of the AICC over the AIC for most applications in moderately sized
samples (Hurvich & Tsai, 1991).

The AICC and BIC rely on information theory and Bayesian inference, respectively
(Burnham & Anderson, 2002; Claeskens & Hjort, 2008; Vrieze, 2012), but both seek to
balance the ability of the model to fit the data with the parsimony of the model (i.e., the
number of estimated parameters). In general, however, when comparing two models, the
model that has a lower value for a given information criterion is preferred as having a better
complexity-fit tradeoff. The BLRT overcomes the limitations with standard LRTs we
reference above. A significant BLRT p-value (conventionally p < .05) indicates that the k-
class model fits the data significantly better than the model with k-1 classes, accounting for
the additional parameters added by increasing the number of latent classes. Note that the
BLRT cannot be used to compare across different types of GMMs.

In practice, it is quite common for these criteria to disagree on which model is best. In this
instance, it falls on the researcher to select between models. Various additional
considerations must be weighed. These include class sizes, class differentiability (more
below), and the pattern of associations with covariates. For example, if fit criteria were split
between models that differ by one class (e.g., a three- versus four-class GMM), but the size
of the additional class was very small (e.g., 3% of the sample) representing a very rare
growth trajectory, it might not be worth considering. Similarly, if the additional class
represented a qualitatively similar growth trajectory to one of the other classes, regardless of
size, for instance differing only slightly in intercept, this also might not be worth retaining.
Finally, if comparisons of the classes on external variables indicate that the additional class
was very similar to another in terms of predicting outcomes or correlates of class
membership, it might not be worth considering.

Regardless, choosing among GMM solutions can be challenging, and we encourage
researchers not to make binary decisions based on arbitrary rules, but rather weigh various
statistical and substantive issues when deciding on a final model. It is generally advisable,
when theory clashes with model fit in a given sample, for researchers to give emphasis to
substantive issues and theory when choosing the optimal model. We now walk through a
hypothetical example of comparing GMMs using simulated data before we consider an
alternative approach to studying ipsative change as discrete shifts over time.

A Simulated Example: Comparing GMMs
To consolidate the above discussion of model comparison and selection, we now turn to a
hypothetical example using simulated data. To fit with our working example, we consider
the longitudinal course of BPD features as they might be measured by a semi-structured
psychiatric interview, the Revised Diagnostic Interview for Borderlines (DIB-R; Zanarini,
Gunderson, Frankenburg, & Chauncey, 1989). Scores on the DIB-R are integer values that
can range from 0–44. We generated a data set of 500 individuals measured at 7 time points
using the Monte Carlo features of Mplus version 7 (Muthén & Muthén, 2012). The data
were simulated from a GMM with four classes of approximately equal size. The raw data
can be found on the left panel of Figure 2, and the mean curves of the estimated trajectory
classes from the best fitting model can be found in the right panel. We next submitted the
simulated data to a series of analyses, as might be the case in a study employing GMM to
understand heterogeneity in the longitudinal course of BPD. We treat this example as if we
were naïve to the latent structure.

Table 1 contains the models we considered in this analysis and their associated parameters
and model fit statistics. Although we knew the class structure beforehand, the pattern of fit
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statistics in the table along with difficulties in estimation is informative, as described below.
However, as a first step we inspected the longitudinal plot of the raw data (Figure 4). The
figure suggests a) a high degree of heterogeneity in trajectories, although this can be difficult
to directly ascertain with plots of integer values; b) a general decrease in BPD features over
time; and c) patterns that might be suggestive of non-linear effects as evidenced by very
steep initial declines for those individuals with high values followed by a flattening of the
trajectories.

As a next step we fitted LGMs to the data. An intercept and linear slope model had a poor
global fit (df = 10; χ2 = 656.57, p = < .001; RMSEA = .36; CFI = .80; SRMR = .38) and
resulted in negative residual error variances (i.e., impossible values). Based on the initial
data visualization, we tried to improve the model fit by estimating a quadratic LGM, which
had excellent fit to the data (df = 6; χ2 = 4.08, p = .67; RMSEA = .00; CFI = 1.00; SRMR = .
00) indicating that the mean curve for the sample had a significantly elevated intercept (M =
5.17, p < .001), a significant negative linear slope (M = −1.69, p < .001), and a significant
quadratic slope (M = .47, p < .001). Additionally, all of the growth factors had significant
variances, suggesting a high degree of heterogeneity in growth trajectories in the sample.
We subsequently ran a series of RMLCAs in an exploratory fashion in order to examine the
types of heterogeneity in growth patterns in the data set. Up through four classes, unique
patterns of growth emerged, but beyond this the additional classes were highly similar in
pattern to others, suggesting that the increasing classes might only be capturing subtle
variations as opposed to qualitatively different growth patterns. However, relative fit of the
RMLCA was poor (even through models with a large number of classes, the fit of which are
not presented for space). Importantly, the latent classes appeared to have reasonably
parametric growth trajectories (i.e., linear, quadratic) as opposed to unique patterns that
could not reasonably be captured by a standard GMM parameterization. This highlights one
potentially useful feature of RMLCA, namely that if the resulting classes appear to follow
some parametric form, this can be tested by specifying GMMs that best parameterize the
RMLCA results.

