
3D Whole-Brain Perfusion Quantification using Pseudo-
Continuous Arterial Spin Labeling MRI at Multiple Post-Labeling
Delays: Accounting for Both Arterial Transit Time and Impulse
Response Function

Qin Qin1,2, Alan J. Huang2,3, Jun Hua1,2, John E. Desmond4, Robert D. Stevens1,2,4,5, and
Peter C.M. van Zijl1,2

1The Russell H. Morgan Department of Radiology and Radiological Science, Division of MR
Research, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
2F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore,
MD, USA
3Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
4Department of Neurology and Neurosurgery, The Johns Hopkins University, Baltimore, MD, USA
5Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins University,
Baltimore, MD, USA

Abstract
Measurement of cerebral blood flow (CBF) with whole-brain coverage is challenging in terms of
both acquisition and quantitative analysis. In order to fit the ASL-based perfusion kinetic curves,
an empirical 3-parameter model that characterizes the effective impulse response function (IRF) is
introduced, which allows determination of CBF, arterial transit time (ATT), and T1,eff. The
accuracy and precision of the proposed model is compared with more complicated models with 4
or 5 parameters through Monte Carlo simulations. Pseudo-continuous arterial spin labeling
(PCASL) images were acquired on a clinical 3 Tesla scanner in 10 normal volunteers using a 3D
multi-shot gradient- and spin-echo (GRASE) scheme at multiple post-labeling delays to sample
the kinetic curves. Voxel-wise fitting was performed using the 3-parameter model and other
models that contain 2, 4 or 5 unknown parameters. For the 2-parameter model, T1,eff values close
to tissue and blood were assumed separately. Standard statistical analysis was conducted to
compare these fitting models in various brain regions. The fitted results indicate that: 1) the
estimated CBF values using the 2-parameter model show appreciable dependence on the assumed
T1,eff values; 2) the proposed 3-parameter model achieves the optimal balance between the
goodness of fit and the model complexity when compared among the models with explicit IRF
fitting; 3) both the 2-parameter model using fixed blood T1 values for T1,eff and the 3-parameter
model provide reasonable fitting results. Using the proposed 3-parameter model, the estimated
CBF values (46±14 mL/100g/min) and ATT values (ATT = 1.4±0.3 s) averaged from different
brain regions are close to the literature reports; the estimated T1,eff values (T1,eff = 1.9±0.4 s) are
higher than the tissue T1 values, possibly reflecting a contribution from the microvascular arterial
blood compartment.

Corresponding Author: Qin Qin, Department of Radiology, Johns Hopkins University School of Medicine, F.M. Kirby Research
Center for Functional Brain Imaging, Kennedy Krieger Institute, 707 N. Broadway, Baltimore, MD, 21205, qin@mri.jhu.edu, Tel:
443-923-9516, Fax: 443-923-9505.

NIH Public Access
Author Manuscript
NMR Biomed. Author manuscript; available in PMC 2015 February 01.

Published in final edited form as:
NMR Biomed. 2014 February ; 27(2): 116–128. doi:10.1002/nbm.3040.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Keywords
cerebral blood flow; arterial arrive time; impulse response function; PCASL; GRASE; brain;
human; clinical

INTRODUCTION
A general kinetic model (1,2) has been accepted to describe the arterial spin labeling (ASL)-
based perfusion weighted signals (difference of label/control) as the convolution between
the arterial input function (AIF) and the impulse response function (IRF). In classic tracer
kinetic modeling, the AIF is the time dependent function describing the concentration of the
labeled tracer within the arterial supply to the imaging voxel, while the IRF is a time-course
function describing how much remains in the imaging voxel after a unit of labeled tracer
arrives. In ASL images, the accumulation of labeled arterial blood water signal in the
imaging voxel and its loss of the tag through relaxation or clearance, produce a kinetic curve
as a function of post-labeling delay (PLD). Thus, in order to account for varying AIFs and
IRFs across the brain, a reasonable strategy for estimating cerebral blood flow (CBF) is to
obtain ASL images with a range of PLDs and then to perform voxel-by-voxel curve fitting
with an underlying kinetic model.

Given the inherently low signal-to-noise ratio (SNR) of ASL signals, the multi-PLD
approach has not been regularly employed due to the required long acquisition time. Instead,
the majority of CBF quantification studies to date only acquire perfusion images at a single
long PLD and assume minimal effects due to the spatial variance in arterial transit time
(ATT), the transit time of the arterial bolus from the labeling plane to the imaging voxels.
This is a reasonable assumption as long as all labeled blood water have arrived in the voxels
and the difference of the longitudinal relaxation time constants of arterial blood and tissue,
T1,a and T1,t, is small (3). However, this assumption may be problematic given the
heterogeneous distributions of ATT and T1,t between different regions in normal brain and
between normal and pathological conditions. Recognizing that a spatially varying ATT is
one major confounding issue affecting the AIF accuracy for ASL-based CBF quantification,
techniques have been developed to measure regional ATT separately (4–6) or to estimate
CBF and ATT together (two unknown parameters) with multi-PLD datasets (1,7–12).

