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Abstract

Huntington’s disease (HD) is a neurodegenerative disorder with a dominant genetic mode of
inheritance caused by an expansion of CAG repeats on chromosome 4. Typically, a longer
sequence of CAG repeat length is associated with increased risk of experiencing earlier onset of
HD. Previous studies of the association between HD onset age and CAG length have favored a
logistic model, where the CAG repeat length enters the mean and variance components of the
logistic model in a complex exponential-linear form. To relax the parametric assumption of the
exponential-linear association to the true HD onset distribution, we propose to leave both mean
and variance functions of the CAG repeat length unspecified and perform semiparametric
estimation in this context through a local kernel and backfitting procedure. Motivated by including
family history of HD information available in the family members of participants in the
Cooperative Huntington’s Observational Research Trial (COHORT), the methodology is
developed in the context of mixture data, where some subjects have a positive probability of being
risk free. We also allow censoring on the age-at-onset of disease and accommodate covariates
other than the CAG length. We study the theoretical properties of the proposed estimator and
derive its asymptotic distribution. Finally, the proposed methods are applied to the COHORT data
to estimate the HD onset distribution using a group of study participants and the disease family
history information available on their family members.
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1 Motivating Study and the Existing Model

1.1 Huntington’s Disease Study

Huntington’s disease (HD) is a severe hereditary neurodegenerative disorder caused by an
expansion of CAG repeats at a gene on chromosome 4 that codes the protein named hunt-
ingtin (Huntington’s Study Investigators 1993 [1]). Typically neurological and physical
symptoms express around 30-50 years of age in affected individuals, although sometimes
the symptoms can develop much earlier (pre-teen) or much later in life (in the 80s; See for
example, [2]). Patients eventually die from complications such as pneumonia, heart failure,
or other complications, usually 15-20 years after the disease onset although the duration of
the disease also varies depending on the onset age [3]. Clinical studies suggest that an
individual with a CAG repeat length (denoted as X) smaller than 36 is risk free of HD (no
risk of developing HD at any given age; [2, 4]). Otherwise, for an individual with CAG
repeat length greater than or equal to 36, the CAG length is an important factor that is
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inversely correlated with the age-at-onset (AAQ) of HD (denoted as T), where subjects with
longer stretches of CAG repeat length tend to have earlier onset.

To further study the association between CAG length and the onset time of HD, various
large epidemiological studies on HD were conducted worldwide. One particular study is the
Cooperative Huntington’s Observational Research Trial (COHORT), an observational study
organized by 42 Huntington Study Group research centers in North America and Australia.
In COHORT, the initial participants (probands) undergo a clinical evaluation where blood
samples are sequenced for CAG repeat length [5]. Since 2005, the study has expanded to
collect family members’ morbidity and mortality information (e.g., AAO of HD) through
systematic family history interviews administered to the probands [5, 6]. However, due to
the high cost of conducting in-person interviews of family members, the blood samples of
the family members were not collected. This kind of studies are referred as kin-cohort study
in [7]. The COHORT study with family history data can be classified as a kin-cohort design.
A complexity arising from COHORT is that whether a relative shares the same CAG
expansion status with a proband (e.g., whether a child has inherited the mutation allele with
CAG expansion from a parent) is not available. Instead, we can obtain a relative’s
probability of carrying a mutation allele, which is calculated through Mendelian law using
the relative’s relationship with the proband and the proband’s mutation status (e.g., Section
8.4in [8]; and [9, 10]). This calculation yields a probability p (0 < p < 1), indicating the
probability that the relative shares the same mutation allele as his or her proband so that the
relative’s CAG repeat length is the same as the proband, and he or she is at risk of HD. For
example, parents, children and siblings of an at risk proband have at risk probabilities of p =
0.5 under the Mendelian law. Thus the relative has a probability of 1 — p = 0.5 to share the
normal allele with his or her proband, in which case the relative will have a CAG length
value < 36 and will not be at risk of HD. We assume that the CAG repeat length does not
change in the gamete transmission process, i.e., a child will inherit an expanded allele with
the same repeat length from a parent. This assumption is used in literature [6], and
implications of this assumption are discussed in Section 5.

Another complexity arising from the COHORT study is that HD onset time is not observed
for all study subjects, and some study subjects are censored because of loss to follow-up or
death due to other causes before developing HD.

1.2 Existing Model

The functional form of the association between the onset time T and CAG repeat length X
has been debated in the clinical literature and multiple parametric models have been
proposed [11, 12]. Currently, the accepted model captures the relation between the AAO of
HD and the CAG length through a logistic link and assumes that the CAG length affects
both the mean and the variance components of AAO through an exponential-linear form in

[11]. Specifically, the model specifies the conditional distribution £ (¢, z) def pr(T<t|X=z)
as

1
Tre—tt—n@is@: M

F(t,z)=

where

p(x)=p1+exp(pa—psz), s(z)= \/U1+exp(a2—a3z),
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and yu, 1, 13, 01, 0, o3 are six unspecified parameters to offer model flexibility and will be
estimated from data.

