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Abstract
Hematopoietic stem cell transplantation is the only curative option for a number of malignant and
non-malignant diseases. As the use of hematopoietic transplant has expanded, so too has the
source of stem and progenitor cells. The predominate source of stem and progenitors today,
particularly in settings of autologous transplantation, is mobilized peripheral blood. This review
will highlight the historical advances which lead to the widespread use of peripheral blood stem
cells for transplantation, with a look towards future enhancements to mobilization strategies.
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Introduction
The first successful clinical cases utilizing peripheral blood stem cells (PBSC) for curative
hematopoietic transplantation were reported over 26 years ago(1–5). Since then, PBSC have
become the predominate source of hematopoietic stem cells (HSC) for transplantation. This
review will highlight the history of stem cell research which planted the initial seeds for
PBSC harvesting; the current state of clinical mobilization and what we have learned over
the last two and half decades of practice; and the outlook for clinical enhancement in the
future.

Sowing the Seeds: Early Mobilization Research
Early work establishing the foundation of hematopoietic mobilization began over 60 years
ago (Figure 1). Restoration of hematopoiesis in irradiated animals by spleen and/or bone
marrow (BM) derived cells was reported in the early 1950s (6–8). Shortly thereafter, it was
demonstrated that allogeneic skin grafts were tolerated in mice who had received lethal
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irradiation followed by a hematopoietic transplant (9). This lead to the concept of
chimerism, i.e., donor cells reconstituting the irradiated host, which was confirmed in later
studies (10–14). In the 1960’s, Till and McCulloch and colleagues published hallmark
studies showing that single clonogenic cells existed within the bone marrow that could self-
renew and restore hematopoiesis (15–20), thus the hypothesis of the in vivo existence of a
hematopoietic stem cells was germinated. These early assays utilized lethally irradiated mice
that were injected with bone marrow cells and showed macroscopic nodules that formed on/
in the spleens proportional to the number of marrow cells injected (17). They hypothesized
that the spleen colonies (colony-forming units-spleen (CFU-S)) were derived from a single
cell, which they later demonstrated by analysis of chromosomal markers (20). These studies
laid the groundwork for clinical hematopoietic transplantation.

In the 1930’s, well prior to studies using isolated donor cells to recover hematopoiesis
following irradiation, Woenckhaus performed experiments in which one rat, as part of a
parabiotic pair, was lethally irradiated while the other rat was shielded with lead. One third
of the pairs survived the procedure, suggesting a circulating radiation protection factor
produced by the non-irradiated rat (21). A similar parabiotic experiment was also reported
two decades later (22). As methods to assess DNA replication, and thus cell division, began
to emerge, reports documented the presence of circulating, non-leukemic, blood cells
capable of division outside of the bone marrow (23, 24). These experiments suggested that a
large organ like the bone marrow was capable of exchanging cells through the peripheral
blood system, providing a potential common pool of cells with proliferative capacity able to
directly contribute to recovery after damage and maintain total system homeostasis.

In 1960, a report demonstrated the successful transplantation of cells with erythropoietic
potential from normal circulating leukocytes (25). This was later expanded upon by
Goodman and Hodgson to demonstrate the presence of a peripheral blood cell capable of
hematopoietic reconstitution in lethally irradiated hosts (26). Later experiments utilizing
CFU-S as a surrogate of HSC function suggested that peripheral blood leukocytes contained
1/100th of the repopulating ability of bone marrow leukocytes (27). The presence of
peripheral blood hematopoietic repopulating cells was later confirmed in transplantation
studies in dogs (28–30).

These early studies in rodents and dogs suggested that peripheral blood could be an
alternative source to bone marrow of cells with hematopoietic reconstituting potential.
However, Lewis and colleagues in 1968 suggested that the frequency of repopulating cells
(estimated to be 1/100th that of marrow), was too low in peripheral blood and they
concluded that “with present techniques, the use of blood leukocytes for effecting
hematopoietic grafts in man may not be technically feasible. In terms of present day
knowledge, it is difficult to envision that circulating stem cells will be found to be of any
great value to man.” (27). Fortuitously, around the same time, researchers at the National
Cancer Institute along with the International Business Machines Corporation jointly
developed a continuous flow centrifuge (NCI-IBM Blood Cell Separator) as a means to
isolate leukocytes for biopsy, or for subsequent infusion into granulocytic patients (31–33).
This apheresis technique reduced one of the technical hurdles of acquiring enough
peripheral blood repopulating units for transplantation.

