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Abstract
Numerous epidemiological studies have reported that the long-term use of nonsteroidal anti-
inflammatory drugs (NSAIDs) is associated with a significant decrease in cancer incidence and
delayed progression of malignant disease. The use of NSAIDs has also been linked with reduced
risk from cancer-related mortality and distant metastasis. Certain prescription strength NSAIDs,
such as sulindac, have been shown to cause regression of precancerous lesions. Unfortunately, the
extended use of NSAIDs for chemoprevention results in potentially fatal side effects related to
their cyclooxygenase (COX)-inhibitory activity and suppression of prostaglandin synthesis. While
the basis for the tumor growth-inhibitory activity of NSAIDs likely involves multiple effects on
tumor cells and their microenvironment, numerous investigators have concluded that the
underlying mechanism is not completely explained by COX inhibition. It may therefore be
possible to develop safer and more efficacious drugs by targeting such COX-independent
mechanisms. NSAID derivatives or metabolites that lack COX-inhibitory activity, but retain or
have improved anticancer activity support this possibility. Experimental studies suggest that
apoptosis induction and suppression of β-catenin-dependent transcription are important aspects of
their antineoplastic activity. Studies show that the latter involves phosphodiesterase inhibition and
the elevation of intracellular cyclic GMP levels. Here, we review the evidence for COX-
independent mechanisms and discuss progress towards identifying alternative targets and
developing NSAID derivatives that lack COX-inhibitory activity but have improved antineoplastic
properties.
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Introduction
Despite significant advances in early diagnosis and the development of molecularly targeted
drugs, cancer remains the leading cause of mortality in the Western world (1).
Chemoprevention using pharmaceuticals or by dietary intervention represents a well-
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accepted approach to inhibit disease progression in individuals with precancerous lesions,
and in high-risk populations with genetic predispositions or long-term exposure to
environmental carcinogens such as cigarette smoke. However, the implementation of
chemoprevention strategies mandates exceptional safety and efficacy. Over the past three
decades, epidemiological, clinical and experimental studies have established that
nonsteroidal anti-inflammatory drugs (NSAIDs) inhibit carcinogenesis in various tissues and
at different stages of progression. Despite the strong evidence of activity, the use of NSAIDs
for cancer chemoprevention is not recommended because of potentially severe
gastrointestinal, renal, and cardiovascular side effects that result from cyclooxygenase
(COX) inhibition and the suppression of physiologically important prostaglandins. In
addition, the chemopreventive efficacy of NSAIDs is incomplete, although it is unclear if
this shortfall is due to dosage limitations or resistance factors.

The molecular and cellular mechanisms responsible for the cancer chemopreventive
properties of NSAIDs are complex and likely involve multiple effects on cancer cells and
their microenvironment. Inhibition of COX is generally thought to be the primary
mechanism responsible for their antineoplastic activity, although numerous studies have
concluded that alternative targets may be involved, as reviewed previously (2–4). Given that
the use of NSAIDs for cancer chemoprevention is limited by COX-dependent toxicities,
identifying the relevant targets that mediate their antitumor properties provides an
opportunity to develop safer and more efficacious derivatives, or new chemical entities. In
this review, we provide an overview of the chemopreventive effects of NSAIDs, highlight
evidence that the mechanism involves COX-independent effects, and discuss progress
towards identifying new targets and developing NSAID derivatives that lack COX-
inhibitory activity.

Classification of NSAIDs
NSAIDs are a chemically diverse family of drugs available over-the-counter or by
prescription and are commonly used for the treatment of inflammation, pain, or fever. Their
anti-inflammatory activity is attributed to the inhibition of COX (5) enzymes that catalyze
the conversion of arachidonic acid into prostaglandin H2, the precursor for the synthesis of
prostaglandins (PGs), prostacyclin and thromboxane A2 – collectively referred to as
eicosanoids. The three major PG products of COX activity, PGE2, PGD2 and PGF2α,
promote inflammation, pain and fever. Vane and colleagues were the first to show that
aspirin inhibits inflammation by suppressing PG synthesis (6), while COX inhibition was
later shown to be responsible for this effect (7). Aside from their role in inflammation,
eicosanoids are critically important for the homeostatic maintenance of the gastrointestinal
(GI) mucosa, blood clotting, regulation of blood flow, and kidney function.