Although (1) is the accepted model in the current clinical literature for describing the
association between CAG length and HD onset, it does impose some rather strong
assumptions. For example, the specific functional forms of both the mean and variance are
pre-specified to be exponential-linear, which can be an advantage if they happen to reflect
the true biological relationship between CAG length and onset time, but can also be
misleading otherwise. In addition, this global parametric model may not fit well for certain
ranges of the CAG lengths and ages (e.g., for smaller CAG length values; [11]). At the
values of yj and ¢; (i = 1, 2, 3) fitted using data from [11], the corresponding additive and
multiplicative coefficient functions for t has the form

1

F(t? m): 1+e—a2(m)t—a1 (z)

@

where, using the relation aq(x) = — u(x)/s(x), ax(x) = 1/s(x), we get

o ()=—m/ V/3{21.54+exp(9.56—0.146z) H{35.55+exp(17.72-0.327x)} ~1/%,
a()=r/ /3(35.55-+exp(17.72-0.327a)} V2,

Thus a1(x) is not a monotonically increasing function of x (see Figure 1, upper-left plot). As
a result, for some t values, such as t < 22, F(t, x) is not an increasing function of x (see
Figure 1, lower-left plot). This may not agree with the clinical conjecture that greater CAG
expansion length increases the risk of HD at a given age, i.e., F(t, x) is an increasing
function of x at a fixed time point t. While it is still unclear whether the clinical impression
is fully supported by data, the assumption that an exponential-linear functional form in both
the mean and variance captures the true CAG length effect on HD onset globally in the
entire range of x and t can be strong. It may be desirable to relax this parametric model
assumption, by using a more flexible nonparametric or semiparametric model that is capable
of fitting local changes in certain ranges of x. In addition, no covariates other than CAG
length are modeled in (1).

2 Proposed Model and its Estimation Procedure

Due to restrictions of a parametric model, we propose to relax the specification of CAG
length effect to nonparametric functions by leaving both a4(x) and ay(x) in (2) unspecified.
Since F(t, x) is a cumulative conditional distribution function, it is required to be an
increasing function of t at any value of x. To satisfy this assumption, the slope ay(x) should
be positive. This can be taken into account through a reparameterization such as writing
exp{as(z)} instead of ay(x) with the aim of estimating o (). However, in our numerical
experiments reported in Sections 3 and 4, such reparameterization does not seem necessary
since ay(X) is estimated to be positive without any constraints. Thus, throughout this article,
we simply consider ay(x) directly. In addition, if the clinical consensus that higher CAG
length values are associated with earlier onset times is to be enforced, a;(xX)+ ax(x)t should
be an increasing function of x for any possible HD onset time t. However, we estimate a;(X)
and ay(x) without forcing the monotonicity constraint. Thus, the resulting fitted functions
under the more flexible model can serve as empirical evidence on whether or not the clinical
consensus holds.
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To express model (2) on the logit scale, note that
logit{F'(t, z) =0 (z)+az(x)t,

which is a logistic model with varying coefficients. Thus, although our problem is motivated
by relaxing the parametric model in [11], it is very general and is applicable to modeling
distribution of other disease onset as well. Under this varying-coefficient logistic model,
other patient-specific covariates such as gender or baseline symptom severity measures can
be easily introduced. Since these covariates are not of primary interest and misspecification
of their functional form is less of a concern, we can simply use several linear terms to
capture their effects. Collecting these additional covariates into a vector Z, we can extend
model (2) to a partially linear varying-coefficient logistic model

1
itz 28,0 = —mmraen waraer ©

T
where 8= (51T, [32T) and a(x) = {a1(x), ax(x)}T are unknown parameters and functions to
be estimated from data.

2.1 Likelihood and Estimation

To introduce the likelihood, we start by defining some notation. We use C to denote the
censoring time and use fc(c, X, z) and F¢(c, X, z) to denote the censoring probability density
function (pdf) and cumulative distribution function (cdf) conditional on the covariates (X,
Z). We assume the censoring to be conditionally independent of HD onset time given a set
of covariates. Let A = I(T < C) and Y = min(T, C). We denote the ith observation as (pj, X;,
Zi, Yi, A). Here pj is the probability of the ith subject having an expanded CAG calculated
from the relation between the proband-relative relation, and is known. We use pj = 1 or p; =
0 if the ith subject’s CAG expansion status is certain. Taking into consideration the
uncertainty in a relative’s CAG expansion status and censoring, the likelihood is

