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Abstract
Purpose of the Review—In this review, examples of recent progress in HIV-1 vaccine
research are discussed.

Recent Findings—New insights from the immune correlates analyses of the RV144 efficacy
trial have accelerated vaccine development with leads to follow in non-human primate studies and
improved vaccine designs. Several new vaccine vector approaches offer promise in exquisite
control of acute infection and in improving the breadth of T cell responses. New targets of broadly
neutralizing antibodies (BnAbs) have been elucidated, and improved understanding of how the
human host controls BnAb development have emerged from BnAb knockin mice and from
analyses of BnAb maturation and virus evolution in subjects followed from the time of HIV-1
transmission to BnAb induction.

Summary—Based on these observations, it is clear that development of a successful HIV-1
vaccine will require new vaccine approaches and iterative testing of immunogens in well-designed
animal and human trials.
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Introduction
After more than 30 years since the discovery of HIV-1 as the cause of AIDS, no vaccine
exists for clinical use to prevent HIV-1 infection. The reasons are numerous and include the
ability of HIV-1 to integrate into host DNA, the error-prone nature of HIV-1 reverse
transcriptase leading to remarkably high HIV-1 diversity over time, and the host’s inability
to mount antibodies to targets within conserved envelope regions that confer broad
neutralization. Recent insights of ways vaccines can potentially stimulate protective T and B
cell immunity, the identification of new targets for broad neutralizing antibodies (BnAbs),
and the discovery of new mechanisms of host control of HIV-1 BnAb induction offer
renewed hope for the development of a safe and effective preventive HIV-1 vaccine. In this
review, we discuss recent progress in understanding the immune correlates of risk for HIV-1
infection and protection in both human and non-human primate vaccine trials, and discuss
progress in understanding the nature of roadblocks that prevent the induction of B cell
responses to conserved Env regions that are BnAb targets. Finally, the paths forward for
HIV-1 vaccine development are discussed.
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Immune Correlates Analysis of the RV144 Vaccine Efficacy Trial
In 2009, the RV144 phase 3 efficacy trial conducted in Thailand revealed an estimated
efficacy of 31.2% with the ALVAC vCP1521-AIDSVAX B/E vaccine regimen [1]. The
impetus to explore the immune correlates of risk for HIV-1 infection in this first clinical trial
demonstrating efficacy led to the performance of a two-year study by an international team
[2]. In 2012, two immune correlates of risk were reported [2]. First, IgG antibodies to HIV-1
Env V1-V2 correlated inversely with infection risk, raising the hypothesis that antibodies
binding to the V1V2 Env region were involved in preventing infection. To investigate this
further, four V2 Env monoclonal antibodies (mAbs) from RV144 vaccinees were isolated
that do not neutralize HIV-1 CRF01_AE tier 2 viruses from trial breakthrough infections,
but do bind to the surface of CRF01_AE tier 2 virus-infected CD4+ T cells and mediate
antibody-dependent cellular cytotoxicity (ADCC) [3]. Epitope mapping and structural
studies of these RV144 V2 mAbs demonstrated that they bind to the same V2 Env region
(including K169) as the previously described anti-V1V2 BnAbs PG9 and CH01[4, 5].
However, unlike the V1V2 Bnabs, the RV144 V1 mAbs do not bind glycans (3). Moreover,
the V2 region where RV144 mAbs bind can vary in conformation, existing as an alpha-helix
in the context of RV144 V2 mabs [3] and a beta strand in the context of V1V2 BnAbs [6]
(Figure 1). A molecular genetic analysis of viruses infecting RV144 vaccinees and placebos
demonstrated vaccine-induced immune responses were associated with a signature in V2 (aa
169), with vaccine efficacy of 48% against viruses matching the vaccine at position 169 [7].
These studies have raised the hypothesis that one potential mechanism of protection in the
RV144 trial is V2-antibody-mediated ADCC of infected CD4+ T cells [2, 3].