Two distinct isoforms of COX, COX-1 and COX-2, have been reported (8). COX-1 is
constitutively expressed in most tissues, whereas COX-2 is induced by inflammatory
stimuli, mitogens or growth factors, and is generally associated with pathological processes
(9). Conventional NSAIDs, such as aspirin, ibuprofen, sulindac and indomethacin inhibit
both COX-1 and -2, although aspirin has a unique mechanism involving irreversible
acetylation of a serine residue in the catalytic domain of both enzymes (10). The recognition
that COX-2 is the main mediator of inflammation led to the development of a new class of
inhibitors with COX-2 selectivity (Coxibs) to circumvent GI and renal toxicities associated
with nonselective NSAIDs. However, Coxibs were later found to increase the risk of heart
attack and stroke (11, 12), which resulted in the recognition that all NSAIDs have risks of
cardiovascular side effects.
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Cancer Chemopreventive Properties of NSAIDs
Epidemiological and clinical evidence

Many population-based studies have concluded that long-term use of NSAIDs is associated
with a lower risk of developing colonic adenomatous polyps and lower incidence of CRC
(13, 14). Although fewer epidemiological studies have been conducted on cancers other than
CRC, most have reported an inverse correlation between the long-term use of NSAIDs and
incidence of tumors of the breast (15, 16), lung (17), prostate (18), bladder (19), ovary (20),
esophagus (19) and stomach (19).

Clinical evidence of activity for the treatment of precancerous conditions was first reported
in case studies by Waddell and Loughry in 1983, in which administration of sulindac
(Clinoril®) reduced colonic adenomas in patients with familial adenomatous polyposis
(FAP) (21). Later, three randomized clinical trials confirmed that sulindac at a daily dose of
300-400 mg reduced adenomas in FAP patients by an estimated 71% within 4-6 months of
treatment (22). By comparison, the COX-2 selective inhibitor celecoxib (Celebrex®) at an
800 mg daily dose decreased rectal adenomas in FAP patients by only 23% after 6 months
of treatment (23), which nonetheless led to the FDA approval of celecoxib for the treatment
of FAP in 1999. The anticancer activity of COX-2 inhibitors also sparked considerable
interest in the role of COX-2 in carcinogenesis. However, subsequent studies in patients
with sporadic adenomas using another COX-2 inhibitor, rofecoxib, revealed unexpected
cardiovascular toxicity (24) that caused it to be withdrawn from the market and essentially
halted other clinical trials of Coxibs for cancer chemoprevention.

Several studies have also reported that NSAIDs reduce the risk of death in patients with
advanced colon and breast cancers, and may prevent metastasis of primary tumors or reduce
mortality after diagnosis of malignant disease (25, 26). One clinical study reported that
indomethacin can significantly extend survival of patients with metastatic disease (27),
which suggests that NSAIDs can inhibit biological processes associated with tumor cell
invasion.