L{B, a(-)}zli[pif{n Xi, Zi, B, o X) Y)Y [1=pi F{Y:, X, Z3, B, ol X)) {1=FL (Y3, Xy, Z0) Y o (Vi X0, Z0) 20 f

x ﬁ f{}/zaXu Z“B,(X(XZ)}AL[l—plF{Y;,Xl ZiaIBa a(Xi)}]liAia
=1

where F{y, X, z, B a(x)} is given in (3) and

OF{t,z,z.3,c
f{t7 x, z, 67 a(m)}:w
:e*{zTﬂ2+L‘2(I)}L*{zTﬁlﬁLul<”‘>}{zTﬂ2+a2(z)} .
[14e—{=TBo+as@h—{=T81+a1 (0)})

Due to the inclusion of unspecified nonparametric functions a(x), directly maximizing the
above likelihood is difficult. Thus, instead of using the maximum likelihood estimator
(MLE) or nonparametric MLE, we propose the following backfitting procedure based on
local kernel smoothing estimator of a(x). Let the score function with respect to fbe
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Y, Xi, Z;, B, a( X;) }

SV, X;, Zi X))V =A, .
oi¥e Xi 23, B, (X)) 1-piF{Y:, Xi, Z;, B, a(X;) }

(1-4;)

Replace a(X) with a = (ay, ap) T locally at X = xg, and let the score function with respect to a
be

8f(5/'le7 Zin@aa)/aa_

OF(Y;, X;, Z; 0
Sa(}/hXiaZinBaa’):Az bi (Z’ zaZ“ﬁva)/ °
f(Y;»Xivzia/Baa)

{l_sz(}/lev Zzaﬁv a)}

(1-4y)

The backfitting procedure consists of iterating between the following two steps.

1. Obtain ,Bat a fixed a(-) through solving

0=) Sp{Yi, Xi, Zi, B, &(X;)}.
=1

2. Obtain a(Xo) at Xg = X, ..., Xy at a fixed Bthrough solving

OZZKh(Xi_zO)Sa(K7 Xia Zi7 87 a’)'
i=1

Here K(:) is a symmetric kernel function, h is a bandwidth and Ky, (x) = K(x/h)/h for
any bandwidth h.

The above two steps can use the MLEs as starting values by treating a(x) as constants, and
is iteratively performed until convergence is reached. This type of backfitting method adopts
the local constant idea for the nonparametric estimation of a;(-) and ay(-). When desirable,
more sophisticated methods such as local polynomial can also be used. Note that in the
second step, the maximization is repeatedly performed for n different xq values, thus the
computation can be quite involved.

2.2 Asymptotic Properties

To study the asymptotic properties of the backfitting estimator, we first define some
notation. Let Sy be the partial derivative of Szwith respect to B, Sg, be the partial derivative
of Spwith respect to a, S, be the partial derivative of S, with respect to @ and S be the
partial derivative of S, with respect to 8 Also define Q(X) = E[S,{Y, X, Z, B a(X)}IX], az
(X) = —QX)E[S LY. X, Z, B a (X)}X] and U(X) = E[Sp{Y, X, Z, B a(X)}X]QX) L.
Furthermore, define

F=E[Sss{Y, X, Z, 3, a(X)}4+5p.{Y, X, Z, B, a(X) }exp (X)].
Then we have the following results.

Theorem 1—Assume}hat the bandwidth h satisfies nh* — 0 and nh?2 — oo. Then the
backfitting estimator g has the asymptotic expansion
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—3‘\”1/2(,@—[3)27171/22[5&{%,Xz'vZm@aOé(Xi)}—U(Xi)Sa{Yi,XuZiﬁ,Oé(Xi)}HOp(l)- ()
=1

Hence, nY/2(8= p) is asymptotically normally distributed with mean zero and covariance
matrix 'Y 7, where X = cov [S{Y, X, Z, B a (X)} = UX)SAY, X, Z, B a(X)}].

Remark 1—In Theorem 1, the requirement that nh* — 0 is the undersmoothing condition
typically required for backfitting, and a direct consequence of the bias of the local constant
estimator. The undersmoothing requirement does not lead to difficulty in practice because
we can easily rescale a selected optimal bandwidth hop to obtain the undersmoothed

bandwidth h:hif,f. In addition, the estimation of gis often insensitive to the bandwidth

choice. There are various methods proposed in the literature to avoid undersmoothing as
well, including using a projection augmentation on Sy or profiling, see Van Keilegom and
Carroll (2007) [13] for details.

Remark 2—There are various possibilities to perform inference about £in our context.
Note [14] describes conditions under which the bootstrap will be asymptotically valid for
backfitting estimators. Alternatively, one can use the asymptotic results given in Theorem 1.
This entails approximating the terms in 7 and X by their sample versions. Specifically,

F=nVY" (8ps{Yi X, Zi, B &(X0)}+Spa{Yi, X, Zi, B, &(X:)}@5(X)] and
Z:n_lzjzl[sﬂ{}/ia Xia Zia /87 a(X)}—U(X)Sa{Y'“ Xia Ziv B? a(X)}]®2 Here and
throughout the text, a®? stands for agT for any vector or matrix a. In these calculations,
agX) :A—Q(X)_llé[Sa/;{YA, X, Z, B a(X)}X], O(X) = E[Sp{Y. X, Z, B a(X)}X]2(X) ™! and
Q(X) = E[SoLY, X, Z, B a (X)}X], where all the conditional expectations are estimated
nonparametrically.