Additionally, the IRF for ASL-based CBF quantification has been initially approximated by
a single-compartment model of instantaneously fast exchange of labeled arterial tracer from
capillary to tissue (13,14). This corresponds to a monoexponential decay function for the
IRF with tissue T1 (T1,t) as the characteristic time constant (13,14). While there are three
unknown parameters in this model: CBF, ATT, T1,t, local T1,t values are often taken from
either a literature-reported gray matter (GM) T1 value or from individually measured T1
maps (3,15,16). However, T1 values are tissue-dependent and precise T1 mapping is time-
consuming. Moreover, several ASL studies have demonstrated that a substantial fraction of
labeled water, after arriving at the imaging voxels, remains in the arterial microvascular
compartment for some time (δa) before reaching the capillary bed and diffusing into the
tissue compartment (3,17–19), which indicates a four-parameter model (CBF, ATT, T1,t, δa)
may be more suitable. Furthermore, a two-compartment exchange model for ASL-based
CBF quantification may be needed to describe the intermediate exchange regime for water
exchange between capillary and tissue compartments (20–22). Sophisticated modeling of the
IRF in principle also needs to take into account the fraction of the decay of the labeled signal
in the vascular compartment (both arterial and capillary compartments), in addition to the
tissue compartment (both extracellular and intracellular compartments). This will
significantly increase the complexity of the model for IRF with various parameters including
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not only T1 values and residence time corresponding to different compartments, but also
extra microscopic parameters such as the exchange rate of water molecules from capillary
blood to tissue, Kw, which would lead to a five-parameter model: CBF, ATT, T1,t, δa, Kw, as
introduced in a pulsed ASL study (23). However, recent Monte Carlo simulations have
shown that, within the limit of the low SNR typically afforded by current ASL techniques, it
is difficult to fit all these parameters with acceptable levels of precision (24).

In order to simplify the IRF model, we propose to use an effective T1 relaxation time
constant (T1,eff) to approximate these elaborate relaxation processes, which describes the
IRF as a monoexponential decay function. Using multi-PLD datasets, it then becomes
feasible and sufficient to fit the kinetic curves with CBF, ATT and T1,eff as three unknown
parameters. In this work, we first used Monte Carlo simulations to compare the accuracy
and precision with 3-parameter (CBF, ATT, T1,eff, the proposed method), 4-parameter
(CBF, ATT, T1,t, δa), and 5-parameter (CBF, ATT, T1,t, δa, Kw) models, respectively. We
then acquired 3D pseudo-continuous ASL (PCASL) (25) images with a whole-brain
coverage over a range of PLDs at 3T, and fitted the data using the three aforementioned
CBF estimation approaches in additional to the 2-parameter method (CBF, ATT). The fitted
results using the proposed 3-parameter model in various brain regions were compared with
the other fitting results using standard statistical analysis. To our best knowledge, this is the
first time the models with IRFs at a full range of degree of complexity are systematically
compared using multi-delay ASL data from both simulation and human subjects.

MATERIALS AND METHODS
3-Parameter Model

The AIF c(t) for continuous or pseudo-continuous labeling for a single-compartment model
can be described by (1):

[1]

Here t = 0 is defined as the beginning of the labeling pulse, α is the labeling efficiency, τ is
the duration of the continuous labeling, and M0,a is the equilibrium magnetization of arterial
blood. Note that CBF (mL/100g/min) = 6000 · f (mL/g/s) and ATT and relaxation time
constants are expressed in units of second.

The IRF decay function, r(t), for the 3-parameter model is assumed to be monoexponential
with an effective T1 relaxation time constant (T1,eff):

[2]

The ASL signal, as the difference between the control and labeled images, is the convolution
between the AIF c(t) (Eq. [1]) and IRF r(t) (Eq. [2]):
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[3]

Where M0,t is the equilibrium magnetization of tissue and is related to M0,a through the
brain-blood coefficient, λ = 0.9 ml/g (26).

The derived equations for the 4-parameter and 5-parameter models are listed in the
Appendix for comparison.

Simulations
Simulations were performed using Matlab 7.0 (MathWorks, Inc., Natick, MA, USA).
Examples of continuous ASL data using 3-parameter, 4-parameter, and 5-parameter were
generated with typical values: CBF = 50 mL/100g/min (9), ATT = 1.5 s (5), T1,eff = 1.6 s,
T1,a = 1.9 s (27), T1,t = 1.2 s (28), δa = 0.7 s (19), Kw = 75 min−1 (29), τ = 1.0 s, α = 1.0,
M0,a = 1.0.