Second, the RV144 immune correlates analysis demonstrated that high titer anti-Env IgA
antibodies directly correlated with infection risk [2]. An association study demonstrated that
in the presence of low titer anti-Env IgA antibodies, ADCC levels inversely correlated with
infection risk in RV144, suggesting that anti-Env IgA antibodies may mitigate the protective
effects of IgG antibodies, as well as potentially other effector activities such as CD4+ T cell
helper responses [2]. Serum IgA antibodies isolated from RV144 vaccinees indeed can block
ADCC activity of IgG anti-Env antibodies [8].

To better understand how the two RV144 immune correlates of infection risk may confer
protection, immunoprophylaxis studies in the non-human primate vaccine challenge model
are underway. In addition, future clinical efficacy trials are planned in Southern Africa with
vaccine constructs similar to the RV144 regimen but with HIV-1 subtype C sequences to
more closely match the circulating strains, and these trials will be important to confirm the
two RV144 antibody correlates in other at-risk heterosexual populations. Since the estimated
vaccine efficacy (31.2%) observed in the RV144 trials was quite low and short in duration
[1], important areas of investigation are formulating Env immunogens with alternative
adjuvants than alum that trigger TLR4, TLR7/8 and other innate signaling pathways to
improve vaccine potency [9-11], optimizing heterologous prime-boost regimens to target the
desired immune T cell and Ab responses, broadening the epitope specificities and HIV-1
subtypes recognized with mosaic antigen approaches, and discovering ways to construct Env
immunogens that can generate BnAbs.

Vector-Based Vaccines
The failure of the Step trial evaluating a single-strain MRKAd5 HIV-1 gag/pol/nef vaccine
dampened enthusiasm that a vaccine inducing high CD8+ T cell response rates but no Env-
specific antibodies could induce immune protection against HIV-1 acquisition [11, 12].
However, recent insights have emerged from this phase 2b efficacy trial that guide decision-
making moving forward. Despite the lack of efficacy, the sieve analysis of viral sequences
from breakthrough strains provided evidence for selective pressure by the vaccine [13], and
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vaccine recipients with T cells recognizing more than two Gag epitopes pre-infection
showed significantly lower plasma viremia following infection (Janes H et al, submitted).
These findings suggest that induction of CD8+ T cells of certain specificities may have a
beneficial effect in early control of infection, as has been recently shown in the rhesus
macaque model [14]. Moreover, further analysis of the Step study indicated a time-
dependent increased infection rate in uncircumcised vaccine recipients with Ad5-
seropositivity prior to immunization [11, 15]. Although to date the major detectable effect of
previous Ad5 immunity in vaccinees has been its blunting effect on both the innate immune
response to vaccination [16] and the T cell response to HIV-1 [17], safety concerns now
limit further consideration of the Ad5 vector as an HIV-1 vaccine. Other vector approaches
have been pursued and show promise in the NHP vaccine model and early phase clinical
trials.

Hansen et al have constructed and evaluated recombinant rhesus cytomegalovirus (RhCMV)
vectors expressing the full SIV genome and shown 50% of vaccinated rhesus macaques
exert complete early control against mucosal challenge with the highly pathogenic
SIVmac251 [18]. Immune protection was correlated with peak levels of effector memory
SIV-specific CD8+ T cells pre-challenge in the absence of SIV Env-specific antibodies.
Interestingly, depletion of CD8+ or CD4+ T cells with mAbs did not lead to recrudescence
of viremia, suggesting that the vaccine-induced response eliminated the viral challenge [18,
19]. While concerns exist that immunization of healthy humans with recombinant human
CMV/HIV-1 vectors may cause CMV infectious complications, engineering more
attenuated CMV vectors as well as other types of vectors that are safe and can induce similar
cellular immune responses are key to develop.

In this regard, Barouch et al reported that rhesus macaques immunized with a heterologous
vector regimen using recombinant adenovirus serotype 26 (Ad26) and modified vaccinia
Ankara (MVA) expressing SIV Gag-Pol and Env, as well as an Ad35/Ad26 regimen,
resulted in ≥80% reduction in per-exposure probability of infection against repetitive
heterologous mucosal low-dose SHIV challenge [20]. Correlates of infection risk were total
and V2-specific plasma Env antibody titers and tier 1 neutralizing antibodies. ADCC and
Gag-specific interferon-secreting T cell breadth and frequencies correlated with viral control
in animals who became infected [20]. Whether the protective immune responses underlying
the correlates analyses in this and the RV144 trial have a common mechanism is not clear,
but these studies, like the RhCMV studies above, are of interest because of the levels of
protection suggested by use of these vectors.