Since our main interest is in estimating a (-), after obtaining the root-n consistent estimator
B we need to perform an additional nonparametric estimation step using the usual
bandwidth to obtain the final estimates for a(X). Because Theorem 1 guarantees the root-n
rate for £, which is faster than the nonparametric rate, hence the final a(X) has the same
classic bias and variance properties of the standard nonparametric estimator under a known
B. We state the asymptotic property of a(:) in Theorem 2.

Theorem 2—Assume that the bandwidth used in the last local linear estimation step is h,
and h = O(n™1%). Then a(x, p) satisfy

~

a(z, B)—a(x)

—W2E{S.(Y, X, Z, 5,a)|x}*1‘12[’5{5“(’2”});’2@’;2"”}& @l 2 g (1)at

i=1

_E{Sa,a,(}/a Xa Z’67a>|$}_1w

+o(h?)+o,{(nh)"'/?}.

Thus, it has bias
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L d{B[SAY. X, Z, B, a(X)}| X =1]f, (=)}

bias{a(z)}=—h*Q(x) 2f. (z)dz?

[t2K (t)dt+o(h?)

and variance

cano JEEOd
var{a(z)}= iz )Q( )+o{(nh) ™'},

Remark 3—Once the estimation ofﬂénd ais obtained, we can plug these estimates in (3)
to obtain the estimation of the distribution of the onset time, F{t, x, z, a(x)} Using the
delta method and considering that a(x) converges at a slower nonparametric rate than g, we
can easily obtain that F{t, x, z, £ a(x)} estimates the true distribution function F{t, x, z, S,
a(x)} with leading order bias

OF{t,z, z,3, a(z)}
da(z)T

bias{a(x)}

and leading order variance

OF{t,z,z,3,a(z)}
Ba(:c)T

var{a(x)} ortt, E;Zf)’ )} )

where bias{a(i)} and var{a&)} are given in Theorem 2. Thus, the distribution function is
also estimated at the classical nonparametric rate as if Swere known.

3 Simulation Study

We conducted simulation studies to investigate the finite sample performance of the
proposed estimators. Two simulations were conducted with sample size n = 4000 and
repeated 1000 times. Here n = 4000 is the approximate sample size in the COHORT study.
We generated the standardized CAG length values X from a uniform distribution between 0
and 1. In many clinical studies of HD, additional information such as gender, inheritance of
CAG expansion through mother or father, verbal fluency score, and presence of psychiatric
symptoms, type of relatives (e.g., parents, siblings, and children) are also recorded [15].
Thus, in the simulations we generated four additional covariates to form Z, where two are
continuous and two are discrete. Specifically, Z; is generated from a uniform distribution
between [-0.5, 0.5], Z, is generated from a uniform distribution between [-1, 1], Z3 is
generated from a Bernoulli distribution with probability 0.5 to be one, and Z4 is generated
from a Bernoulli distribution with probability 0.4 to be one. Our at risk probability p is
generated from a Bernoulli type distribution, where p = 1 with probability 0.3, and p = 0.5
with probability 0.7. This is approximately the distribution of the at-risk indicators in the
COHORT data. We generated the HD onset time following two different models. The first
model is the model in [11] presented in (2), while the second one has the true a functions
being
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aj(z)=5log{(1+z)}, aa(z)exp{sin(rz—m/2)+0.1}.

Note that the second model thus has monotonically increasing a(x) functions. We further
generated the censoring times from uniform distributions for both models, so that the
censoring rate is approximately 65%, again reflecting the scenario of the COHORT study
data structure.

The simulation results for #and a are provided in Table 1 and Figure 1, respectively, where
the bandwidth is chosen via cross-validation, i.e., maximizing

n

Z (Ailog[f{yi7 Xi, Zi, B, a_i( X, h)H4+(1—A)log[1—p; F{Y;, X5, Zi, B, a (X, h)}])

i=1

as a function of h. Here a_Ai(Xi, h) means we estimate a(x) at x = X; using bandwidth h and
all the data except the ith observation. From the results, we can see that in both models, the
nonparametric modeling allows us to retrieve the shape of the a functions reasonably well,
and the estimation of Shas small bias. It is interesting to note that the estimation procedure
in the second simulation model seems to perform better than in the first model, in the sense
that the biases are much smaller across all parameters in gin model 2. In addition, the
estimation variance is smaller in absolute value in model 2 for all #components that appear
in the intercept term, and are also smaller in relative value for all #components that appear
in the slope term. Furthermore, the biases and confidence bands for a are also narrower in
simulation model 2. The similarity between the mean and median of the estimates for g, as
well as between the standard deviation, mean absolute deviation and median absolute
deviation indicates that the computation in both models are quite stable.