Figure 1a displays the AIF for continuous ASL (Eq. [1]), while Figures 1b and 1c show the
IRF of the 3-parameter model (Eq. [2], red line in Figure 1b) and the corresponding
perfusion-weighted kinetic curve (Eq. [3], red dashed line in Figure 1c). To compare with
the 4-parameter and 5-parameter models, the IRFs (Eq. [A1] and [A4]) and perfusion-
weighted kinetic curves (Eq. [A2] and [A5]) are shown in Figures 1b and 1c in green and
blue, respectively. It can be seen from Figure 1 that the empirically simplified 3-parameter
model, with the T1,eff chosen from the range between T1,a and T1,t, provides a reasonable
representation of the perfusion kinetic curves from the more complicated 4-parameter and 5-
parameter models.

The dependencies of the 3-parameter model on CBF, ATT and T1,eff are illustrated
respectively in Figure 2. By varying CBF = [15, 30, 45, 60, 75, 90] mL/100g/min with fixed
values of ATT = 1.5 s and T1,eff = 1.4 s, the perfusion signals are proportional to the CBF
values (Figure 2a) as well known. By varying ATT = [1.0, 1.2, 1.4, 1.6, 1.8, 2.0] s with fixed
values of CBF = 50 mL/100g/min and T1,eff = 1.4 s, the perfusion weighted signals show
strong sensitivity on ATT values before the bolus arrives (the peak of the curves) and yet
little sensitivity on ATT values after it (Figure 2b), which validates the utilization of a long
PLD for single PLD approach to reduce the dependence of the result on ATT (3). It is worth
noting that data acquired at the longer PLD will have significant signal drop for curves with
shorter ATTs due to the T1 relaxation (Figure 2b). By varying T1,eff = [1.0, 1.2, 1.4, 1.6, 1.8,
2.0] s with fixed values of CBF = 50 mL/100g/min and ATT = 1.4 s, the perfusion signals
demonstrate apparent sensitivity on T1,eff values after arrival of all the bolus (Figure 2c):
longer T1,eff corresponds to higher perfusion signal.

To compare the accuracy and precision of these CBF estimation approaches, a Monte Carlo
simulation study was performed to compare among 3-, 4-, 5-parameter models. Although
none of these are true representations of the reality, the 3-, 4-, and 5-parameter models do
increasingly approximate the complex kinetic processes. Here the 5-parameter model is
chosen as a description of the real circumstance, albeit still simplified. Each dataset was
produced using the 5-parameter model and fitted with the models employing 3 parameters
(CBF, ATT, T1,eff), 4 parameters (CBF, ATT, T1,t, δa), and 5 parameters (CBF, ATT, T1,t,
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δa, Kw). For each dataset, random noise with normal distribution was added in the curve,
with SNR of the peak signal increasing from 5 to 50 in 2.5 intervals. For each noise level,
the data generation was repeated 1000 times in order to compute the mean and std of the
estimated parameters under the same noise condition.

Fitting was conducted using a nonlinear-least-squares algorithm provided by Matlab
(lsqcurvefit) and the correlation coefficient for each fit (R2) was also calculated. The error
percentage of the mean of the fitted parameters with respect to the input values was analyzed
as an indicator of accuracy of each approach at each SNR level. The corresponding
coefficient of variation (fitted std / fitted mean) was measured as an indicator of precision
(24).

Experiments
Ten healthy human volunteers (23–48 yrs, six males and four females) were enrolled after
providing informed consent in accordance with the Institutional Review Board guideline.
Subjects were imaged on a 3T Philips Achieva scanner (Philips Medical Systems, Best, The
Netherlands) using the body coil for transmission and a 32-channel head coil for reception.

The pseudo-continuous ASL (PCASL) (25) was applied with the following parameters:
labeling duration τ = 1.0 s, RF interval 1 ms, RF duration 0.5 ms, flip angle 18°, maximum
gradient strength = 6 mT/m, average gradient strength = 0.6 mT/m (30). The label/control
pulse train was followed by different PLDs with separate acquisitions (12 PLDs ranging
from 0.5 s to 2.7 s in 0.2 s intervals, the same as in the simulations) in order to adequately
sample the perfusion kinetic curves for the different brain regions. The pulse sequence
diagram is shown in Figure 3. The rational for the shorter labeling duration, τ = 1.0 s,
compared with the 1.5 ~ 2.0 s used by many previous works (25,30–32), is to accommodate
the timing of background suppression pulses required for different PLDs, especially for the
earlier time points.

Background suppression pulses (33) were applied to suppress the static tissues: a slab-
selective presaturation pulse at 1.0 s before PCASL module, one selective inversion pulse
right before PCASL and three nonselective inversions after PCASL. The arrangement of
these pulses is similar to earlier works (25,33,34). The timing of the four inversion pulses
for background suppression were individually tailored for each PLD (supplementary
material available online), through a home-made iterative minimization algorithm in Matlab,
to achieve residual background signal intensities of less than 1% for a broad range of T1,t
values (from 0.5 s to 4.4 s in 0.3 s interval).

At the end of each PLD, a spectral presaturation with inversion recovery (SPIR) module was
used to remove fat artifacts. Then before acquisition, a 20 ms T2-prep module with inserted
motion-sensitized gradients (Venc = 3 cm/s) in three orthogonal directions was utilized to
reduce signals from large vessels (35).

