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Semaphorins are cell surface proteins sharing an extracellular Sema motif that binds to
plexin family receptors, among others [1]. We have shown previously that Sema4D is
expressed by platelets, serving as a contact-dependent amplifier of platelet activation by
promoting activation of the tyrosine kinase, Syk, downstream of the collagen receptor, GP
VI/FcRγ [2–4]. Deletion of Sema4D impairs thrombus growth in mice by reducing the
number of fully-activated, stably-adherent platelets in the region closest to the vessel wall
[5]. Sema4D(−/−) platelets have diminished responses to collagen, but normal responses to
thrombin, TxA2 and ADP [2, 4]. Collagen-induced Syk activation and the subsequent
activation of phospholipase Cγ2 are most robust when Sema4D is present and platelets are
allowed to form stable contacts [4].

These observations have helped to define the role of platelet Sema4D. In the setting of
vascular injury, Syk is activated by binding to a phosphorylated immunoreceptor tyrosine-
based activation motif (ITAM) in FcRγ. However, while our previous studies show that
Sema4D does not amplify G protein-dependent signaling, left unsettled was whether signal
amplification is specific for GPVI or applies to other ITAM receptors as well. Here we have
addressed that issue. Human platelets express two other ITAM-containing receptors, Clec-2
and FcR-IIA. Mouse platelets express Clec-2 [6]. Unlike GPVI/FcRγ and FcR-IIA, Clec-2
contains only half of an ITAM motif or “hemi-ITAM” (YXXL). Signaling occurs when two
molecules of phosphorylated Clec-2 engage a single molecule of Syk [6, 7]. The known
Clec-2 ligands are the snake venom toxin, rhodocytin [6] and podoplanin. Podoplanin/
Clec-2 interactions play an essential role in separating the lymphatic and vascular systems
during embryonic development [8–10].
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Reagents and procedures
Rhodocytin was purified from Calloselasma rhodosoma venom [11]. Two separate batches
differing somewhat in potency were used for these studies. Anti-phosphotyrosine (4G10P;
Millipore, Billerica, MA), anti-Syk (N19; Santa Cruz Biotechnology, Santa Cruz, CA), anti-
Clec-2 (17D9; Abcam, Cambridge, MA), and anti-phospho-Syk Y519/520 (Cell Signaling,
Danvers, MA, USA). Lec3.2.8.1 CHO cells stably expressing hSema4D (1–657) containing
a C-terminal His tag [12] were provided by Dr. Yvonne Jones (University of Oxford).
Sema4D(−/−) mice [13] were backcrossed onto a C57 BL/6 background for >10 generations.
Comparisons were made with mice obtained from heterozygous crosses. Platelet isolation.
Blood was collected from the inferior vena cava of anesthetized mice. Platelets were isolated
by centrifugation and resuspended in modified Tyrode’s buffer. Immunoprecipitation and
immunoblotting. Platelets were lysed with buffer (1% NP-40, 50 mM Tris, 150 mM NaCl, 1
mM EDTA) containing protease (Sigma-Aldrich) and phosphatase inhibitors (Calbiochem,
San Diego, CA). Immunoprecipitation and immunoblotting were performed as described [4].

Loss of Sema4D expression produces a defect in rhodocytin-induced
platelet aggregation that can be reversed with recombinant Sema4D

As others have noted, rhodocytin has a steep dose response curve [14]. Decreasing the
concentration delays the onset of aggregation without markedly affecting the extent of
aggregation (Figure 1A&B). Loss of Sema4D yielded a defect that could be overcome by
raising the rhodocytin concentration (Figure 1B&C) or adding soluble Sema4D (Figure
1D&E). We next examined rhodocytin-induced Syk phosphorylation. In WT platelets,
phosphorylation increased as the platelets began to aggregate (Figure 1F). This increase was
blunted either by omitting stirring or by blocking aggregation with the αIIbβ3 antagonist,
Integrilin, indicating that Clec-2-dependent Syk phosphorylation, like GPVI/FcRγ-
dependent Syk phosphorylation, is contact-dependent (Figure 1G). Consistent with the
aggregation studies, maximal Syk and Clec-2 phosphorylation were delayed in the absence
of Sema4D (Figure 1F, H&I).

Thus, our studies show that Sema4D supports maximal Syk phosphorylation downstream of
Clec-2 in a contact-dependent manner, just as it does for GPVI/FcRγ [4]. Notably, however,
there are differences as well as similarities between Clec-2 and GPVI/FcRγ. As already
noted, GPVI/FcRγ forms a 1:1 complex with Syk, while Clec-2 has a modified ITAM and
forms a 2:1 complex. GPVI/FcRγ is phosphorylated by Src family members [15], while
Clec-2 is phosphorylated by Syk in a positive feedback loop following rhodocytin-induced
receptor clustering [14, 16]. Although we observed previously that GPVI/FcRγ
phosphorylation occurs normally in Sema4D(−/−) platelets [4], here we found that loss of
Sema4D impairs Clec-2 phosphorylation as well, presumably because of the involvement of
Syk.

In summary, these results indicate for the first time that optimal Syk activation downstream
of Clec-2 , like optimal activation downstream of GPVI, is dependent on contacts between
platelets and on Sema4D. The observed reduction in Clec-2 signaling in the absence of
Sema4D reflects a decrease in both Clec-2 phosphorylation and Syk activation. Collectively,
these results suggest that the contribution of Sema4D in platelets applies to ITAM-
containing receptors as a class, and is not limited to GPVI/FcRγ.
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Figure 1. Platelet responses to rhodocytin in the absence of Sema4D
(A&B) Platelets from Sema4D(+/+) (WT) and Sema4D(−/−) mice were stimulated with
rhodocytin at time zero. (C) Mean ± SEM, N≥5. N.S. = not significant. (D&E) Sema4D(−/−)

platelets were preincubated with 80 µg/ml recombinant Sema4D (rS4D) for 10 min at room
temperature and stimulated with 4.3 nM rhodocytin at time zero. Mean ± SEM, N=6. The
dashed line indicates the time to half-maximal aggregation for WT platelets rhodocytin for
comparison (from Figure 1C). (F) Platelets were stimulated with 8.9 nM rhodocytin with
stirring. The extent of aggregation is indicated at the bottom of each lane. * refers to
platelets that have changed shape but have no measurable aggregation; ** platelets that have
completed shape change and just begun to aggregate. Proteins were precipitated with anti-
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Clec-2 and immunoblotted with phosphotyrosine antibody, 4G10P. Lysates were also
probed for Syk phosphorylated on Y519/520. (G) WT platelets were incubated with 10 µM
Integrilin for 10 min followed by 8.9 nM rhodocytin for 150 sec with or without stirring as
indicated. Lysates were probed for phospho-Syk. N=3. A representative immunoblot is
shown. (H) Platelets were activated with 8.9 nM rhodocytin under stirred conditions. Syk
phosphorylation was detected with anti-pSyk. Mean ± SEM, N=3. (I) Platelets were
activated under stirred conditions with 8.9 nM rhodocytin. Phosphorylation of Clec-2 was
detected by immunoprecipitating with anti-Clec-2 and blotting with 4G10P (N=3).
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