4 Application to COHORT Data

We now analyze the COHORT data which motivated this work. As introduced in Section 1,
COHORT is an observational study collecting genetic (e.g., CAG repeat length) and clinical
data on symptomatic and pre-manifest HD patients (probands), and clinical data on their
family members and care givers. In the COHORT study, ascertainment of probands does not
depend on family history [5]. The probands include subjects clinically diagnosed with HD or
subjects who pursued genetic testing prior to baseline, carry an CAG expanded allele, but
did not have clinically diagnosed HD. It is known that HD is a dominant genetic disease,
(e.g., having one expanded allele is sufficient to cause HD) [16]. Subjects with a CAG
repeat length = 36 are considered to be HD mutation positive and have highly elevated risk
of developing the disease, while subjects with CAG repeat length < 36 do not develop HD
[2, 17, 18]. In this analysis, each proband participant has his or her CAG repeat value
between 41 and 56 (hence at risk of HD with the at risk probability p = 1).

For family members of the proband, as discussed in Section 1, no blood sample was
collected. Thus for those who have not experienced HD, it is unknown whether they share
the same mutation allele with the proband. Family members’ HD onset information was
collected through a family history interview administered to the probands. All the first-
degree relatives with available family history information are included in the analysis. These
relatives are not selected based on their HD status or possible mutation carrier status, so
there is little obvious ascertainment issue for including relative data. There are 34% parents,
38% siblings and 28% children. The distribution of the at risk probabilities in the whole
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sample is 1196 individuals having p = 1 and 2768 having p = 0.5. This yields 3964
observations. Here, we assume that inclusion of a family member in the study is independent
of the family member’s risk status. Note that among the 1196 individuals, some are relatives
who developed HD, hence we can obtain their CAG status under the assumption of no
interference and thus they share the same repeat length as their probands. The onset times in
the COHORT data range from 11 to 82, with a censoring rate about 19% in probands and
62% overall. Some of the relatives are censored if they have not experienced HD at the time
of family history interview. The censoring rate in family members depends on the relative
type. Since children are younger, they are more likely to have not experienced HD
especially children of probands with shorter CAG repeats. We account for the covariate
gender by including it in Z.

We analyzed the COHORT data using model (3) and the method described in Section 2.2,
with the bandwidth 1.33, selected through a cross-validation procedure. The estimated a(x)
and their confidence intervals are provided in Figure 2. We can see that the estimation of
a(x) is much more reliable for CAG length value x < 48 than for CAG length value x = 48.
This is because the majority of the COHORT observations contain relatively small (< 48)
CAG length values. Although the slope function (i.e., ay(x)) exhibits an increasing trend, it
is not sufficient to confirm that it is indeed monotone especially in the large CAG length
region, where the estimation variability is very high. At the onset time ranging from t = 15 to
t = 80, the intercept and slope functions translate to a set of functions ay(x) + ax(x)t, which
appear to show an increasing relation with x for x between 41 and 50, while they then
slightly deviate from this trend for a CAG length value beyond 50. This suggests that in
general the cumulative risk of HD onset by age t increases with longer sequence of CAG
repeat length across different values of t.

Comparing the estimated intercept and slope functions with the plots in Figure 1 with
parameters fitted in [11] suggests that the intercept and slope components can be different
from what are estimated from the nonparametric method here. To better compare the
parametric model of [11] and our nonparametric model, while eliminating the effect of using
different data, we re-fit the exponential linear model (1) with the COHORT data stratified by
gender. The fitted parametric functions are

1(z)=16.924-exp(7.90—0.103z), s(z)= \/44.49+exp(13‘64—0.225m)

for females, and

p1(2)=19.08+exp(8.73—0.125z), s(m):\/12.40+exp(13.63—0.2131)

for males. In the left panel of Figure 3, we plot the estimated cdf, F(f, X), as a function of t at
different values of CAG repeats x using both the parametric and nonparametric methods in
females. The figures for males show similar trend and are therefore omitted. Comparing
results obtained under a nonparametric model with that of a parametric model, we see that at
a given CAG repeat length, the shapes of the estimated cdfs are similar, which is expected
since at each value of x, model (1) belongs to the class of nonparametric/semiparametric
models used here. However, we do not assume a parametric relationship of F(t, x) across
different values of x, and therefore our model is less restrictive. The fitted values of the cdfs
differ, especially for higher CAG length values (left curves). The largest difference appear to
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be when the CAG repeat length is 54, where the cumulative risk is estimated to be slightly
higher with the nonparametric method than the parametric method.