The gradient- and spin-echo (GRASE) approach (36) combines high sampling efficiency
from EPI or spiral read-outs with low sensitivity to B0 field inhomogeneity from Fast Spin
Echo (FSE) acquisition and has become a natural choice for 3D whole-brain ASL protocols
(25,33,37,38). To evaluate the SNR status with different resolutions, multi-PLD PCASL
sequences were acquired at 5 × 5 × 5 mm3, 6 × 6 × 6 mm3, and 6.7 × 7.4 × 7 mm3 resolution
on a subset of six subjects. On another four subjects, only the 6.7 × 7.4 × 7 mm3 resolution
was obtained. The transverse field of view (FOV) was kept at 240 × 240 mm2 with 20
partitions along superior-inferior direction, such that a slab thickness of 100 mm, 120 mm
and 140 mm were possible for each acquisition resolution. A reconstructed matrix size of 48
× 48 × 20 for each acquisition resolution produced in-plane reconstruction resolutions as
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low as 5 × 5 mm2. An echo train duration (Tk) of 120 ms was chosen for all three resolutions
for minimized T2-decay induced blurring and optimized SNR efficiency (39). Low-high
profile ordering ensured a short effective echo time which equals to the echo spacing of 17
ms. For each acquisition resolution, although with different EPI factors (5 mm: 27; 6 mm:
23; 7 mm: 19), the acquisition time at each echo was kept the same by proportionally
changing the acquisition bandwidth. Together with other acquisition parameters (FSE factor:
7; SENSE factor: 2; number of interleaves: 3; number of averages: 1), total k-space sampling
time was about the same for all three resolutions. Each dataset pair (control and label) at
each PLD took from 19 s to 32 s. For all 12 PLDs, total measurement duration was about 5
min for each resolution.

With the same resolution and acquisition scheme, an extra scan without background
suppression and PCASL modules was employed (TR = 10 s) to acquire the tissue
equilibrium magnetization map (M0,t), which also provides local receiver sensitivity
information. Another series of scans with the same acquisition scheme for different
resolutions was acquired with the RF pulse turned off, with the goal of assessing the
systematic noise levels. A fast sequence was employed to measure blood T1 of each subject
at the internal jugular vein (27). Each of these scans took about 1 min.

A high-resolution 3D image applying magnetization prepared rapid acquisition with gradient
echo (MP-RAGE) (40) was also acquired with 1.1 mm isotropic resolution. Imaging
parameters were: FOV = 250 × 250 × 180 mm3, flip angle (FA) = 9°, TR / TE = 12 ms / 3.2
ms, and inversion time = 1110 ms. Using SENSE factors of 2 (Anterior-Posterior) × 2
(Right-Left), the acquisition time was 3.5 min.

Data Analysis
Matlab 7.0 (MathWorks, Inc., Natick, MA, USA) was used for data processing. Fittings of
the ASL kinetic curves are based on the 2-, 3-, 4-, and 5-paramaeter models (m = 2 and 3,
Eq. [3]; m = 4, A[2] and A[3]; m = 5, A[5] and A[6]), respectively. For the 2-parameter
model, T1,eff = 1.2, 1.6, 2.0 s were assumed separately. For in vivo data, α is set as the
labeling efficiency of PCASL, assumed to be 0.8 (32), and multiplied by the factor of
perfusion signal loss due to the background suppression, assumed to be 0.8 (41). Voxel-wise
fitting of a set of n data pairs (yi vs. t, i = 1:n, n = 12) was executed using a nonlinear-least-
squares algorithm (lsqcurvefit) and each predicted data through the best-fit curve is denoted
by Yi. As in standard regression analysis, the residue for each data pair i is defined as: ei = yi

– Yi; the standard error of estimate is calculated as , where df is the
degree of freedom: df = n – m; the standardized residue for each data pair i is ei/Ey,t. Since
Ey,t can be approximated as a standard deviation of the actual data relative to the estimated
least-squares fit values, 95% ei should be within −2Ey,t and 2Ey,t. The data pair with the
maximal standardized residue of each fit and |ei,max/Ey,t| > 2 is regarded as an outlier, which
might be caused by physiological fluctuation or systematic instability. For each voxel, only
up to 2 out of 12 data points could be called as outliers and fit was performed again after
each exclusion.

To measure the goodness of the fit, the correlation coefficients of all the fittings, R2, were
calculated:

[4]

where  (sum of squares of residues) and  (total sum
of squares). Higher R2 indicates better fit and R2 = 1 corresponds to an ideal fitting of the

Qin et al. Page 6

NMR Biomed. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



data (SSres = 0). It is worth noting here that R2 of the fit does not consider the number of
parameters (model complexity) used for fitting and presumably an nth order polynomial (m
= n, df = 0) always yield higher R2 than models with less parameters and more df.

In order to determine the balance between the goodness of fit and the model complexity, two
standard statistical measures of each model fitting were computed: corrected Akaike
information criterion (AICc) (42) and Bayesian information criterion (BIC, or sometimes
called Schwarz criterion) (43).