In the early 1970’s, several reports confirmed the presence of clonogenic hematopoietic
progenitors in the peripheral blood of man (34–36), one of which utilized apheresis (36),
thus planting the initial seeds for the potential to harvest HSCs from blood for transplant.
However, early attempts at repetitive white blood cell transfusions from healthy twin donors
did not result in durable engraftment (37, 38), presumably still due to the relatively low HSC
cell number in peripheral blood compared to bone marrow. To compensate for low HSC
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number, cryopreservation techniques were developed to allow for large pools of peripheral
blood leukocytes to be collected (39), and transplants using cryopreserved peripheral blood
cells were used to treat patients with chronic myeloid leukemia (CML), with some
documented short term success (40–42). Several years later, many institutes began to report
successful hematopoietic engraftment using cryopreserved cells acquired from multiple
rounds of apheresis prior to transplantation (1–5).

While these early studies demonstrated some successes, multiple rounds of apheresis, over
the course of many days and weeks, coupled with multiple cryopreservations and subsequent
infusions of large volumes of cells made these early regimens impractical for wide clinical
application. To expand the use of PBSC to a broader range of hematopoietic transplantation,
more stem cells needed to be acquired in a shorter period of time. Several earlier reports
assessing the bone marrow compartment following chemotherapy demonstrated an increase
in hematopoietic progenitor activity (43–45). A report by Richman and colleagues further
explored this phenomenon by assessing hematopoietic progenitors in the peripheral blood
following administration of cyclophosphamide and adriamycin (46). These studies
demonstrated that chemotherapy treatment could increase in hematopoietic progenitors in
the blood by upwards of a 20 fold. Intriguingly, the authors proposed that chemotherapy
could possibly be used as a means to facilitate acquisition of PBSC for transplantation. As a
preliminary test of hypothesis they studied one patient in which they harvested bone marrow
and apheresis products before and after chemotherapy. This single patient demonstrated that
at baseline, they would need to perform 296 hours of apheresis to acquire the same number
of hematopoietic progenitors as was obtained from the bone marrow harvest, but after
chemotherapy, the amount of apheresis time would be reduced to only 11 hours (46). A
similar conclusion was made several years later by Stiff and colleagues(47). These results
suggested that another major hurdle for the clinical translation of PBSC as a viable
alternative to bone marrow could be crossed; mobilization of HSC to the periphery with the
use of chemotherapy to decrease the amount of apheresis procedures and transfusion
volumes. This suggestion was confirmed in a number of subsequent studies (48, 49).

Enhancing the Harvest: Granulocyte-Colony Stimulating Factor
Today, the hematopoietic growth factor, granulocyte-colony stimulating factor (G-CSF) is
widely used clinically to mobilize HSC for transplantation. Granulocyte colony-stimulating
factor (G-CSF) was purified, cloned and produced recombinantly in bacteria between 1984
and 1986 (50–53). Although initially believed to be a pluripoietin as well an inducer of
granulocyte differentiation, use of recombinant protein showed that G-CSF bound to a type
1 cytokine receptor (G-CSFR) to stimulate proliferation (54, 55) and differentiation (53) of
several types of myeloid progenitor cells alone and in combination with other growth factors
(56–58). The first clinical trials were performed in cancer patients receiving chemotherapy
(59–62) leading to FDA approval in 1991. While G-CSF was being widely used successfully
to treat neutropenia following chemotherapy, it was found that it increased the number of
peripheral blood progenitor cells (63, 64). While early empiric regimens were variable,
today, mobilization of HSC and HPC is accomplished with G-CSF administered at 5–10 ug/
kg/day for 5–7 days in patients and normal donors, with one or more days of apheresis to
achieve a minimum target dose ≥2×106 CD34+ cells/kg patient body weight. PBSC
transplant with G-CSF mobilized HSC and HPC has been quite successful and has changed
the normal transplant paradigm, making PBSC the predominate source of HSC for
transplant. G-CSF mobilized PBSC have been associated with more rapid engraftment,
shorter hospital stay (65–68), and in some circumstances, superior overall survival compared
to bone marrow (69).
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While successful, G-CSF regimens are often associated with morbidity in the form of bone
pain, nausea, headache, and fatigue (70–73), which can be lifestyle disruptive in normal
volunteers. In a small population of normal donors, G-CSF has also been associated with
serious toxicity, including enlargement of the spleen (74, 75) and splenic rupture (76–79),
and the pro-coagulant effects of G-CSF can increase the risk of myocardial infarction and
cerebral ischemia in high-risk individuals (80, 81). Despite success, G-CSF induced
mobilization regimens also have high failure rates, failing to mobilize sufficient HSC,
particularly for autologous mobilization, necessitating additional mobilization attempts or
precluding transplantation (82–86). Unsuccessful initial HSC mobilization often leads to
expensive additional mobilization attempts and may preclude autologous transplant
altogether (87–89). In one study assessing 1040 patients undergoing mobilization for
autologous transplant, it was found that 47% failed to collect even the minimum of 2×106