The right panel of Figure 3 shows F(f, X) as a function of CAG repeats x at different values
of age t. It is clearly seen from the figure that the CAG length has a larger influence on
cumulative risk for the middle age range (e.g., between 25 and 65). By age 75, almost all
subjects with a CAG length greater than 40 will develop disease regardless of their actual
CAG repeats (cumulative risk approximates 100%). By age 65, subjects with a CAG length
greater than 45 will develop disease. At the ages plotted in Figure 3, the parametric model
imposes a constraint of F(t, x) being an increasing function of x. Although there is such an
increasing trend in general, it is not necessarily supported by the data at certain local ranges,
especially for younger ages such 15, 25 and 35 (lower three curves) as shown from fitting a
more flexible semiparametric model; for certain ranges of CAG repeat values, the
cumulative disease risk F(t, X) may be a constant and does not necessarily increase with x.
Therefore the impression that a longer sequence of CAG repeats increases risk of disease at
any given age does not necessarily hold and needs to be investigated further in future studies
especially in the population with more extreme lengths of CAG repeats.

In the right panel of Figure 3, there seems to be a plateau effect for large t. This is due to the
nature of cumulative risk function F(t, x) for HD subjects with expanded CAG repeats. It is
suggested that most subjects at risk of HD will develop the disease by a certain age
regardless of the CAG repeats length. Therefore, when tis large, say t = 75, F(t, x)
approaches one quickly for any fixed x, and creates a visual plateau effect.

Regarding the gender effect, our analysis shows an estimate of ,BlA= 0.3387, ﬂ{= —0.0055,
with the standard errors 0.3517 and 0.0078 respectively. This indicates that gender is not a
significant risk factor for HD onset, which agrees with the current clinical literature.

5 Discussion

We have developed a flexible partially linear varying-coefficient model under the logit link
function to model the onset of Huntington’s disease. Existing parametric models are
parsimonious and efficient if the functional form is correctly specified. However, in practice
there is usually not sufficient biological information to suggest a particular parametric model
to be correct. For example, the logistic-exponential model with six parameters [6] may be
somewhat arbitrary. In contrast, the nonparametric approach proposed here is more flexible
and not subject to model misspecification. It is also useful for revealing the underlying
functional relation and constructing goodness-of-fit test for parametric models. The
proposed methods here are sufficiently general to be applied to other known link functions
through a similar backfitting maximization procedure. The methods account for random
censoring and take advantage of the family history of disease information reported by the
study participants without requiring the mutation status of the family members to be known.

Here, we assumed Mendelian transmission of CAG repeat length without interference so
that the CAG length does not change from parents to offspring. In reality, CAG lengths can
vary somewhat among family members, and those with paternal inheritance have, on
average, a slightly longer stretch of CAG repeats than their fathers. A possible explanation
may be that there are many more biological opportunities for the CAG repeat length to
change in a paternal process of sperm formation than in a maternal process of egg formation
[6]. Although these processes have been studied extensively [19], there is no validated
population genetics models for such processes. Assuming the CAG length does not change
from father to offspring may lead to a slightly lower estimated risk for affected fathers of
probands. The transmission from mother to offspring is thought to be more stable [19].
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Our methodology relies on the assumption of no ascertainment bias in recruiting probands.
All the estimation and inference are developed under this assumption. The issue of
ascertainment bias is best treated in the sampling design stage (e.g., selecting a random
sample of probands from the population), and adjusting for potential ascertainment bias in
the estimation stage needs to be treated separately. The COHORT study did not recruit
probands through a positive family history, which avoided one of the major sources of
ascertainment bias.

There are several reasons the estimated cdfs obtained here are different from [11] other than
that we do not assume an exponential-linear form of logit {F(t, x)}. The age-at-onset (AAO)
for probands in COHORT is age-at-diagnosis of HD, while in [11] it was earliest age at
which a clinician observed an irreversible objective sign of the illness. This may occur
earlier than the point at which an actual diagnosis of manifest HD is given. Thus, the two
versions of AAO may be slightly different. Furthermore, here we included family history
information in the relatives in the analysis, whereas [11] focuses only on proband
participants. Also the AAO for the family members in COHORT study is the AAO of the
first symptom of HD, potentially reported by a subject, not necessarily by the clinician.
Although including family members’ age at onset data increases the sample size, a practical
limitation is that relative data may be less reliable than the data directly collected from the
probands. Thus, if additional information can be obtained to ascertain the potential
uncertainty involved in a relative’s age at onset information, then further analysis
incorporating such randomness can be pursued.