[5]

[6]

The second-order term in Eq. [5] is a correction added on AIC for fitting of small sample
size relative to the number of model parameters (n/m ≤ 40) (44). For a given set of data, the
model with the lowest AICc or BIC values represents the best balance between goodness of
fit and complexity among the considered models. Detailed knowledge of AIC and BIC can
be found in (45). These statistical tests have been utilized in studies of tracer kinetic
modeling using nuclear medicine (46,47) and dynamic contrast-enhanced MRI (48,49).

FSL (FMRIB Software Library, Oxford, UK) (50) was used on the high-resolution
MPRAGE images to remove the skull, and to generate partial volume maps of gray matter,
white matter and CSF. The images of brain and segmented tissue were then co-registered
with the low-resolution M0 images. For each subject, five ROIs in the gray matter (frontal
lobe, temporal lobe, parietal lobe, occipital lobe, and cerebellum) were manually drawn
bilaterally from the co-registered MPRAGE maps.

When comparing results from different models on the same datasets, paired t-test with the
two-tailed distribution is used. Difference between any two groups are considered
significant for P < 0.05.

RESULTS
Simulations

Figure 4 shows the simulation results of the fitting models with 3-parameter (Figure 4a,b),
4-parameter (Figure 4c,d) and 5-parameter (Figure 4e,f), plotting the error percentage of the
mean (defined as accuracy) in the left column and coefficient of variation (precision) in the
right column, all as a function of SNR. At the same SNR levels, fitted ATT values (pink
lines) have higher accuracy and precision than the other parameters. Estimated CBF values
(red lines) follow next, and, for the 3-parameter model, exhibit an accuracy of about [13, 7,
6, 5]% and a precision around [25, 13, 9, 7]% when SNR levels are [5 10 15 20],
respectively (Figures 4a, b). The accuracy and precision of the CBF values are slightly
higher with the 4- and 5-parameter models (Figures 4c–f), with no improvement when going
from 4 to 5 parameters. This higher accuracy and precision for CBF estimation from the 4-
and 5-parameter approach is expected since the data was generated using the 5-parameter
model. Both the 4- and 5-parameter models lead to estimated δa values with large
coefficients of variation, which reflect low precision (Figure 4d,f). Similar to the result of
another Monte Carlo simulation work (24), the estimated Kw values from the 5-parameter
model show poor accuracy and precision (Figure 4e,f).
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Experiments
In Figure 5, a representative 3D whole-brain dataset (31 yrs, female) is displayed of the
difference images (label-control, due to the 3 inversion pulses implemented post-labeling for
background suppression) acquired at multiple PLDs, with the acquisition resolution of 6.7 ×
7.4 × 7 mm3. The images are normalized to the maximum signal of the dataset. These data
clearly show the effects of a heterogeneous distribution of arterial transit times over various
brain regions. Little distortion or blurring effects are apparent in the different cross-sectional
views. Typical multi-PLD data points from a gray matter voxel in the temporal lobe and the
corresponding fitted curves obtained using the 2-, 3-, 4-, and 5-paramaeter models are
shown in Figure 6.

For each of the five ROIs in the gray matter (frontal lobe, temporal lobe, parietal lobe,
occipital lobe, and cerebellum), the averaged estimated values (CBF, ATT, R2 of fit, and
AICc of fit) among 10 healthy subjects using six model fittings are displayed in a bar-graph
(Figure 7). Table 1 lists the averaged CBF, ATT, T1,eff, R2 of fit, AICc of fit and BIC of fit
across all five ROIs of all the subjects for each model fitting, respectively, along with the
paired statistical comparisons between groups. The BIC values are very close to the
corresponding AICc values (Table 1) and are thus not shown in Figure 7. Across all regions,
the estimated CBF values using the 2-parameter model vary appreciably with the assumed
T1,eff values (Figure 7a, Table 1); Conversely, relatively consistent CBF values are produced
from the 3-, 4-, and 5-parameter models (Figure 7a, Table 1), similar to the Monte Carlo
simulation results (Figure 4). ATT values estimated from the 2-parameter model are also
slightly depend on the assumed T1,eff values, as contrast to the almost invariable results from
3-, 4-, and 5-parameter models (Figure 7b, Table 1). The R2 numbers always show better
goodness of fit using the 3-, 4-, and 5-parameter models than using the 2-parameter models
(Figure 7c, Table 1). The AICc numbers of the 3-parameter model are lower than both the 4-
and 5-parameter models (Figure 7d, Table 1) (P < 0.05), indicating its optimal balance
between goodness of fit and model complexity. Although the AICc numbers of most of the
2-parameter models are slightly lower than those of the 3-parameter model (Figure 7d, Table
1), the strong dependence of the CBF on assumed T1,eff values (Figure 7a, Table 1) makes
them suboptimal. From the proposed 3-parameter model, the averaged values are: CBF =
46±14 mL/100g/min, ATT = 1.4±0.3 s, and T1,eff = 1.9±0.4 s (Table 1).