Vaccine Insert Design to Overcome HIV-1 Diversity
One of the earliest vaccine approaches to overcome HIV-1 diversity that has undergone
extensive clinical evaluation is the NIH Vaccine Research Center (VRC) DNA and rAd5
vectors. This regimen consists of a DNA prime containing clade B gag-pol-nef genes and
clades A, B and C env genes, followed by a rAd5 vector expressing the same genes except
nef [21, 22]. In a recent phase 2 trial of this vaccine regimen (HVTN 204), HIV-specific T
cells secreting IFN-γ were seen in ~70% of vaccinees, and ~90% of subjects mounted high
titer Env binding antibodies [22] and BnAbs to tier 1 clade B HIV-1 strains but not to tier 2
HIV-1 strains. However, binding antibodies directed to the homologous Env clade A V1V2
region were seen in 38% of vaccinees (Tomaras, G et al. personal communication). This
vaccine regimen is currently under evaluation in a phase 2b efficacy trial (HVTN 505) in
Ad5 seronegative, circumcised men in the U.S. Accrual will be completed in April 2013,
and efficacy outcome revealed within the next two years. This efficacy trial is the only one
testing the immune correlates hypotheses raised in the RV144 efficacy trial, and new
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candidate vaccine regimens designed to extend this analysis will enter clinical studies in
2015.

A number of newer vaccine constructs designed to overcome HIV-1 diversity in CD4+ and
CD8+ T cell recognition include ancestral center-of-the-tree [23], consensus [24], conserved
[25, 26] and mosaic approaches [27, 28]. Conserved vaccines seek to include the most
conserved CD8+ cytotoxic T cell epitopes in vaccines to increase viral quasispecies
coverage [29] and recent data suggest conserved T cell epitopes are more immunogenic
when presented within full-length HIV-1 immunogens [30].

Mosiac vaccines are optimized for both CD4 and CD8 T cell recognition by a process of in
silico homologous recombination, selecting 2-4 full gene sequences with the most conserved
epitope variants of sequences annotated in the HIV-1 Los Alamos Database (www.lanl.gov),
and ensuring that the joining sequences of each epitope are natural sequences [27, 28].
Comparison of mosaic and consensus immunogens for breadth and depth of T cell epitope
diversity recognition has demonstrated the superiority of 2- and 3-valent mosaics over
consensus immunogens [31, 32]. A conserved vaccine has already entered phase 1 testing
[29], and clinical trials with mosaic HIV-1 vaccines in pox or Ad26 vectors will begin this
year (B. Haynes, B. Korber, L. Baden, personal communication; D.Barouch, N. Michael and
B. Korber, personal communication).

Broad Neutralizing Antibodies: Understanding Targets, Host Control, and Maturation
Pathways

Recently, the HIV-1 vaccine field has extensively embraced recombinant human antibody
cloning for production of human BnAbs from chronically HIV-1-infected subjects [33-35].
Improved recombinant antibody technology has combined with new methods for isolating
HIV-1 Env-reactive memory B cells from antigen-specific B cell sorts [36-38], from plasma
cell sorts [35, 39, 40] and from clonal memory B cell cultures [3-5]. As a result, a large
number of human BnAbs have been identified that target 1 of 4 major conserved areas in the
HIV-1 envelope, including 1) the gp120 CD4 binding site (CD4bs) region [41-45], 2) the
membrane proximal external region (MPER) of gp41 [38, 46], and 3) two new gp120 BnAb
peptide-glycan epitopes, one in the Env gp120 V1V2 loop [4-6]; and the other in the V3
region [47-49] (Figure 2). The latter BnAb group is especially potent, eliciting NHP
protection from SHIV infection in passive immunoprophylaxis studies at plasma levels as
low as 2 ug/ml [50].