With these initial findings in mind, we proceeded to test a series of GMMs based on a
quadratic growth curve shape, with the expectation that approximately four classes would
emerge as the best fitting model. We began with the most restrictive models, the latent
means only LCGM approach, followed by increasingly permissive (and more complex)
models that allowed for a shared variance/covariance pattern or unique variances. Finally,
we tested a model with different shapes of growth across classes. As can be seen in Table 1,
the best fitting initial model was (expectably given the known structure in the data) the 4-
class GMM with unique means and variances across classes. The AICC and BIC were
lowest for this model, and the BLRT for a five-class solution was not significant. Adding
one class also lead to increases in AICC and BIC. Conversely, the AIC suggested adding a
class, consistent with its known tendency to prefer overly complex models if not corrected
for the low sample size (Hurvich & Tsai, 1991). Based on the output of the model, we
determined that two classes had non-significant means and variances for the quadratic slope
term, and therefore we fixed these to zero, resulting in a model that had different shapes
across classes, which was ultimately was the best-fitting model.

The mean trajectories of the hypothetical BPD growth classes can be seen in the right panel
of Figure 2. If these were our empirical findings, we would conclude that there is a group
with moderate BPD features that maintain their score over time, there is a group with
elevated features that decreases linearly over time, there is an elevated group that shows a
quadratic decline such that they have dramatic decreases at the outset of the study but then
slow in their symptom remission, and finally, that there is a group of individuals who
initially maintain their score, only to show a more precipitous decline late in the study. If
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these were real data, our next task would be to compare these classes on covariates, perhaps
trying to predict class membership based on an initial assessment in order to inform
prognostic decision-making. Alternatively, we could look to differences on some outcome of
importance measured at the final time-point or beyond—for example, BPD trajectory classes
might differ in their social functioning, even though many of their symptoms have remitted.
The possibility of linking trajectory classes with additional outcomes can be a compelling
reason to employ GMMs, and it can also help determine whether these classes should be
treated as meaningfully and qualitatively distinct, as opposed to more continuous
interindividual differences in intraindividual change.

It is worth noting that the more restrictive forms of GMM struggled to fit the simulated
model. For the unique means only and the unique means/shared variances models, the
addition of classes continued to improve model fit, up to our a priori limit of 10 latent
classes. For each of these GMMs, often around the seven-class model, very small classes
began to emerge (i.e., 1–4% of the sample). Furthermore, an inspection of the model
trajectory plots indicated that these additional classes had the same change patterns as other
classes, differing slightly in intercept or curvature of the slope. This highlights the point that
more restrictive models will tend to account for heterogeneity with additional classes. One
should consider moving to a more complex and less constrained within-class structure if
“too many” classes begin to emerge. Naturally, this is an extreme and artificial example, and
when using real data, the more restrictive variants of GMM can be useful due to their
stability in estimation, especially when considering non-linear growth. When means and
variances are free, as we mentioned above, problems often emerge in estimation, which
require troubleshooting. An additional point we sought to demonstrate here is that the one-
class unique means/shared variance and unique means/unique variance GMMs both reduce
to the LGM as can be seen from the identical log-likelihood values. Finally, it bears mention
that despite having excellent fit by most conventional standards, the quadratic LGM has
poor relative fit in comparison to the best GMMs. This illustrates that qualitatively distinct
and conceptually interesting latent trajectories can be embedded in a dataset that “fits well”
with LGM and argues in favor of at least testing the waters using GMM if one thinks that
there may be conceptually meaningful latent trajectories.

Words of Caution
Thus far we have presented an enthusiastic discussion primarily focused on potential
advantages of GMMs. We would be remiss if we did not also pause to draw the reader’s
attention to some of the drawbacks associated with GMMs and the need to proceed
cautiously—especially given that [such?] much modeling is likely to be exploratory in
nature. It is important to keep in mind that it is the researcher’s responsibility to bridge the
gap between a statistical approximation of the data and the meaning ascribed to it. In this
context, it means that the researcher must decide whether a given GMM solution has
produced a set of meaningful latent trajectory classes, or whether the classes reflect non-
substantive groupings that capitalize on sample features or model misspecification. More
generally, because GMM accounts for heterogeneity in growth in part by adding classes,
even modest misspecifications in the model can lead to spurious classes (Bauer & Curran,
2003, 2004; Lubke & Neale, 2006). For instance, it is frequently the case that GMMs may
identify additional “classes” with only minor violations of normality and other subtle
violations of the LGM (Bauer, 2007). Classes that differ quantitatively but not qualitatively
are probably best treated within an LGM framework (Bauer & Curran, 2004). Researchers
should beware of situations in which modest changes in model specification lead to large
changes in conclusions about the class number or structure, suggesting that the classes are
not robust.
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Others have pointed to the fact that very similar solutions will emerge from LGCMs even
across very distinct modeling situations. Sher et al. (2010) provided a dramatic
demonstration of this fact by comparing LCGMs of all time points analyzed together versus
conclusions reached by analyzing the first half or second half of the series. In each case a
similar result emerged, lending little confidence that this technique was extracting “true”
classes of individuals. Although one hopes that similar LCGM results would emerge across
independent samples, it is troubling that similar results were obtained by exploring different
temporal subsets of the same data. A multi-class solution only provides statistical evidence
that a mixture distribution fits the data better than a single-class model, not that the classes
are necessarily discrete subgroups of the population (Bauer, 2007; Sterba & Bauer, 2010).
Even as we encourage researchers to consider the potential for new insights using these
models, given the potential pitfalls in exploratory GMMs and the likelihood that many
modeling situations will have limited theory to draw on, we urge researchers to be cautious
in their approach and seek to replicate and validate solutions.