Evidence from experimental studies
The epidemiological evidence that NSAIDs reduce the risk of developing cancer is
supported by an abundance of reports from experimental animal models, including
carcinogen-induced or transgenic models of colorectal, breast and other types of cancer.
Among the first reports of the anticancer activity of NSAIDs in rodent models are studies by
Pollard et al. and Narisawa et al. that described the inhibitory effects of indomethacin on
carcinogen-induced intestinal tumors (28, 29). Subsequent studies demonstrated antitumor
efficacy for NSAIDs from different classes against colorectal carcinogenesis (30, 31). Many
of these studies utilized the rodent azoxymethane (AOM) carcinogen model, which closely
mimics human colorectal cancer with mutations in β-catenin and APC (32, 33). Consistent
with their benefits for the treatment of FAP, NSAIDs and COX-2 inhibitors are also
effective in the Min mouse, which harbors the same germline mutation in the APC gene (34,
35). Notably, NSAIDs were found to strongly inhibit the formation of aberrant crypt foci
(ACF), the earliest detectable neoplastic lesions in the colorectum (36, 37). While most
studies have reported that NSAIDs inhibit tumorigenesis if administered prior to AOM
exposure, studies by Reddy and Rao established that NSAIDs are still highly effective when
treatment is initiated later in tumor progression when ACF and adenomas already existed
(38, 39). These observations are consistent with the ability of NSAIDs such as sulindac to
cause the regression of existing lesions in FAP patients (40).
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COX-independent mechanisms of NSAID Chemoprevention
Observations that certain eicosanoids, such as PGE2, are elevated in various human tumor
tissues (41) and can stimulate tumor cell proliferation (42), along with studies implicating
COX-2 in tumor progression (43) and regulation of apoptosis (44), led to the widely
accepted belief that COX-2 is an important target responsible for the chemopreventive
effects of NSAIDs. However, numerous studies challenge this assumption by providing
evidence that these effects can be exerted through a COX-independent mechanism. For
example, in vitro studies have demonstrated that NSAIDs inhibit proliferation and/or induce
apoptosis in multiple tumor cell lines of different origins irrespective of COX-1 or COX-2
expression (45, 46). In addition, the growth inhibitory activity of NSAIDs cannot be
reversed by PG supplementation (47). There is also a discrepancy between the potency of a
particular NSAID to inhibit COX-1 and/or COX-2 and its potency to inhibit tumor cell
growth, whereby the concentration required to inhibit tumor cell proliferation is much higher
than that required to inhibit COX activity, as illustrated in Table 1. This is an important
consideration since experimental and clinical studies typically demonstrate chemopreventive
efficacy of NSAIDs at doses appreciably higher than those necessary for anti-inflammatory
effects. For example, celecoxib caused a significant reduction in colorectal polyp burden in
FAP patients at a dose of 800 mg/day but not at the standard anti-inflammatory dose of 200
mg/day bid (23). The possibility that an off-target effect accounts for the chemopreventive
activity of NSAIDs may therefore explain their incomplete efficacy in clinical trials
involving standard anti-inflammatory dosages.

Perhaps the strongest evidence for a COX-independent mechanism comes from
experimental studies showing that non-COX inhibitory metabolites (48), enantiomers (49) or
derivatives (50) retain or have improved antitumor activity compared with the parent
NSAID. Among these, the sulfone metabolite of sulindac, exisulind, is the most studied, for
which there is an abundance of evidence of efficacy from various rodent models of
carcinogenesis (51–53), as summarized in Table 2. Figure 1 illustrates the metabolism of
sulindac into the active sulfide form and the non-COX-inhibitory sulfone. In addition,
exisulind has been reported to inhibit tumor cell growth and induce apoptosis in multiple
tumor types despite lacking COX-1 or COX-2 inhibitory activity (48). In studies involving
the AOM model of rat colon tumorigenesis, exisulind inhibited tumor formation at dosages
that did not reduce prostaglandin levels in the colon mucosa, and achieved plasma
concentrations above those required to inhibit tumor cell growth and induce apoptosis in
vitro (52). In clinical trials, exisulind displayed significant adenoma regression in patients
with familial (54) or sporadic (55) adenomatous polyposis but did not receive FDA approval
due to hepatotoxicity and because of inherent problems with disease variation among FAP
patients that were encountered during the registration trial. Nonetheless, its strong
chemopreventive activity in preclinical models supports the importance of COX-
independent mechanisms and the rationale for developing other non-COX-inhibitory
sulindac derivatives with improved potency and target selectivity.