Nevertheless, a critical issue in HIV-1 vaccine development is that current vaccines do not
induce BnAbs. They arise after many years of HIV-1 infection in only ~20% of subjects
[51-54] and typically have more than one BnAb lineage in a given subject [55]. BnAbs may
be difficult to induce by vaccination in part because carbohydrates can mask neutralizing
epitopes, and immunodominant non-neutralizing Env epitopes can divert B cell responses
from neutralizing epitopes (reviewed in [56]).

Early observations of two first generation BnAbs (MPER antibodies 2F5 and 4E10) revealed
long heavy chain (H) third complementarity determining regions (CDR3s) and
autoreactivity with non-HIV-1 antigens [57]. These findings led to the hypothesis that host
tolerance mechanisms may prevent BnAb induction [57, 58]. Using 2F5 MPER BnAb
homologous recombinant mice, Verkoczy et al. [59, 60] demonstrated that indeed most mAb
2F5-bearing B cells are deleted in the bone marrow and a minor cell population (~5%)
survive in the periphery as anergic B cells [60]. Similar observations have been made with
MPER BnAb 4E10 knock-in mice by Nemazee et al [61] and L. Verkoczy and B. Haynes
(personal communication). Kelsoe et al have recently identified kynureninase (KYNU) and
splicing factor 3b subunit 3 (SF3B3) as the primary high affinity autoantigens recognized by
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2F5 and 4E10 BnAbs, respectively [62]. Thus, one major factor limiting some BnAb
induction is tolerance deletion due to mAb autoreactivity.

Although HIV-1 antibodies from chronically infected subjects may [34] or may not [41, 46]
be polyreactive, all reported BnAbs share one or more of the following unusual B cell
receptor traits--polyreactivity/autoreactivity, high levels of somatic mutations, and long
HCDR3s— traits that expose antibodies to tolerance control mechanisms [63] (reviewed in
[56]). Thus, unusual antibodies undergoing complex maturation pathways are required to
achieve binding to the four conserved areas of HIV-1 Env to which BnAbs bind. Moreover,
in some cases, only one or a few VH/VL antibody pairs can be used. For example, for the
VRC01-like antibodies that bind to the CD4bs in a manner similar to CD4, only VH1-02 or
VH1-46 have been found in this BnAb type [41, 43]. Similarly, mAb 4E10 and Cap206-
CH12 both bind to the same MPER site and use VH1-69 and Vκ3-20 even though they were
derived from two separate individuals [38, 64]. Thus, despite the vast redundancy in the
human B cell repertoire, for some of the BnAb sites, only a few VH and VL pairs will
suffice. Moreover, these findings strongly suggest that one reason BnAbs are not readily
made is that their unusual traits predispose their precursors to be limited in development,
and even when allowed to develop, are in limited numbers such that the BnAb response is
always subdominant to other non-neutralizing Env responses.

The full BnAb maturation pathways are being unraveled by isolation of mature antibodies
from more distal BnAb clonal lineages and inferring their intermediate ancestor antibodies
and the unmutated common ancestor (UCA, the putative naïve B cell receptor) using
computational analysis and pyrosequencing [5, 39, 65]. One proposed reason that BnAbs are
difficult to induce with immunization is that there are “holes” in the B cell germline
repertoire and the BnAb UCA antibodies (naïve B cell receptors) are not available to bind
Envs to drive the BnAb lineages [66-69]. However, Env constructs have been recently found
to bind to VIV2 UCAs [3, 5] and gp41 MPER BnAbs [70].