At various points we have made reference to “difficulties” in estimation. At the current
juncture mixture models often require a fair amount of manual attention in the process of
model specification and vetting. Furthermore, researchers will undoubtedly run in to
instances where models fail to converge, converge but only after a significant amount of
estimation time (e.g., days), or provide impossible parameter values. Researchers should
closely inspect their output after each model, keeping an eye out for error warnings,
impossible parameters, or other evidence of modeling difficulties (e.g., a non-replicating
log-likelihood across random starting values, suggestive of numerical instability that may
undermine confidence in parameter estimates).

Part 2: A Mixture Approach to Ipsative Change: Latent Transition Analysis
The GMM methods described in the previous sections are able to model, with a high degree
of fidelity, individual change in a given content domain (e.g., extraversion, depression, or
narcissism). And yet, these approaches are generally limited to capturing change in one
dimension at a time. Personality is a multidimensional system, and what is often of interest
is not one’s unidimensional standing, but rather a qualitative “profile” of traits. When
considered from a longitudinal standpoint, an important question is: to what degree do
individuals maintain their profile over time (i.e., what is their ipsative stability)?
Investigators interested in ipsative stability have drawn on early and contemporary work in
profile analysis (e.g., Biesanz & West, 2000; Cronbach & Gleser, 1953; Furr, 2008) to study
the degree and predictors of multidimensional change over time (e.g., Asendorpf & Van
Aken, 1991; Donnellan et al., 2007; Robins et al., 2001; Wright et al., 2012). With its focus
on the multidimensional trait profile, ipsative stability is the most person-oriented of the
traditional approaches to studying personality over time. In this regard, ipsative stability
should be of high interest not only to personality psychologists but also clinicians who are
often in the business of promoting lasting improvements in multiple if not all domains of an
individual’s life. Although traditional measures of profile stability (e.g., q-correlation or D2)
capture multidimensional change, they reduce this change to a unitary number, and lose the
specifics of the change. That is to say, these methods reduce each individual’s profile
similarity across time to one coefficient (e.g., .90), which cannot track which specific
aspects changed. What is typically learned in studies of ipsative stability is grossly how
stable individual profiles are, or what is predictive of stability, but not the manner in which
someone changes over time. Often the average coefficient of ipsative personality stability is
high, but individual values vary dramatically, including being negative, beckoning for the
development and application of methods that can elucidate not just the degree of change, but
the kind of change that is occurring.
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Latent transition analysis (LTA) holds promise for the simultaneous study of the degree and
kind of change in personality profiles over time. LTA is a longitudinal extension of latent
class analysis (LCA; Collins & Lanza, 2010). LCA is a cross sectional mixture model that
can be applied to multivariate data to uncover (potentially) distinct latent groupings of
individuals who share the same profile of scores across variables within a class, but differ in
the profile across classes. LCA models variability in trait profiles at a single time point using
latent classes. When there are multivariate data measured at multiple time points, a
researcher may be interested to know to what degree individual class membership (i.e.,
personality profile) is stable over time, and in which ways do individuals transition among
classes over time. LTA accomplishes this by predicting an individual’s status at a given time
point by his or her previous status (in LTA the term status is used instead of class to reflect
the potentially transient nature of latent group membership). Thus, LTA differs from
RMLCA, which applies a standard LCA to repeated measures of one variable. To date, LTA
has only been used in one longitudinal personality study (Meeus, van de Schoot, Klimstra, &
Branje, 2011), although a number of illustrative exemplars exist in psychopathology
research (e.g., Cain et al., 2010; Chung, Park, & Lanza, 2005; Read et al., 2013). One likely
reason that LTA has been applied to personality data so infrequently is that modern
personality research has been overwhelmingly focused on dimensions as opposed to types
(see e.g., Hallquist & Wright, this issue). There are instances of typological theories of
personality (e.g., Block & Block, 1980) that could only be tested by using LTA. However,
more importantly, LTA provides conceptual and analytic features that fill a problematic gap
in traditional longitudinal methods by being able to characterize the content in ipsative
change.

In LTA, an LCA is first fit to the multidimensional data at each time point in order to
establish the number and form of personality profiles at each wave. Subsequently, to
measure the transition from one profile to another over time, the statuses from later time-
points are regressed on earlier time-points using multinomial logistic regression (see Figure
3). There are a number of parameters that emerge from an LTA. First are the standard
parameters that emerge from an LCA, which include item means (in the case of continuous
observed variables) or probabilities (in the case of categorical observed variables), the
number of latent statuses (i.e., time-specific personality profiles), and the proportion of
individuals assigned to a given status. The relative levels of the personality variables (i.e.,
profiles) in each group define the content for each status at each wave. It is incumbent on the
researcher to interpret the emerging profiles and choose the best fitting LCA solution for
each wave as the first step.