CD34+ cells/kg in the first apheresis, and 22.5% did not reach this level even after 2
apheresis sessions (82). A recent study out of the Mayo Clinic demonstrated that 30% of
multiple myeloma (MM) and 71% of non-hodgkin’s lymphoma (NHL) patients failed to
reach the “optimum” level of CD34+ cell collection (>5×106 cells/kg) (90). A recent
economic analysis at M.D. Anderson Cancer Center determined that reducing the apheresis
by 1 day has the potential to decrease the medicals costs by $6,600 (91). Thus, improved/
alternative regimens and mobilizers are needed.

The New Branches of HSC Mobilization
While the discovery of enhanced peripheral progenitors following chemotherapy, and then
after growth factors such as G-CSF and GM-CSF, altered the paradigm of clinical
transplantation, lack of initial understanding of the mechanism of action of these cytokines
hampered further development in the field, which relied primarily upon empiric trial. Clues
to the mechanism of action of G-CSF were not inherently obvious; however, early on it was
appreciated that the mobilization mechanisms may be both HSPC intrinsic and extrinsic. A
seminal paper published in 2002 (92) linked G-CSF mobilization to disruption of the SDF1/
CXCR4 axis and led to a number of studies showing that altering this pathway by a variety
of methods led to PBSC mobilization in varying degree. Numerous mobilization agents have
sprouted from these early discoveries (Figure 2).

One of the most successful mobilizing agents to come along after G-CSF is the CXCR4
antagonist AMD3100 (Plerixafor; Mozobil™), which is capable of mobilizing HSC and
HPC alone and in combination with G-CSF (93–98) and received FDA approval in 2008.
Other CXCR4 antagonists such as T140 (99) and T134 (100) have also been reported to
mobilize HSPC as well as CXCR4 partial agonists, including (met)-SDF-1β (101),
CTCE-0214 (102), and CTCE-0021 (98). These agents are believed to initiate mobilization
by antagonizing the CXCR4 receptor thus breaking the retentive bond between HSC and
HPC and their SDF-1 producing stromal microenvironmental support. Betafectin (103, 104),
sulfated polysaccharides (Fucoidan) (105–107), sulfated colominic acid (108), and the
smaller glycosaminoglycan (GAG) mimetics (109), which appear to alter plasma SDF-1α
levels (107–109), enhance matrix metalloproteinase-9 (MMP-9) production (103, 106, 109)
and increase CXCR4 receptor function (108) among other mechanisms are also capable of
enhancing HSPC mobilization.

While these mobilization strategies focused on disruption of the SDF-1α/CXCR4 interaction
within the bone marrow microenvironment and/or alteration of the chemotactic gradient
between blood and marrow, other mechanistic studies based upon knowledge of integrin
adhesion interactions between hematopoietic cells and their stromal niches led to strategies
designed to “untether” HSPC from the niche. Hematopoietic mobilization has been achieved
by disrupting the VLA-4/VCAM-1 axis, with antibodies against VLA-4 (110, 111),
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antibodies against VCAM-1 (112, 113), or a small molecule inhibitor of VLA-4 (BIO5192)
(114). Similarly, disruption of the Eph-ephrin A3 axis with a soluble EphA3-Fc fusion
protein (115) or treatment with defibrotide(116), an adenosine receptor agonist which
disrupts P-selectin (117) and intercellular adhesion molecule-1 (ICAM-1) (118), also
enhance mobilization.

Interest in chemokines in the 1990’s spurred by the identification of multiple classes of
chemotactic peptides that affect HSPCs led to the identification of an alternate chemokine
pathway involved in mobilization (119, 120). The CXCR2 agonists IL8, GROβ and GROβΔ4
cause rapid HSPC mobilization within 15 minutes of treatment (121–123). In contrast to
CXCR4, CXCR2 is not expressed on HSPC, and mechanistic studies identified that
mobilization was mediated through induction of matrix metalloproteinase-9 disrupting
hematopoietic retention in the niche (123, 124), and demonstrating that mobilization agents
can target non-hematopoietic cells to illicit mobilization responses.