Sequential virus envelopes isolated by BnAbs from SHIV-infected rhesus macaques and
used as immunogens have been proposed to recreate viral evolution pathways [71]. A recent
study has taken a new approach to Env immunogen design by mapping both BnAb and virus
evolution from the time of transmission to development of plasma BnAb activity in the same
HIV-1-infected subject [44]. The transmitted/founder virus bound well to the BnAb lineage
UCA, as well as to all descendants of the BnAb clonal lineage. Moreover, the trajectory of
virus evolution was mapped and a series of Env mutations were identified that developed
concomitant with antibody evolution, revealing the pattern of simultaneous Env-BnAb
evolution [44]. Such an analysis has permitted the precise identification of Env variants
associated with induction of the BnAb lineage. A strategy has been proposed to use such
data to drive otherwise unfavorable subdominant BnAb lineages to be dominant responses,
termed B cell lineage immunogen design [56], by administering sequential or swarms of
immunogens designed to bind optimally to each stage of the BnAb maturation pathway and
to selectively induce affinity maturation in BnAb and not other non-BnAb lineages. Another
proposed strategy is based on optimization of immunogens in the form of the native trimer
[72]. Evidence that some Envs may be more able to induce BnAbs than others has emerged
from studies demonstrating a high frequency of BnAbs in rhesus macaques infected with
SHIV AD8 [73] and from immunogenicity studies indicating that transmitter/founder Envs
induce greater neutralizing breadth than chronic Envs [74].

Conclusion
A highly effective HIV-1 vaccine will likely need to harness T cell and B cell immunity to
protect against both virions and virus-infected cells. Progress has been made in using

Haynes and McElrath Page 5

Curr Opin HIV AIDS. Author manuscript; available in PMC 2014 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



replicating vectors for induction of T cells that can exert early control of virus replication in
non-human primates and in defining the immune correlates of infection risk in the ALVAC/
AIDSVAX B/E® vaccine efficacy trial. The field eagerly awaits the results and insights
from the DNA prime, rAd5 boost HVTN 505 efficacy trial, which like the RV144 trial, is
unlikely to induce BnAbs. The ability to induce BnAbs remains the holy grail of HIV-1
vaccine development, invigorated by discoveries of BnAb specificities and their ability to
protect in vivo at remarkably low plasma levels. However, host tolerance controls of BnAbs
requires new methods of immunogen design that can selectively target members of the
BnAb lineage and are tailored to induce subdominant BnAb rather than dominant non-BnAb
responses. In summary, major strategies being pursued are several approaches for the
induction of BnAbs, augmentation of the quality and quantity of non-neutralizing V1V2
antibodies as seen in the RV144 immune correlates study, and development of vaccine
vectors that better represent critical T cell epitopes and the viral diversity of circulating
strains. Hopefully, one or more of these paths will lead to a sufficiently efficacious vaccine
that can be deployed as a preventive vaccine either alone or in combination with other
prevention modalities [75] to ultimately end the HIV-1 epidemic.
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Key Points

• Immune correlates analyses in the RV144 trial and in rhesus macaque protection
model have provided new directions for vaccine development.

• New targets for broad neutralizing antibodies have been described.

• New vectors are inducing new degrees of protection in non-human primates.

• Host controls of neutralizing antibody induction have been described and have
pointed the way to new strategies for broad neutralizing antibody induction.
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Figure 1.
Structures of Antibodies CH58 and CH59 Bound to an HIV-1 gp120 V2 Peptide Compared
to V1V2 BnAb PG9 bound to a V1V2 scaffold. RV144 vaccine-elicited antibodies CH58
and CH59 recognize alternative conformations of V2 compared to BnAb PG9.(A). Ribbon
representation of the CH58 antigen-binding fragment in complex with an A244 V2 peptide
as viewed end on looking at the Fab antibody conforming site. Heavy chain is colored
orange, light chain is blue, and V2 peptide is green. The sequence of the peptide is shown,
with modeled residues in green. The side chains of residues involved in hydrogen bonds or
salt bridges are shown as sticks, with the interactions depicted as dashed lines.(B) Structure
of CH59 in complex with peptide, depicted as in (A). The heavy chain is tan, and the light
chain is light blue.(C) Structure of BnAb PG9 in complex with the V1V2 domain from
HIV-1 strain CAP45. The PG9 structure is shown as ribbons with heavy and light chains
(colored yellow and blue, respectively) in the same orientation as in (A) and (B). The V1V2
domain is shown as a gray ribbon with residues 168–176 colored green and N-linked
glycans attached to residues Asn156 and Asn160 shown as sticks. Reprinted with permission
from ref. [3].
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Figure 2.
A model of the HIV-1 Env spike with select BnAbs Fab molecules bound to Env BnAb
binding sites. Adapted with permission from ref. [49].
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