The second set of parameters, unique to LTA, are the latent transition probabilities, which
reflect the likelihood of an individual moving from a one status at a given time-point to
another status at a subsequent time-point versus remaining in the same status. Thus, the
probability of maintaining one’s class reflects the stability in class membership, and the
probability of moving in to another class reflects the instability. In this way, LTA can speak
to gross levels of stability and instability, as with more conventional ipsative stability
analyses. However, LTA also quantifies the probability that an individual in a given status
shifts to another, thereby providing information about the type of change occurring. As an
example, consider the possibility that there are two primary psychological states for
individuals with narcissistic pathology, one characterized by grandiosity, expansiveness, and
hubris, and the other characterized by shame, vulnerability, and withdrawal. Assuming these
states could be adequately differentiated using LCA, LTA would provide the probability of
shifting from one status to another within a given period of time (e.g., one week), and, as we
note below, could also estimate the effect of an external event (e.g., perceived interpersonal
insult) on determining one’s later status or state.
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Although the number of statuses, variable means, and proportion of individuals assigned to
each status are unique to each time-point’s LCA model, and it is frequently advantageous to
test for invariance in the number of classes and variable means to ensure that statuses are
conceptually identical across time points. This is especially the case when more than two
time points are being examined. If the LCA model is not invariant across time points one
can still proceed with an LTA, but the statuses will not be conceptually identical at each
time point. Depending on the application, a varying class structure across time may make
more or less sense. This may make good sense in the event that there are certain statuses that
cannot be achieved before a developmental milestone has passed or an intervention is given.
For example, in an LTA of depression symptoms among those diagnosed with depression at
Time 1, but who have gone through an intervention at Time 2, there may be no “healthy”
status that emerges at Time 1, only at Time 2. In this way LTA can be flexibly applied to
test theories about change in an intervention or developmental framework.

An additional attractive feature of LTA is that it does not constrain the patterns of change
over time a priori. Individuals can shift between statuses and back again with as many
patterns of trajectories as there are permutations based on the number of classes and the
number of time-points. Admittedly, the number of possible pathways can quickly become
staggering, especially with the addition of assessment points, which contribute to geometric
growth (e.g., with three statuses at three time-points there are 27 possible trajectories, but
with three statuses and four time points there are 81 possible trajectories). Most frequently,
however, there are a handful of common pathways that emerge in LTA. For example, if
there were three statuses of participants, internalizers, externalizers, and low-pathology
(Achenbach, 1966; Krueger, 1999), it is frequently the case that most of the movement
between statuses will occur going from the pathology statuses to the low-pathology status.
The frequencies of common transitions provide information about the modal patterns of
ipsative stability. Yet LTA also provides estimates of the proportion of individuals moving
in the opposite direction, from low-pathology to internalizing or externalizing, and between
the two pathology classes. In this way it can capture patterns of growth that include waxing
and waning symptoms, as well as qualitative shifts in symptom presentation over time.

As the name implies, in LTA the focus is on discrete transitions. The temporal resolution of
individual status transitions will only be as good as the frequency of measurement. Thus
LTA can only indicate that someone has shifted statuses between two time points, not when
during the intermediate time it occurred. It should also be noted that there exists a major
tradeoff is imposing a categorical structure on what may better be understood as continuous
change. Change that is actually occurring gradually will be treated as if it is all or none.
Nevertheless, LTA can be used in conjunction with other approaches to better grasp the full
picture of change, and for certain questions discrete change may indeed be the most
appropriate model (e.g., the development of a new behavior or skill). An additional
consideration that takes on particular importance for LTA, but is also of relevance for
GMM, is that like most latent variable models these are ideally “large sample” techniques.
Although it is difficult to determine hard-and-fast cutoffs because the necessary sample size
is dependent on a number of features (e.g., reliability of measurement, sample homogeneity,
model complexity, number of observations per person; Muthén & Curran, 1997), there are
situations where models will be inestimable or provide poor parameter estimates due to low
sample size. As it pertains to LTA, low sample size can lead to empirical under-
identification, which is sometimes evident as a model that fails to converge or takes
considerable time reach convergence.

More advanced applications of LTA involve the addition of covariates which can be
included as predictors of the probability of time-point specific statuses, but also as
moderators of the latent transitions. This feature is particularly advantageous when one is

Wright and Hallquist Page 16

J Pers Assess. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



interested in the effect of certain discrete events on the trajectory of change over time, which
cannot easily be accommodated in latent growth modeling. To illustrate this point, we
briefly consider the results of a recent study by Read and colleagues (2013) examining the
trajectory of PTSD symptomatology over the first year of college. A large sample of
students (N = 944) was assessed in September, December, and April, covering the full
academic year. A three-class LCA was selected for each assessment point, reflecting absent,
moderate, and severe PTSD statuses. Controlling for initial levels of neuroticism, the authors
demonstrated that new and repeated traumatic events were predictive of shifts into the more
severe latent statuses or the stability of the symptomatic statuses over time. Naturally, this
was an expected result, but in addition it was shown that engaging in alcohol use was also
predictive of transitions over and above trauma. Thus, LTA offers a powerful tool for
studying not only qualitative and idiosyncratic patterns of change, but also the effect of
covariates on longitudinal changes in a way not easily accomplished using other techniques.