Molecular Targets
While an NSAID may act upon a COX-independent target with relatively high specificity, it
is generally recognized that a combinatorial action on multiple pathways through direct
molecular targets as well as epigenetic and post-transcriptional mechanisms is responsible
for the chemopreventive properties of NSAIDs. Some of the major pathways targeted by
NSAIDs are discussed below and illustrated in Table 3.
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Induction of Apoptosis
NSAIDs have long been recognized to inhibit tumor cell growth in cell culture models with
significantly different potencies across chemical families (56). The basis for this activity was
first reported to involve apoptosis induction by two independent groups in 1995 (57, 58).
The mechanism appeared to be unrelated to COX inhibition as evident by the ability of
exisulind to also induce apoptosis. Apoptosis emerged as the major mechanism of NSAID
chemoprevention following observations that treatment with sulindac can stimulate
apoptosis in the normal rectal mucosa of FAP patients (59), normal intestinal mucosa of
APCMin mice (60) and in the colorectal carcinomas of carcinogen-treated rats (61). In
addition, exisulind was reported to induce apoptosis in rectal polyps of FAP patients but not
in normal rectal mucosa, which implies an aspect of tumor selectivity (54). Consistent with
these observations, studies using cell culture models demonstrate that NSAIDs, as well as
their non-COX-inhibitory derivatives, can induce apoptosis in various cancer cell lines.

Effects on Wnt/β-catenin pathway—Dysregulation of Wnt signaling due to
inactivating mutations in APC or activating mutations in β-catenin, is involved in the
development of multiple types of cancer, especially CRC (62). The efficacy of NSAIDs to
inhibit polyp formation in FAP patients and APCMin mice suggested that they may
compensate for such mutations by inhibiting Wnt signaling. Studies have reported that
sulindac can reduce nuclear β-catenin levels and induce β-catenin degradation, which could
explain its antiproliferative and pro-apoptotic activity (63, 64). Similarly, both exisulind (65)
and celecoxib (66) were reported to decrease β-catenin levels and inhibit the transcriptional
activity of the β-catenin/TCF/Lef complex. NSAIDs may therefore inhibit tumor cell growth
by suppressing oncogenic β-catenin signaling through a COX-independent mechanism.
Notably, colonic polyps of FAP patients treated with sulindac show reduced nuclear
accumulation of β-catenin (67). Moreover, a recent study by Qui et al. showed that sulindac
can selectively eliminate intestinal stem cells with nuclear or phosphorylated β-catenin and
aberrant Wnt signaling in APCMin mice and in human colonic polyps through the induction
of apoptosis (68). These observations are corroborated by findings that sulindac
downregulates β-catenin levels in hematopoietic progenitor cells which carry oncogenic
fusion proteins, resulting in reduced stem cell capacity and increased differentiation
potential (69). These studies suggest that removal of cancer stem cells through direct
inhibitory effects on Wnt/β-catenin signaling and induction of apoptosis is an important
mechanism that mediates the chemopreventive effects of sulindac.

Modulation of cGMP PDE signaling—Previous studies with exisulind suggested that
cyclic guanosine monophosphate phosphodiesterase (cGMP PDE) inhibition is an important
COX-independent mechanism to suppress β-catenin signaling (65). In these studies,
exisulind and several potent derivatives were found to inhibit cGMP PDE activity and
reduce oncogenic levels of β-catenin by increasing intracellular cGMP levels and activating
cGMP-dependent protein kinase (PKG). Although exisulind displayed modest potency to
inhibit PDE and did not show evidence of selectivity for cGMP degrading isozymes, more
recent studies with sulindac sulfide showed appreciably greater potency and selectivity to
inhibit cGMP hydrolysis among several cGMP degrading isozymes, including PDE2, 3, 5,
and 10 (70). Notably, studies showing an association between inhibition of the cGMP-
specific PDE5 isozyme and the tumor cell growth inhibitory activity of sulindac reinforce
the importance of cGMP signaling (71). Moreover, the ability of PDE5 siRNA to mimic the
selective nature by which sulindac induces apoptosis provides strong evidence for a role of
the cGMP/PKG pathway in suppressing oncogenic β-catenin signaling. Other NSAIDs also
inhibit cGMP PDE activity, which in many cases matches their potency to suppress tumor
cell growth (72). As such, the contribution of additional cGMP-hydrolyzing PDE isozymes
cannot be excluded.
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PKG is thought to be the main kinase responsible for the anti-proliferative and apoptosis
inducing activity of cGMP signaling. PKG activation attenuates β-catenin mRNA levels by
directly inhibiting transcription from the CTNNB1 gene (70) and by suppressing β-catenin
nuclear translocation, possibly by inducing its sequestration by FOXO4 (73). These
observations point to a mechanistic link between NSAID inhibition of cGMP PDE and the
suppression of Wnt signaling that is independent of COX binding, as illustrated in Figure 2.