The estimated maps of CBF, ATT, T1,eff, and R2 of fit using the 3-parameter model are
displayed in Figure 8 (excluding the bottom two and top two slices). Figure 8 shows these
maps in axial view, respectively, together with a co-registered MPRAGE image for
anatomical comparison. For each subject, CBF maps (Figure 8a) were found to be uniform
within the gray matter within each slice. CBF is lower in white matter than in gray matter
and shows a longer transit time as expected. The CBF values in the inferior and superior
slices are likely underestimated due to the imperfect slice profile of the slab excitation pulse.
The inter-subject variation of CBF (35–75 mL/100g/min, Figure 8) is typical for the low
SNR ASL measurement. ATT maps (Figure 8b) reflect the heterogeneity between different
brain regions. ATT values are about 0.3–0.7 s shorter in the temporal lobe and medial
frontal lobe, compared to the parietal/occipital lobes and cerebellum (Figure 8b). ATT is
also about 0.2–0.5 s longer in white matter than in gray matter. T1,eff values (1.2–2.5 s,
Figure 8c) are found overall higher than reported tissue T1 values, likely reflecting a
contribution from microvascular arterial blood compartment or from CSF partial volume
effects. The maps of the R2 of fit indicate reasonable fits in most cortical regions, but not in
deep gray matter and deep white matter areas (Figure 8d).

SNR evaluations were performed for acquisitions at 5 mm, 6 mm and 7 mm isotropic
resolutions, respectively, by calculating the ratio of the mean at the peak of the kinetic curve
of each ROI to the standard deviation of the noise at the same location in the noise images.
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Table 2 reports the systematic SNR of different ROIs averaged from six subjects at three
acquisition resolutions. As expected, lower spatial resolution leads to higher SNR. The
measured SNR values at about 7 mm isotropic resolution are higher than 20 across different
regions, suggesting acceptable accuracy and precision can be achieved at this resolution,
based on the Monte Carlo simulation results (Figure 4a,b).

DISCUSSION
We developed a whole brain quantitative CBF protocol that can be acquired in a short,
clinically-relevant time frame (~5 min). The protocol covers the whole brain to allow for a
broad range of applications, and it samples at multiple PLDs to obtain perfusion kinetic
curves from different brain regions that are adequate for quantification. A simple 3-
parameter model (CBF, ATT, T1,eff) was used for quantification, which took account of both
the arterial input function and the impulse response function.

Quantification Models
The multi-PLD approach, although requiring a longer acquisition time than the single-PLD
approach, allows more accurate quantification of CBF, by relying less on assumptions such
as an assumed ATT or impulse response function. The proposed 3-parameter model is also
much simpler than the other more complicated 4-parameter or 5-parameter models, and
offers the same level of accuracy and precision on estimating CBF and ATT (Figure 4). The
estimated ATT maps, in addition to being helpful for quantification for CBF, may also be
relevant to study the pathophysiology of cerebrovascular diseases.

The fitting of a single value of T1,eff as a characterization for the IRF is an approximation to
the complicated relaxation processes for labeled spins during a serial-travel through various
compartments (arteries, capillaries, tissue, veins) after arrival at the voxels. Single-
compartment models have previously described IRF with T1 of tissue (3,15,16) or arterial
blood (2). Although the treatment with predefined T1 for IRF is tempting, as it reduces the
model complexity, caution should be exercised to its validity.

As our current work indicate, the measured CBF values through the 2-parameter model
show considerable dependence on the assumed T1,eff values (Figure 7a, Table 1). In
different gray matter ROIs from our healthy subjects, the measured CBF values using the 2-
parameter model with T1,eff = 1.6 s or 2.0 s are closer to the ones from 3-, 4-, and 5-
parameter models with explicit IRF fitting, as compared to values using the other 2-
parameter model with T1,eff = 1.2 s (Figure 7a, Table 1). The estimated mean T1,eff value of
1.9 s in gray matter ROIs using the proposed 3-parameter model (Table 1) is a little longer
than the blood T1 value measured from the in vitro bovine blood (~1.7 s, (51)), but close to
the blood T1 determined in vivo (~1.9 s, (27)), both conducted at 3T. In addition, the
reduction of hematocrit in capillaries can be as low as 70% of that of the large arteries,
known as Fahraeus effect (52,53), which would at least counteract the gradual shortening of
the T1 relaxation due to deoxygenation in microvascular network, if not further prolonging
it. This suggests that the presence of labeled water within the blood appear to be the major
contributor to IRF. Another measuring T2 values of the ASL signal also demonstrated
significant effect within vascular compartment (18). Quantifications using assumed tissue
T1s may cause overestimation of CBF (Figure 7a, Table 1).

Use of a single blood T1 value for the IRF might provide reasonable quantification for
healthy subjects, as suggested by our data, whereas its clinical applications still warrant to
be further studied. For instance, certain vascular pathology or blood disorder, such as
arteriovenous malformation or sickle cell anemia, may be associated with much faster blood
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velocity or shorter mean transit time within the cerebrovasculature. This might increase the
contribution from the tissue compartment or the venous outflow in the IRF (1).