Examining the Results of a Hypothetical LTA
To illustrate the modeling steps in LTA we offer a plausible but hypothetical study. We limit
this example to two time-points for clarity. In this hypothetical study, 1,000 adolescents are
followed in the transition from middle school to high school. Each participant completed the
Multidimensional Personality Questionnaire (MPQ; Tellegen & Waller, 2008) midway
through the year during the final year of middle school (i.e., eighth grade) and the first year
of high school (i.e., ninth grade). The research questions were a) whether there was evidence
of a coherent latent grouping structure of personality in early adolescence and b) whether
these classes were stable over the transition from middle school to high school.

Personality profiles were assessed with the higher-order MPQ scales of Positive
Emotionality (PEM), Negative Emotionality (NEM), and Constraint (CON). As an initial
step, the goal would be to run LCAs for the measurement model at each assessment point.
Assuming these were reasonably similar, and agreed in terms of the number of classes
suggested, but with relatively minor differences in means for example, measurement
invariance could be imposed, constraining the number of classes and mean values across
time-points to equality, and the AICC and BIC could be compared across solutions. Lower
AICC and BIC in a more constrained model would provide evidence in support of identical
classes emerging across time. Although the indicator means and number of classes can be
constrained for the purpose of imposing measurement invariance, it is important that the
proportion of individuals in each class is freely estimated to capture movement from one
class to another, which is of primary scientific interest in LTA. However, for the sake of this
example let us assume that the same status structure emerged at both time points and could
be modeled as invariant. In the left side of Table 2 the status specific means are summarized
in T-Scores, and appear to conform to a pattern of No Pathology (High PEM, low NEM,
moderate CON), Internalizing problems (low PEM, high NEM, average CON), and
Externalizing problems (average PEM, moderate NEM, low CON). The Time 1 status
proportions were as follows, No Pathology .80 (n = 800), Internalizing .10 (n = 100), and
Externalizing .10 (n = 100). The Time 2 class proportions were as follows, No Pathology .65
(n = 648), Internalizing .16 (n = 161), and Externalizing .14 (n = 140).

Next we would regress the second time point statuses on the initial time point statuses (note
the shift in terminology from class to status reflecting the potential transient nature of these
latent groupings). This step is done in a single latent variable model that regresses the time 2
categorical latent variable on the time 1 categorical latent variable using multinomial logistic
regression. In other words, the entire model is estimated simultaneously. The new results are
the latent transition probabilities displayed in the right portion of Table 2. The status-
specific stabilities can be found on the diagonal, and the off-diagonals reflect the probability
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of shifting from one status to another as an adolescent goes from middle school to high
school. Here we see that the No Pathology class is the most stable, but sizeable portions of
children are moving into the Internalizing (i.e., 88 = 800 × .11) and Externalizing statuses
(i.e., 64 = 800 × .08). The Externalizing status was next most stable followed by the
Internalizing status. Note how the Time 1–Time 2 transition probabilities (i.e., represented
on each row) are required to sum to 1.0 for each Time 1 status, representing a full account of
how individuals in the sample change in status between time-points, whereas there is no
similar requirement of columns. If one were to multiply the initial proportions of individuals
classified to each status by their transition probabilities one would obtain marginal
proportions classified in each status at time 2 (note this only works when there is no
attrition).

Although this example is hypothetical, it demonstrates that LTA is able to assess ipsative
stability while still retaining a focus on the content of each individual’s profile. To be sure,
by classifying individuals into a few classes some resolution on the fine-grained change in
profiles is lost, but this may be a worthwhile trade-off in many instances. We advocate using
multiple approaches to studying change of all types, including ipsative change, and LTA
adds a promising complement to the standard approaches. By comparing scientific
conclusions across different longitudinal analyses, one may achieve a more informed and
hopefully convergent perspective on the form and content of changes over time.

Conclusion
Recent years have seen an increasing emphasis on studying personality over time, and
accordingly longstanding questions related to when and if personality becomes stable
(James, 1890) have received definitive answers—namely, “it depends.” Indeed, the complex
nature of stability and change in personality provides new insight into the psychological
mechanisms that undergird who we are. Motivated in part by the complexity of scientific
questions about the development and stability of personality, recent advances in longitudinal
methods have promoted a better understanding of personality and psychopathology. Mixture
modeling approaches have gained considerable traction of late, and their person-oriented
emphasis conforms to the scientific and clinical traditions in personality psychology. This
primer was intended to give a broad conceptual introduction to longitudinal mixture models
and their application. We hope this paper provided a balanced view of the potential utility
and potential pitfalls associated with adopting mixture approaches. We look forward to the
new discoveries in personality science that may be supported by these models.

Acknowledgments
We are grateful to Dr. Mark F. Lenzenweger for encouraging us to think about the longitudinal development of
personality and its pathology.

Preparation of the manuscript was supported in part by NIMH Grant F32 MH090629 to Dr. Hallquist and Grant
T32MH018269 to Dr. Wright. The views contained are those of the author and do not necessarily reflect those of
the funding source.

References
Achenbach TM. The classification of children's psychiatric symptoms: A factor-analytic study.