Other targets—Several additional molecules shown to be direct NSAID targets are
particularly noteworthy. For example, studies provide evidence that aspirin and its
deacetylated metabolite salicylate, as well as sulindac sulfide and exisulind can inhibit NF-
κB signaling (74, 75). Aspirin and salicylate were found to be ATP-competitive inhibitors of
IKKβ, the upstream positive regulator of NF-κB, suggesting that the antiapoptotic effects
involve direct binding to IKKβ. A recent report by Hawley and colleagues showed that
salicylate can also bind and inhibit AMPK, a key protein kinase involved in the regulation of
cellular metabolism and proliferation (76). These findings are consistent with a concomitant
report by Din et al. which showed that aspirin can activate AMPK in colon tumor cell lines
and in the rectal mucosa of patients on a daily aspirin regimen (77) and suggest that AMPK
may be an important target that mediates the chemopreventive effects of aspirin.

In addition, indomethacin, ibuprofen and sulindac sulfide have all been reported to induce
PPARγ promoter activity, the loss of which is implicated in colorectal carcinogenesis (78,
79). On the other hand, indomethacin and sulindac sulfide both can bind and repress
transcriptional activity of PPARδ, a growth-promoting protein activated by COX-2-derived
prostacyclin (80). Furthermore, the R-enantiomer of etodolac, which lacks COX-inhibitory
activity, has been shown to bind RXRα and selectively induce apoptosis in tumor cell lines
(81). Sulindac sulfide was later demonstrated to specifically bind a truncated form of RXRα
expressed in cancer cells and lead to apoptosis through suppression of Akt signaling (82). In
the same study, a sulindac derivative devoid of COX-inhibitory activity but with improved
potency to bind RXRα, K-80003, was shown to have significant antitumor activity in vitro
and in vivo.

Several carbonic anhydrases (CAs I, II, IV, IX, XII) are inhibited by celecoxib in the low
nanomolar range, at values significantly lower than its IC50 for COX-2 inhibition (83). CAs
are enzymes that regulate acid-base balance in tissues and are crucial for hypoxic adaptation
in tumor cells. Their expression levels correlate with tumor aggressiveness and a poor
prognosis (84). Another direct target of celecoxib is the sarcoplasmic/ER Ca+2 ATPase
(SERCA) that maintains the Ca+2 gradient between the cytosol and the ER. Binding of
celecoxib, as well as its non-COX-inhibitory derivative dimethylcelecoxib (DMC), leads to
rapid release of calcium from the ER, followed by activation of ER stress response (ESR)
and induction of apoptosis (85, 86). A more recent study has shown that sulindac sulfide can
also bind SERCA in a similar fashion albeit with low potency (87).