Although additional physiological parameters, such as arterial microvascular transit time
(δa) and exchange rate of water from capillary blood to tissue (Kw), are included in those
more sophisticated 4-, and 5-parameter models, our simulation results showed that it is not
feasible to accurately estimate these values with the typical SNR levels afforded by current
ASL techniques.

A model-free ASL quantification approach was applied before using deconvolution
algorithm based on locally estimated AIF (54). Accounting for variability in T1 values of the
IRF was also proposed before using Variational Bayes method (55).

SNR Measurement
The measured SNR values (Table 2) are relatively higher than reported in other studies
(17,37,56). This is in part due to the use of a larger voxel size (5 mm to 7 mm isotropic) and
a 32-channel receive coil. Another reason is the method by which the SNR is calculated. A
common method is to calculate the ratio of the mean value in a ROI in the tissue and the
standard deviation of a different ROI in the background. This approach suffers the spatially
variable noise level resulting from the parallel imaging reconstruction with the use of phased
array coils (57,58). In this work, a separate noise measurement was performed with an
identical acquisition protocol and RF pulses turned off. This is a more reliable way to
measure systematic SNR when using parallel reconstruction (57,58).

Alternative method measures SNR as the ratio of the mean value and the standard deviation
of the signal time course from a series of repeatedly recorded images. This also includes the
physiological noise, such as cardiac pulsation and respiration (59), which could be a
significant source of noise in ASL data. We did not utilize this approach due to the required
long measurement duration for repeating multiple times of our segmented 3D GRASE
acquisition, which could be sensitive to both subject motion and fluctuation of the brain
activity during the scans. The actual SNR present in our data, when accounting for both the
systematic noise and physiological noise, is expected to be lower than the values reported in
Table 2. With lower SNR within the acquired multi-PLD ASL data, the accuracy and
precision of the estimated CBF values using our proposed 3-parameter model would be
poorer (Figure 4a, b). It is certainly worth further investigation of respective contribution of
each noise source and practical methods to reduce physiological noise in ASL acquisition,
which is beyond the scope of this study.

Limitations
Compared to other ASL approaches, the current CBF measurement protocol has a lower
spatial resolution (~7 mm isotropic), which is close to the spatial resolution range in PET or
SPECT studies (60). This is to attain the required SNR in order to ensure acceptable levels
of accuracy and precision for the CBF estimation.

In this work, PCASL was chosen for labeling preparation. Although it provides higher SNR
than pulsed ASL, it suffers from lower inversion efficiency and sensitivity to off-resonance
and velocity effects (25). In future studies, a quick prescan for each subject to optimize this
efficiency parameter of the PCASL technique will help reduce systematic errors caused by
imperfect inversion (56,61). Another local parameter, in addition to ATT and T1,eff, is the
partial volume contribution of CSF, which needs to be measured and then corrected for
when quantifying CBF (62), especially for the elderly population.
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Lower SNR with some geometric distortion was observed in the inferior frontal lobe,
temporal lobe, and brain stem areas. We attribute this to the sensitivity of the EPI
component of the GRASE acquisition to B0 inhomogeneity in regions near the air cavities.

The proposed 3-parameter model assumes a single arterial transit time for each voxel, which
may not be true for the watershed areas of brain, where tissue is at the border zone between
arterial distributions. This may contribute to the poor fitting results in regions such as deep
gray matter, but a more likely factor that could also explain this is the lower SNR due to the
suboptimal 32-channel receive-coil sensitivity in midbrain regions. The AIF model used in
this work only considered delay, without taking account of dispersion as some recent papers
have performed (63–67), Further improvements of the proposed model by incorporating
dispersion is currently under investigation.

CONCLUSION
ASL signal changes are not only proportional to CBF, but also depend on the arterial input
function characterized by ATT and the impulse response function characterized by T1,eff.
We have developed a 3D whole-brain multi-PLD PCASL imaging protocol that can be
acquired on clinical 3T scanners in five minutes. Both simulation and human brain mapping
demonstrated a feasible 3-parameter model that renders simultaneous extraction of CBF,
ATT and T1,eff. The analysis of our multi-PLD data from healthy subjects indicate that both
the 2-parameter model using fixed blood T1 for T1,eff and the 3-parameter model provide
reasonable fitting results. The comparison in various cerebrovascular disorders is worth
further studying.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Abbreviation

CBF cerebral blood flow

ATT arterial transit time

IRF impulse response function

PCASL pseudo-continuous arterial spin labeling

GRASE the gradient- and spin-echo
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APPENDIX

4-Parameter Model
The IRF r(t) for the 4-parameter model with two serial compartments (microvascular arterial
and tissue) is:

[A1]

Here δa is the transit time of the blood in the microvascular arterial tree before entering the
tissue compartment.