Lastly, we present some final remarks about the COHORT data analysis. One reason that
prevents us from concluding that a larger CAG length value is associated with an increased
risk of earlier HD onset across all ages is the absence of other covariates. There can be other
risk factors that affect the age-specific risk of HD onset. Since data on these factors are
unavailable (especially in family members), we cannot incorporate them into the model and
this could distort the estimation of a(x), especially if these factors are correlated with CAG
repeat length as well. Since in practice, it is often difficult to obtain these covariates
especially for relatives, modeling and studying the potential association of these covariates
and the CAG length values is of importance. Such knowledge will allow us to treat the
relatives’ risk factors as missing covariates, and develop appropriate methods to make use of
the covariate information on the proband and handle such problems in the missing covariate
framework.

Although the work is motivated from COHORT study, the nonparametric/semiparametric
methodology developed based on the likelihood here can be used in other studies with a
similar kin-cohort design, for example, the studies reviewed in [20] on estimating risk of
LRRK2 mutation on Parkinson’s disease.
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Appendix

Proof of Theorem 1

We provide only a sketch of the proof. Precise conditions that justify our calculations and
the general backfitting algorithm have been given by Claeskens and Van Keilegom (2003)
[21] and Chen et al. (2003) [14].

We assume that X has compact support and that its density function is positive on the
support. We also assume that a(x,f) has the usual properties uniformly in x in
neighborhoods of {#, a(-)}, and in particular that a(x, f) = a(x) + op(n‘1’4) uniformly in x,
this follows because nh* — 0.

Usual expansion around Byields

Oznil/QiSﬁ{ifiaXiaZiaaaa(Xiala)}
i=1
:n71.§:1 [Sﬁﬂ{}/lﬂX’L?Zl’ﬂVa(Xl7/6)}+SﬁOé{§/hXZ7Zl’ﬁ?a(X'HB)}%] ﬁ(B—B)+n71/2§Sﬂ{K,X“Z“ﬁ,a(Xu/B):

:n—ly_izll (Sps{Yi, Xi, 23, B, (X, B)}+SpalVi, Xi, Zi, B, (X, )} 22D /(B )01/ i S5{Yi, X1, Z:, B, (X, B)}

Note that for all £, E[S.{Y, X, Z, £, a(X, £)} | X] = 0, hence taking derivative with respect
to A, we have

0=E[S.s{Y. X, Z, 8", a(X, B)} | X|+ E[ Sual{Y, X, Z, 8", (X, ﬁ*)}|X]%.
Letting f° = B, we have

oa(X, 3)

T =—E[S..{Y. X, Z,8,a(X, B)}|X] ' E[SaslY. X, Z, B, (X, B)}| X]=ap(X).

Inserting this relation in (A.1), we have

0=n"1 ; [S55{Yi, Xis Zis By (Xi, B)}+Spa{Vi, Xi Ziy By (X, B) Yo (X)) y/A(B—B)+n /2 ; S{Yi, Xi, Zis B, &(X;, B)}-

:yn1/2(3_6)+n71/2 i S,H{Ka Xia Zia 67 a(Xw /3)}_’_”71/2 i S,BQ{S/Z" Xia Zia 69 a(X27 6)}{&(}(27 6)—Q(X“ 6)}+0p(1)
i=1 =1
thus we obtain the expansion

—;9?7711/2(3—,6):7171/22[5/3{5/1‘, Xis Zi7 ﬁa a(Xia ﬁ)}""sﬁa{y;a Xi, Zia 67 a(Xza ﬁ)} {a(Xu ﬁ)_a(Xl)}]+OP(1) (/:)
=1
Performing standard expansion with local constant estimation, taking into account that nh*
— 0 and nh? — oo, we have
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0=n"1 3 K(Xi=20)Su(Y;, X, 21,8, @)
=n~1! ilKh(Xi—xo)Sa(Yi, X, Z;,8,a)
G (XS0 (15, X, 20 ) @)y ()
—p-1 Zl Kn(Xi—20)Sa{Yi, Xi, Zi, B, a(X:) }
-|-n*1£:Kh(Xi—r:)) [5.(Y:, Xi, Z;, B, a)—S.{Yi, X, Z;, B, (X)) }]
T B(Sua(Y, X, 7, 8,a) X =20}/ (20) (a—a) +op(n=1/2).

Note that
E[Kh(X—xo)Sa{Y, X, Z, 3, a(X)}]:E(Kh(X—xg)E[Sa{Y, X, Z, 03, a(X)}|X]):O,

and

B{K,(X—20)8,(Y, X, Z,3,a)}=[K({)E{S,(Y, X, Z, 3, a)| X =zq-+ht} f, (zo-+ht)dt

—E{S,(Y, X, Z,3,a)| X=20} f, (m0)+dQ[E{Sa(Y,X,Z,,@,aﬂX:z}fX @) ‘z:mfﬂftzK(t)dt—i—o(hz) (A

2dz?
L[E{Su(Y,X,Z,8,0)|X=x} ] («)] - 4)
- e |$:I0h2 [t2K (t)dt+o(h?).