Inhibition of Angiogenesis and Metastasis
NSAIDs, such as sulindac sulfide (88), exisulind (89) and celecoxib (90) have been shown
to also inhibit angiogenesis and tumor cell invasion, although these observations are largely
limited to the preclinical setting. It is plausible to suggest that the antiangiogenic properties
of NSAIDs result from direct effects on endothelial cell survival and proliferation via the
aforementioned targets, such as cGMP PDEs, IKKβ or SERCA. However, several other
molecules involved in angiogenesis regulation have also been proposed to mediate these
effects. For example, celecoxib can directly inhibit the DNA-binding activity of Sp1
transcription factor, a crucial driver of VEGF overexpression in cancer cells (91). In
addition, sulindac sulfide, exisulind and celecoxib have all been shown to inhibit invasion
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through downregulation of matrix metalloproteins (MMPs) 2 and 9 (92). These are the
principal enzymes involved in degrading type IV collagen of the basement membrane
enabling endothelial cells to reach hypoxic tumors and cancer cells to invade adjacent tissue
leading to metastasis (93). Furthermore, a recent report provides evidence that sulindac
sulfide can inhibit tumor cell invasion by suppressing Nf-κB-mediated transcription of
microRNAs in human colon and breast cancer cell lines (94). Overall, these reports
demonstrate that NSAIDs can attenuate angiogenesis and invasion through COX-
independent pathways.

Effects on gene expression
NSAIDs have been reported to modulate the expression of various genes involved in the
regulation of cell survival and proliferation. Multiple NSAIDs, including indomethacin,
aspirin and sulindac sulfide, were found to induce the expression of NSAID-activated gene
(NAG-1/GDF-15) independent of COX inhibition in colorectal cancer cell lines (95).
Although the precise biological functions of NAG-1 are poorly understood, it is a member of
the TGF-β superfamily that exhibits pro-apoptotic and anti-tumorigenic activity in animal
and cell culture models (96). A recent study by Wang and colleagues found that NAG-1 is
strongly induced in the liver of Min mice after sulindac treatment suggesting that NAG-1
induction may contribute to the tumor inhibitory effects of sulindac (97).

Novel NSAID derivatives
Several groups have synthesized derivatives using various NSAID scaffolds to reduce their
COX inhibitory activity, while improving potency to inhibit tumor cell growth. Our group
developed a rational drug design approach to selectively block COX binding by substituting
the negatively charged carboxylic acid moiety of sulindac sulfide, which is common to most
NSAIDs and essential for COX binding via its interaction with positively charged moieties
in the active site. One such derivative, referred to as sulindac sulfide amide (SSA), was
found to have significantly higher potency to inhibit colon tumor growth compared with
sulindac sulfide, despite lacking COX-1 or -2 inhibitory activity (98). With promising drug-
like properties, SSA was shown to be highly effective in a colon tumor xenograft model
alone and in combination with camptothecin. Other investigators have shown the ability of
SSA to inhibit tumor formation in the TRAMP model of prostate cancer (99). Recent studies
have shown that SSA inhibits tumor cell growth primarily through the induction of
autophagy via suppression of Akt/mTOR signaling (100). Sulindac sulfide mimicked these
effects on Akt signaling and induced autophagy, but only at concentrations higher than those
required to inhibit tumor cell growth, whereas apoptosis appeared to be the primary
mechanism of cell death. Additional sulindac derivatives have since been developed, for
example, that selectively inhibit PDE5 and have antitumor activity without inhibiting
COX-1 or COX-2 (50). Recent efforts to develop improved chemopreventive agents also
include the synthesis of phospho-derivatives that lack COX-inhibitory activity, such as
phospho-sulindac and phospho-aspirin, but display high safety and efficacy in preclinical
models of various cancer types (101, 102). Furthermore, the sulindac derivative K-80003
that selectively targets RXRα (82) and celecoxib derivatives OSU-03012 (103) and
dimethyl-celecoxib (104) that inhibit PDK-1 without COX inhibition, represent other
examples of separating COX-inhibitory activity and antitumor efficacy. These experimental
agents demonstrate the feasibility of developing safer and more efficacious drugs for
chemoprevention by chemically designing out COX-binding while improving target
selectivity. Moreover, they highlight the utility of NSAIDs as pharmacological probes for
target discovery, which could result in the development of new chemical entities with the
potential for greater tumor selectivity.