Psychological Monographs: General and Applied. 1966; 80(7):1–37. [PubMed: 5968338]

Akaike H. A new look at the statistical model identification. IEEE Transactions on Automatic Control.
1974; 19(6):716–723.

Asendorpf JB, Van Aken MA. Correlates of the temporal consistency of personality patterns in
childhood. Journal of Personality. 1991; 59:689–703.

Wright and Hallquist Page 18

J Pers Assess. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Bauer DJ. Observations on the use of growth mixture models in psychological research. Multivariate
Behavioral Research. 2007; 42(4):757–786.

Bauer DJ, Curran PJ. The integration of continuous and discrete latent variable models: Potential
problems and promising opportunities. Psychological Methods. 2004; 9:3. [PubMed: 15053717]

Bergman LR, Magnusson D. A person-oriented approach in research on developmental
psychopathology. Development and psychopathology. 1997; 9(2):291–319. [PubMed: 9201446]

Bergman, LR.; Magnusson, D.; El Khouri, BM. Studying individual development in an interindividual
context: A person-oriented approach. Vol. Vol. 4. Lawrence Erlbaum; 2002.

Biesanz JC, West SG. Personality coherence: Moderating self–other profile agreement and profile
consensus. Journal of personality and social psychology. 2000; 79:425. [PubMed: 10981844]

Bollen KA. Structural equations with latent variables. 1989

Bollen, KA.; Curran, PJ. Latent curve models: A structural equation perspective. New York: Wiley;
2006.

Burnham, KP.; Anderson, DR. Model selection and multi-model inference: A practical information-
theoretic approach. 2nd ed. New York: Springer; 2002.

Cain AS, Epler AJ, Steinley D, Sher KJ. Stability and change in patterns of concerns related to eating,
weight, and shape in young adult women: A latent transition analysis. Journal of abnormal
psychology. 2010; 119(2):255. [PubMed: 20455598]

Chung H, Park Y, Lanza ST. Latent transition analysis with covariates: pubertal timing and substance
use behaviours in adolescent females. Statistics in Medicine. 2005; 24(18):2895–2910. [PubMed:
16134129]

Collins, LM.; Lanza, ST. Latent class and latent transition analysis: With applications in the social,
behavioral, and health sciences. Vol. Vol. 718. Wiley; 2010.

Cronbach LJ, Gleser GC. Assessing similarity between profiles. Psychological Bulletin. 1953; 50:456–
473. [PubMed: 13112334]

De Fruyt F, Bartels M, Van Leeuwen KG, De Clercq B, Decuyper M, Mervielde I. Five types of
personality continuity in childhood and adolescence. Journal of Personality and Social
Psychology. 2006; 91(3):538. [PubMed: 16938036]

Donnellan MB, Conger RD, Burzette RG. Personality development from late adolescence to young
adulthood: Differential stability, normative maturity, and evidence for the maturity-stability
hypothesis. Journal of Personality. 2007; 75(2):237–263. [PubMed: 17359238]

Enders CK, Tofighi D. The impact of misspecifying class-specific residual variances in growth
mixture models. Structural Equation Modeling. 2008; 15:75–95.

Furr RM. A framework for profile similarity: Integrating similarity, normativeness, and
distinctiveness. Journal of Personality. 2008; 76:1267–1316. [PubMed: 18705644]

Hallquist MN, Lenzenweger MF. Identifying latent trajectories of personality disorder symptom
change: Growth mixture modeling in the Longitudinal Study of Personality Disorders. Journal of
Abnormal Psychology. 2013; 122:138–155. [PubMed: 23231459]

Henson JM, Reise SP, Kim KH. Detecting mixtures from structural model differences using latent
variable mixture modeling: a comparison of relative model fit statistics. Structural Equation
Modeling. 2007; 14:202–226.

Hurvich CM, Tsai CL. Bias of the corrected AIC criterion for underfitted regression and time series
models. Biometrika. 1991; 78(3):499–509.

Hyde LW, Shaw DS, Gardner F, Dishion TJ, Wilson M. Dimensions of callousness in early childhood:
Links to problem behavior and family intervention effectiveness. Development and
Psychopathology. (in press).

Jung T, Wickrama KAS. An introduction to latent class growth analysis and growth mixture modeling.
Social and Personality Psychology Compass. 2007; 2(1):302–317.

Kreuter F, Muthén B. Analyzing criminal trajectory profiles: Bridging multilevel and group-based
approaches using growth mixture modeling. Journal of Quantitative Criminology. 2008; 24(1):1–
31.

Krueger RF. The structure of common mental disorders. Archives of General Psychiatry. 1999; 56(10):
921. [PubMed: 10530634]

Wright and Hallquist Page 19

J Pers Assess. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Lanza, ST. Latent Stage Sequence Analysis, Technical Report No. University Park, PA: The
Methodology Center, Penn State; 2003. p. 03-55.

Lanza ST, Collins LM. A mixture model of discontinuous development in heavy drinking from ages
18 to 30: The role of college enrollment. Journal of Studies on Alcohol and Drugs. 2006; 67(4):
552.