Recent evidence also suggests that disruption of fatty acid signaling can alter hematopoietic
trafficking and be used as a pharmaceutical tool to enhance HSPC mobilization.
Sphingosine-1-phosphate (S1P) can act on HSC and HPC through the S1P receptor S1P1
(125), and alter CXCR4/SDF-1α signaling and chemotaxis (125–127). S1P has been
previously reported to direct trafficking of immature B cells (128) and trafficking of HSPC
from blood, bone marrow and lymph tissues (129). G-CSF treatment results in an increase in
peripheral S1P concentration directing HSPC chemoattraction to the periphery, resulting in
mobilization (130). Additional reports have supported the hypothesis that a S1P signaling
gradient can regulate HSPC trafficking and mobilization (131–134). Endocannabinoids,
members of the arachidonic acid family of fatty acids, are also capable of altering HSPC
trafficking and enhancing G-CSF mobilization through effects on cannabinoid receptors
expressed on HSPC (135). Prostaglandin E2 (PGE2), another member of the arachidonic
acid family, acts in a Yin and Yang relationship with G-CSF (135) and regulates CXCR4
expression on HSC and HPC and facilitates homing and engraftment during transplantation
(136). Blocking PGE2 signaling in the bone marrow with FDA approved NSAIDs alters
HSC and HPC retention in the stromal niche, resulting in enhanced HSPC trafficking and
mobilization in combination with multiple mobilizing agents (137).

Intriguingly, G-CSF mobilization is reduced in chemically sympathectomized mice; mice
treated with the β-blocker propanolol; or mice genetically deficient in the gene for dopamine
β-hydroxylase (Dbh), an enzyme that converts dopamine into norepinephrine, demonstrating
that mobilization requires peripheral β2-adrenergic signals (138). This study also
demonstrated that G-CSF attenuated osteoblast function, via the sympathetic nervous system
(SNS), resulting in osteoblasts having a marked flattened appearance. In addition to the bone
marrow microenvironmental niche, human CD34+ cells also express β2-adrenergic and
dopamine receptors that are upregulated after G-CSF treatment (139), and neurotransmitters
have been demonstrated to serve as direct chemoattractants to hematopoietic cells (139) and
increase CXCR4 expression (140). Epinephrine treatment also results in mobilization (139).
These studies suggest that targeting of the SNS may serve as an adjunct therapy to enhance
mobilization, though these strategies as of now are not specific in targets and would likely
lead to many complications in patients and healthy donors.

Planting New Ground
At present, the wide array of agents that have been shown to mobilize HSC and HPC, leads
us to conclude that we do not truly fully understand the biology of enhanced HSPC
trafficking, and only a better understanding of this process can lead to better mobilizers and/
or regimens. However, these new seeds of knowledge on mechanisms of action should not
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remain ungerminated in the quest for the “perfect” or “optimal” mobilizing agent. Taking
cues from the fields of chemotherapy and microbiology, combinations of agents often
provide additive/synergistic and unique actions. The small molecule CXCR4 antagonist
Plerixafor (AMD3100), which was shown in preclinical combination studies with G-CSF to
enhance mobilization compared to G-CSF alone (93, 141–144), is now approved by the
FDA for mobilization of PBSC in patients with NHL and MM, however a significant portion
of patients still fail to mobilize sufficient numbers even after plerixafor administration. The
use of Plerixafor can also come at a cost of >$25,000 per patient in some settings compared
to G-CSF (145), suggesting that preemptive use in all patients in not a sound
pharmacoeconomic strategy. To save cost associated with the use of plerixafor, a number of
centers have advocated a risk-adapted approach whereby plerixafor is added after 4 days of
filgrastim only in those patients who show evidence of “suboptimal” mobilization based on
assessment of peripheral blood CD34+ cell measurement (146–148) or alternatively on the
basis of the CD34+ cell dose collected on the first day’s apheresis (148). However, as the
target or “acceptable” CD34+ cell dose, as well as the “acceptable” number of aphereses in
which this achieved, vary somewhat by institution, precise recommendations also vary;
currently no standard algorithm exists. At Indiana University, we target for a minimum
CD34+ cell dose of 10×106/kg for MM (for potentially tandem or second late
transplantation), and 5×106/kg for NHL patients. To minimize utilization of apheresis
resources, we also attempt to collect the target dose in only 1–2 aphereses if possible.
Therefore, patients begin mobilization with G-CSF (10 μg/kg/day) for 4 days. If the first
day’s collection on day 5 is less than half of the target, plerixafor is added on the evening of
day 5 (G-CSF continued), and apheresis performed the next day. Thus, while Plerixafor plus
G-CSF has clearly made an impact on the ability to mobilize patient populations known to
be difficult to mobilize, the need to search for more effective, and less costly, mobilizing
agents still remains.