Gurpinar et al. Page 7

Clin Cancer Res. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Summary
Traditional NSAIDs and selective COX-2 inhibitors represent some of the most extensively
studied agents with known chemopreventive activity. However, toxicities resulting from
COX inhibition and incomplete efficacy limit their use for cancer chemoprevention.
Currently, there are no approved therapies for the primary chemoprevention of FAP and
preventive options are severely limited for high-risk individuals with precancerous lesions.
A safe and efficacious chemopreventive drug can serve as an adjunct to surgery and prevent
the formation of new lesions while reducing the overall risk of disease progression.
However, further progress depends on increased understanding of the molecular
mechanisms underlying the antineoplastic activity of NSAIDs. As summarized above, the
inhibition of COX cannot explain all the observed chemopreventive effects of these drugs.
Elucidating the involved targets and signaling pathways provides the opportunity to
specifically target key molecules, select patient populations that are most likely to benefit
from chemoprevention, and explain the underlying mechanisms of resistance. These studies
will likely contribute to future chemopreventive strategies by enabling the identification of
novel agents or guiding the modification of existing ones. Finally, using NSAIDs in
combination with another chemopreventive or therapeutic agent represents an attractive
strategy to increase efficacy and reduce toxicity. As established by a landmark phase III
clinical study (105), sulindac is highly effective in combination with
difluoromethylornithine (DFMO) for the prevention of sporadic colorectal adenomas in
patients with a history of resected adenomas. Results from similar combination therapy trials
can be put to immediate use given that NSAIDs are FDA approved and have a strong record
of chemopreventive activity.
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Abbreviations

RXRα retinoid X receptor alpha

PDK-1 3-phosphoinositide-dependent kinase-1

FAP familial adenomatous polyposis

APC adenomatous polyposis coli

IKKβ IκB kinase

AMPK AMP-activated protein kinase

PPAR peroxisome proliferator activated-receptor

RXR-α retinoid X receptor alpha

NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells

TGF-β transforming growth factor beta
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Figure 1.
Metabolism of sulindac. Prodrug sulindac undergoes reversible reduction into the active
sulfide form through the action of liver enzymes and colonic bacteria. Sulindac sulfide is a
non-selective COX inhibitor and is responsible for the anti-inflammatory properties of
sulindac. The sulfone metabolite is generated by irreversible oxidation of the sulfoxide in
the liver, and does not have anti-inflammatory activity. Figure adapted from Gurpinar et al.,
Frontiers in Oncology, 2013 (106).
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Figure 2.
A mechanistic model of the cGMP/PKG pathway and the antineoplastic properties of
sulindac.

Gurpinar et al. Page 17

Clin Cancer Res. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gurpinar et al. Page 18

Table 1

Potency of a panel of NSAIDs to inhibit colon tumor cell growth and cyclooxygenases.

NSAID Growth IC50
1

(µmol/L)
COX-1 IC50

2

(µmol/L)
COX-2 IC50

2

(µmol/L)

Serum levels
(µmol/L)3

Celecoxib 50 >30 2.25 2

Sulindac sulfide 60 1.02 10.4 15

Diclofenac 160 0.14 0.05 6

Indomethacin 180 0.16 0.46 1.4

Piroxicam 900 0.76 8.9 17

Ibuprofen 975 4.75 >30 40

Flurbiprofen 1800 0.44 6.42 53

Aspirin 5000 4.5 13.9 10

1
HT-29 human colon tumor cells, 72 h MTS assay (106).

2
Whole blood COX assays (107).

3
From therapeutic dosages (108). Table reproduced from Gurpinar et al., Frontiers in Oncology, 2013 (106).
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Table 2

Chemopreventive efficacy of sulindacsulfone (exisulind) in rodent models of carcinogenesis.

Model Species Dosage Efficacy Reference

Colon Rat 1000 – 2000 ppm 69–81% (52)

Colon Rat 600–1200 ppm 41–83% (109)

Colon (ACF) Rat 20 mg/kg bid 31% (110)

Colon (ACF) Rat 1000–2000 ppm 42–37% (111)

Mammary Rat 300–600 ppm 44–50% (53)

Lung Mouse 250–750 ppm 32–82% (51)

Bladder Rat 800–1200 ppm 36–64% (112)

Prostate Rat 1000 ppm 80% (113)
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