Lanza ST, Collins LM. A new SAS procedure for latent transition analysis: transitions in dating and
sexual risk behavior. Developmental psychology. 2008; 44(2):446. [PubMed: 18331135]

Lenzenweger MF, Willett JB. Predicting individual change in personality disorder features by
simultaneous individual change in personality dimensions linked to neurobehavioral systems: The
longitudinal study of personality disorders. Journal of Abnormal Psychology. 2007; 116(4):684.
[PubMed: 18020716]

Littlefield AK, Sher KJ, Wood PK. Is “maturing out” of problematic alcohol involvement related to
personality change? Journal of Abnormal Psychology. 2009; 118:360. [PubMed: 19413410]

Lubke G, Muthén B. Performance of factor mixture models as a function of model size, criterion
measure effects, and class-specific parameters. Structural Equation Modeling. 2007; 14:26–47.

Masyn KE, Henderson CE, Greenbaum PE. Exploring the Latent Structures of Psychological
Constructs in Social Development Using the Dimensional–Categorical Spectrum. Social
Development. 2010; 19(3):470–493. [PubMed: 24489441]

McArdle JJ. Latent variable growth within behavior genetic models. Behavior Genetics. 1986; 16(1):
163–200. [PubMed: 3707483]

McArdle JJ. Latent variable modeling of differences and changes with longitudinal data. Annual
Review of Psychology. 2009; 60:577–605.

McArdle JJ, Bell RQ. An introduction to latent growth models for developmental data analysis. 2000

McArdle JJ, Epstein DB. Latent growth curves within developmental structural equation models. Child
Development. 1987; 58:110–133. [PubMed: 3816341]

McArdle, JJ.; Nesselroade, JR. Growth curve analysis in contemporary psychological research. In:
Shinka, J.; Velicer, &W., editors. Comprehensive handbook of psychology, Vol. 2: Research
methods in psychology. New York: Wiley; 2003. p. 447-480.

McLachlan, GJ.; Peel, D. Finite mixture models. New York: John Wiley & Sons; 2000.

Meeus W, Van de Schoot R, Klimstra T, Branje S. Personality types in adolescence: Change and
stability and links with adjustment and relationships: A five-wave longitudinal study.
Developmental psychology. 2011; 47(4):1181. [PubMed: 21639626]

Meredith W, Tisak J. Latent curve analysis. Psychometrika. 1990; 55:107–122.

Morin AJ, Maïano C, Nagengast B, Marsh HW, Morizot J, Janosz M. General growth mixture analysis
of adolescents' developmental trajectories of anxiety: the impact of untested invariance
assumptions on substantive interpretations. Structural Equation Modeling: A Multidisciplinary
Journal. 2011; 18(4):613–648.

Mortimer, JT.; Finch, MD.; Kumka, D. Persistence and change in human development: The
multidimensional self-concept. In: Baltes, PB.; Brim, OG., Jr, editors. Life-Span Development and
behavior. NY: Academic Press; 1982.

Muthén BO. Beyond SEM: General latent variable modeling. Behaviormetrika. 2002; 29(1; ISSU 51):
81–118.

Muthén B. Statistical and substantive checking in growth mixture modeling. Psychological Methods.
2003; 8:369–377. [PubMed: 14596497]

Muthén, B. Latent variable analysis: Growth mixture modeling and related techniques for longitudinal
data. In: Kaplan, D., editor. Handbook of quantitative methodology for the social sciences.
Newbury Park, CA: Sage Publications; 2004. p. 345-368.

Muthén B, Muthén L. Integrating person-centered and variable-centered analyses: Growth mixture
modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research. 2000;
24:882–891.

Nagin DS. Analyzing developmental trajectories: A semiparametric, group-based approach.
Psychological methods. 1999; 4(2):139–157.

Nagin, D. Group-based modeling of development. Harvard University Press; 2005.

Wright and Hallquist Page 20

J Pers Assess. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Nagin DS. Group-based trajectory modeling: An overview. Handbook of quantitative criminology.
2010:53–67.

Nesselroade, JR. Interindividual differences in intraindividual change. Best methods for the analysis of
change: Recent advances, unanswered questions, future directions. Collins, LM.; Horn, JL.,
editors. Washington, D.C.: American Psychological Association; 1991. p. 92-105.

Nylund KL, Asparouhov T, Muthén B. Deciding on the number of classes in latent class analysis and
growth mixture modeling. A Monte Carlo simulation study. Structural Equation Modeling. 2007;
14:535–569.

Pickles P, Croudace T. Latent mixture models for multivariate and longitudinal outcomes. Statistical
Methods in Medical Research. 2010; 19:271–289. [PubMed: 19608600]

Petras, H.; Masyn, K. General growth mixture analysis with antecedents and consequences of change.
In: Piquero, AR.; Weisburd, D., editors. Handbook of Quantitative Criminology. New York, NY:
Springer; 2010. p. 69-100.

Preacher, KJ.; Wichman, AL.; MacCallum, RC.; Briggs, NE. Latent growth curve modeling. Vol. Vol.
157. Sage; 2008.