The ASL signal, as the convolution between the AIF c(t) (Eq. [1]) and IRF r(t) (Eq. [A1]),
depends on the relationship between δa and τ:

When δa < τ,

[A2]

When δa ≥ τ,
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[A3]

This 4-parameter, 2-compartment model was first described using formulas with different
expressions (17).

5-Parameter Model
By adding on the microvascular arterial compartment to the 2-compartment (capillary bed
and tissue) Single-Pass Approximation model (22,29), the IRF r(t) for the 5-parameter, 3-
compartment model is expressed as:

[A4]

Here Kw is the exchange rate of water from capillary blood to tissue, and β = Kw / (Kw + 1/
T1,a − 1/T1,t).

The ASL signal, as the convolution between the AIF c(t) (Eq. [1]) and IRF r(t) (Eq. [A4]),
also depends on the relationship between δa and τ:

When δa < τ,

[A5]

When δa ≥ τ,
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[A6]

A more extensive model that includes all three compartments but classifies into four phases
has been described using formulas with different expressions (23).
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Figure 1.
(a) The Arterial Input Function (AIF) for continuous ASL is characterized by the
lengthening of ATT with the duration τ; (b) The Impulse Response Function (IRF) is
compared between the proposed 3-parameter model (3p), which assumes a monoexponential
decay function characterized with T1,eff, and the more sophisticated 4-parameter (4p) and 5-
parameter models (5p) (Appendix); (c) The perfusion-weighted kinetic curves are the
convolutions of AIF (a) with IRFs of the each model (b), respectively.
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Figure 2.
The dependencies of the 3-parameter model for continuous ASL on (a) CBF; (b) ATT; (c)
T1,eff.
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Figure 3.
Pulse sequence diagram for 3D mapping of baseline CBF. There are five blocks within each
repetition: PCASL (τ = 1 s), background suppression with one preset pulse (Tpresat = 1 s)
and four inversion pulses (timing as in Table 1), SPIR pulse, motion-sensitized T2 prep
(TEprep = 20 ms), and 3D GRASE acquisition (Tk = 120 ms). Twelve different PLDs ([0.5,
0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1, 2.3, 2.5, 2.7] s) were acquired separately for measuring
the perfusion kinetic curves.
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Figure 4.
Monte Carlo simulation results for 3-parameter (a, b), 4-parameter (c, d) and 5-parameter (e,
f) models, showing the error percentage of the mean (indicating accuracy) in the left column
and the coefficient of variation (indicating precision) in the right column, all as a function of
SNR. The precision and accuracies of the 3-, 4-, and 5-parameter models for estimating
CBF / ATT is comparable; Additional parameters (δa / Kw) in the 4-, 5-parameter models
are not estimated with acceptable precision.
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Figure 5.
Perfusion weighted images as a function of post-labeling delay, with a representative dataset
shown in three orthogonal views. Little distortion or blurring effects can be detected. The
images are scaled by the maximal difference signal in the dataset. A heterogeneous
distribution of arterial arrival times is visible for different brain regions.
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Figure 6.
Representative multi-PLD dataset (open circles) for one voxel in gray matter, fitted by the
proposed 3-parameter model (red solid line, the estimated values are: CBF = 52 mL/100g/
min, ATT = 1.3 s, T1,eff = 1.7 s, R2 of fit = 0.91, AICc of fit = 316, BIC of fit = 314) and
other models including: 2-parameter models with assumed T1,eff = 1.2 s (black dashed line,
CBF = 64 mL/100g/min, ATT = 1.4 s, R2 of fit = 0.86, AICc of fit = 317, BIC of fit = 317),
assumed T1,eff = 1.6 s (black dashdot line, CBF = 53 mL/100g/min, ATT = 1.3 s, R2 of fit =
0.91, AICc of fit = 312, BIC of fit = 312), and assumed T1,eff = 2.0 s (black dotted line, CBF
= 47 mL/100g/min, ATT = 1.3 s, R2 of fit = 0.9, AICc of fit = 314, BIC of fit = 314); 4-
parameter model (green dashed line, CBF = 49 mL/100g/min, ATT = 1.3 s, R2 of fit = 0.92,
AICc of fit = 319, BIC of fit = 315); and 5-parameter model (blue dotted line, CBF = 49
mL/100g/min, ATT = 1.3 s, R2 of fit = 0.92, AICc of fit = 325, BIC of fit = 318).
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Figure 7.
Bar-graphs of the averaged estimated values using six model fittings: (a) CBF, (b) ATT, (c)
R2 of fit, and (d) AICc of fit, for each of the five ROIs in the gray matter (frontal lobe,
temporal lobe, parietal lobe, occipital lobe, and cerebellum), among 10 healthy subjects.
Error bars reflect the standard errors across subjects.
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Figure 8.
Maps of (a) CBF, (b) ATT, (c) T1,eff, and (d) the correlation coefficient of the fit, R2. The
data show very good fits overall. Co-registered MPRAGE images (e) and segmented gray
matter partial volume estimation (pve) (f) are also shown for anatomical comparison.
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