In the last equality, we used the fact that Sa(Y, X, Z, £, @) = Sa{Y, X, Z, B, a(X)} at X = xg
and E{S {Y, X, Z, B, a(X)} | X] = 0.

In addition, we have

V&I’(Kh(X—CC())[Sa(K X, Zaﬁa a)_Sa{Ya X, Zm@a a(X)}])
< .]'K]%(.’E—:B(])E([SQ(Y, X, Zaﬁa a)—Sa{Y, X, Zvﬁa a(X)}]®2|X:$)fX (a?)dx
:fhilKQ(t)E([Sa(Y, X,Z,8,a)-S.{Y, X, Z, 3, a(X)}]®2|X:1‘0+ht)fX (zo+ht)dt
= [hIK2(4)E([S. (Y, X, Z,8,a)—S.{Y, X, Z, 3, a(X)N®?| X =0) f (z0)dt
+[tE2 () L{E ([S.(Y, X, Z,8,a)—S{Y, X, Z, B, a(X)}|**|z) [ (2)}],_,, dt
+[RER () 32 { B ([Sa(Y, X, 2,8, @)= Su{Y, X, Z, B, a(X)}**[2) [ (2)}],_, dt+o(R)
—0+0+0(h)=0(h).

Here, in the last equality, we used S,(Y, X, Z, B,a) = S4(Y, X, Z, B, a(X)} at X =xg and [
tK2(t)dt = 0. Thus

0N K (Xi—20)[Sa(Yi, Xi, Zi, B, 0)—Sa{Yi, Xi, Zi, B, a(X:) H=O(h2)+0,{ (h/n) "} =0,(n™1/?)

i=1

when nh# — 0. Thus we have obtained
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a(z, 5)_a(m)z_nfx ()&

Substituting the right hand side of the (A.5) into (A.2), we have

Fnl'?(B-p)
:n71/2 f: S[)’{Y;a Xia Zia 6> a<XZ)}
i=1

+nf1/2isga{yj,xj,zj,ﬁ,a<Xj>}{a<Xj,@>—a<Xj>}+op<1>

—n-l/zzsﬁ{n,Xz,Zl,ﬁ,MX>} n1/230

=1

Zsﬁa{ ZjnBa (

1=

B{S0a(Y. X, Z.8,0)| X=X} K(Xi~X,)| 8,{¥i, X1, Zi. B. (X))} +0,(1)
X;) }Xi]

—n*lﬂzsg{m,xl,zmﬁ, (Xi)}- WWZE[Sﬁa{Y Xi, Z, 8, af
E{S,m(YX Z,B,a)| X=X;}" 15{ Xi, Zi, B, a(Xi) }+o0,(1)
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N K (Xi—2)E{S0(Y, X, Z. B, a)| X=2}"'Su{Yi, X;, Zi, B, (X)) } o, (n1/?). &

i

:n*/?;lsﬁ{m,xi,Zi,ﬁ,a(Xi }—n*l/?;lU(Xi)sa{m,Xi,zi,ﬁ,a(Xi)Hop(l).

This completes the proof of Theorem 1.

Proof of Theorem 2

Because ﬂﬁas a root-n convergence rate, we replace ,BBy,Binside a.Working through the
same derivation following (A.3), while maintaining the bias term in (A.4), we can obtain a

refined version of (A.5), which is exactly the expansion in Theorem 2.

Because S {Y, X, Z, B, a(X)} is a score function, we have

E[SAY, X, Z,B,a(X)}SI{Y, X, Z, 8, a(X)}|2]=—E[S.{Y, X, Z, B, (X

This yields the variance to be

JK?(t)dt

WE[Sa{KXJ,ﬁ,a(X)}SE{xx,Z,ﬁ,a<X)}|x] LLO{(nh) "y =—

This completes the proof of Theorem 2.
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Figure 1.

Plots of the true (solid) and estimated (dashed) curves of the intercept a;(x) (left) and slope
ay(x) (right) in simulation 1 (upper) and simulation 2 (lower). The dashed curves contain the
median, 5% quantile and 95% quantile of the 1000 estimated curves.
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Figure2.

Plots of the estimated (solid) curves of the intercept a;1(x) (upper-left) and slope ay(x)
(upper-right) and a1(x) + ax(X)t for t = 15, 20, 25, ..., 80 (lower) in COHORT data. The
dashed curves contain the median, 5% quantile and 95% quantile of the 1000 bootstrap
estimation results.

Stat Med. Author manuscript; available in PMC 2015 April 15.

56



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Ma and Wang

Page 18
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Figure 3. R

Plots of the F(t, x) from COHORT data analysis as a function of t at x = 42, 44, 46, --, 54
(left), and as a function of x at t= 15, 25, 35, ..., 75 (right) in females. Plots of males are
similar and therefore omitted. The solid curves are estimated from the nonparametric model
and the dashed curves are estimated from the parametric model.
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