Ram N, Grimm KJ. Methods and Measures: Growth mixture modeling: A method for identifying
differences in longitudinal change among unobserved groups. International Journal of Behavioral
Development. 2009; 33(6):565–576. [PubMed: 23885133]

Read JP, Bachrach RL, Wright AGC, Colder CR. Trauma, trauma sequelae, and alcohol use across the
first year of college: A latent transition analysis. Manuscript submitted for publication. 2013

Roberts BW, Caspi A, Moffitt TE. The kids are alright: Growth and stability in personality
development from adolescence to adulthood. Journal of Personality and Social Psychology. 2001;
81(4):670–683. [PubMed: 11642353]

Roberts BW, DelVecchio WF. The rank-order consistency of personality traits from childhood to old
age: A quantitative review of longitudinal studies. Psychological Bulletin. 2000; 126(1):3–25.
[PubMed: 10668348]

Roberts BW, Jackson JJ. Sociogenomic personality psychology. Journal of Personality. 2008;
76:1523–1544. [PubMed: 19012657]

Roberts BW, Mroczek D. Personality trait change in adulthood. Current Directions in Psychological
Science. 2008; 17(1):31–35. [PubMed: 19756219]

Roberts BW, Walton KE, Viechtbauer W. Patterns of mean-level change in personality traits across
the life course: A meta-analysis of longitudinal studies. Psychological Bulletin. 2006; 132(1):1–25.
[PubMed: 16435954]

Roberts, BW.; Wood, D.; Caspi, A. The development of personality traits in adulthood. In: John, OP.;
Pervin, RW.; Robins, LA., editors. Handbook of personality psychology: Theory and research. 3rd
ed.. New York, NY, US: Guilford Press; 2008. p. 375-398.

Robins RW, Fraley RC, Roberts BW, Trzesniewski KH. A longitudinal study of personality change in
young adulthood. Journal of Personality. 2001; 69(4):617–640. [PubMed: 11497032]

Schwarz G. Estimating the dimension of a model. The Annals of Statistics. 1978; 6(2):461–464.

Shaw DS, Hyde LW, Brennan LM. Early predictors of boys' antisocial trajectories. Development and
psychopathology. 2012; 24(03):871–888. [PubMed: 22781860]

Sher KJ, Jackson KM, Steinley D. Alcohol use trajectories and the ubiquitous cat's cradle: Cause for
concern? Journal of abnormal psychology. 2011; 120(2):322. [PubMed: 21319874]

Singer, JD.; Willett, JB. Applied longitudinal data analysis: Modeling change and event occurrence.
USA: Oxford University Press; 2003.

Stoolmiller M, Kim HK, Capaldi DM. The course of depressive symptoms in men from early
adolescence to young adulthood: identifying latent trajectories and early predictors. Journal of
Abnormal Psychology. 2005; 114(3):331. [PubMed: 16117571]

Sugiura N. Further analysis of the data by Akaike’s Information Criterion and the finite corrections.
Communications in Statistics, Theory, and Methods. 1978; A7:13–26.

Tellegen, A.; Waller, NG. Exploring personality through test construction: Development of the
Multidimensional Personality Questionnaire. In: Boyle, GJ.; Matthews, G.; Saklofske, DH.,
editors. The Sage handbook of personality theory and assessment: Vol II. Personality measurement
and testing. Vol. Vol. 2. London: Sage; 2008. p. 261-292.

Wright and Hallquist Page 21

J Pers Assess. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Tofighi, D.; Enders, C. Identifying the correct number of classes in growth mixture models. In:
Hancock, GR.; Samuelsen, KM., editors. Advances in latent variable mixture models. Charlotte,
NC: Information Age Publishing; 2008. p. 317-341.

Voelkle MC. Reconsidering the use of autoregressive latent trajectory (ALT) models. Multivariate
Behavioral Research. 2008; 43(4):564–591.

Vrieze SI. Model selection and psychological theory: a discussion of the differences between the
Akaike information criterion (AIC) and the Bayesian information criterion (BIC). Psychological
methods. 2012; 17(2):228–243. [PubMed: 22309957]

Wang CP, Brown CH, Bandeen-Roche K. Residual diagnostics for growth mixture models. Journal of
the American Statistical Association. 2005; 100:1054–1076.

Wright AGC, Pincus AL, Lenzenweger MF. Development of personality and the remission and onset
of personality pathology. Journal of Personality and Social Psychology. 2011; 101(6):1351–1358.
[PubMed: 21967009]

Wright AGC, Pincus AL, Lenzenweger MF. Interpersonal development, stability, and change in young
adulthood. Journal of Personality. 2012; 80(5):1339–1372. [PubMed: 22224462]

Zanarini MC, Gunderson JG, Frankenburg FR, Chauncey DL. The Revised Diagnostic Interview for
Borderlines: Discriminating BPD from other Axis II Disorders. Journal of Personality Disorders.
1989; 3:10–18.

Wright and Hallquist Page 22

J Pers Assess. Author manuscript; available in PMC 2015 January 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 1.
A graphical depiction of a LGM parameterized for quadratic change
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Figure 2.
A Graphical depiction of a general growth mixture model parameterized for quadratic
change. Note that any of the parameters listed on the left hand side of the graph could be
allowed to vary across classes (k).
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Figure 3.
Graphical depiction of a three time-point latent transition analysis
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Figure 4.
Simulated raw data and mean curves for best fitting LGM
Note. Top panel is the longitudinal plot of the simulated data from the GMM example.
Bottom panel presents the mean trajectories for each class of the best fitting model in the
GMM example.
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