As described earlier, NSAIDs alter HSC and HPC retention in the stromal niche, resulting in
enhanced HSPC trafficking and when used with G-CSF results in a PBSC graft that restores
neutrophils and platelets faster than observed with the PBSC grafts mobilized by G-CSF
alone (137). This finding represents an exciting opportunity to utilize a highly effective but
inexpensive FDA approved drug to enhance PBSC mobilization and may be more
appropriate for preemptive strategies, eliminating the need for guesswork on “poor” versus
“good mobilizers” to decide who receives treatment and who does not.

Another fertile area to cultivate may in fact be the use of rapid mobilizers alone. In the
studies reported to date, it is clear that these agents, particularly chemokines and their
receptors, differ dramatically in their mobilization mechanism compared to G-CSF. These
agents mobilize in minutes to hours compared to days for G-CSF. They are, however,
usually less active than G-CSF based upon numbers of hematopoietic progenitors mobilized.
However, in preclinical studies, the PBSC graft mobilized by these agents appears to contain
a population of more immature HSPC with inherent superior engraftment capacity compared
to G-CSF alone (149–151). A combination that we have recently investigated utilizes the
CXCR4 antagonist AMD3100 with the CXCR2 agonist GROβΔ4. When these 2 agents are
administered either simultaneously or within 5 minutes of each other, a level of HSPC
mobilization is reached within 15 minutes that is equal to that of G-CSF used alone for 4
days (150). Similarly, in primary competitive transplantation models, the graft mobilized by
combination of AMD3100 plus GROβ showed equal or slightly better chimerism compared
to a PBSC graft mobilized by a four day regimen of G-CSF. However, in secondary non-
competitive transplant models transplant of equal numbers of bone marrow cells harvested
at 6 months from mice who had received AMD3100 plus GROβ mobilized grafts showed
significantly enhanced chimerism compared to mice receiving G-CSF mobilized PBSC,
clearly suggesting superior engraftment and enhanced competitiveness of the primary graft
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compared to G-CSF. Translation of the rapid mobilizer strategy to clinical transplantation
may in fact alter the transplant paradigm and allow for transplant without graft
cryopreservation, and the inherent loss of stem and progenitor cells by freezing, thaw and
wash. The level of mobilization seen in mice with this combination suggests that the need
for multiple days of apheresis can be significantly reduce or even eliminated. Since
recombinant GROβ has been administered in man, it will be interesting to see if preclinical
findings can be translated.

Defining a successful harvest
The inherent enhanced reconstituting capacity of PBSC grafts mobilized in part through
agonism of the CXCR4 and CXCR2 receptors, or use of NSAIDs with G-CSF raise the issue
of defining an “optimal graft” as defined by CD34+ cells per kg body weight. Clearly,
CD34+ cell number is a useful current guideline for transplant that is based on the paradigm
of using G-CSF as a single agent mobilizer. Preclinical data with AMD3100 and GROβ
have suggested that there is a qualitative difference in the PBSC mobilized by these agents
(93, 121, 150, 152, 153). Similarly, in a trial exploring AMD3100 as a single agent without
G-CSF, reduced CD34+ cell number with AMD3100 was seen compared to G-CSF, yet the
transplanted patients showed rapid and durable trilineage hematopoiesis (154). It will remain
to be determined if minimum CD34 count, i.e., 2×106/kg will be useful as a guideline for
grafts mobilized by other agents.

Conclusion
G-CSF mobilized PBSC have had a significant impact on the expansion of hematopoietic
transplantation as a curative option for numerous malignant and non malignant diseases. The
flurry of mechanism based research studies that has followed the largely clinical trial based
development of G-CSF based PBSC mobilization identified new agents and potential
pathways for improvements to mobilization, and has led to FDA approval for Plerixafor in
combination with G-CSF for hard to mobilize patients. Preclinical studies have increased
our understanding of HSPC trafficking and although clearly incomplete, we have reached a
time where these new seeds of knowledge can and should be germinated to develop
improved varieties of PBSC mobilization that based upon preclinical data may yield
stronger and more robust effects.
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Figure 1.
Timeline of major advances leading to the use of peripheral blood stem cells for
hematopoietic transplantation.
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Figure 2.
The new branches of hematopoietic stem cell mobilization, showing alternative agents to G-
CSF.
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