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Abstract
The pituitary gonadotropin hormones, FSH and LH, are essential for fertility. Containing an
identical α-subunit (CGA), they are comprised of unique β-subunits, FSHβ and LHβ, respectively.
These two hormones are regulated by the hypothalamic decapeptide, GnRH, which is released in a
pulsatile manner from GnRH neurons located in the hypothalamus. Varying frequencies of
pulsatile GnRH stimulate distinct signaling pathways and transcriptional machinery after binding
to the receptor, GnRHR, on the cell surface of anterior pituitary gonadotropes. This ligand-
receptor binding and activation orchestrates the synthesis and release of FSH and LH, in synergy
with other effectors of gonadotropin production, such as activin, inhibin and steroids. Current
research efforts aim to discover the mechanisms responsible for the decoding of the GnRH pulse
signal by the gonadotrope. Modulating the response to GnRH has the potential to lead to new
therapies for patients with altered gonadotropin secretion, such as those with hypothalamic
amenorrhea or polycystic ovarian syndrome.
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INTRODUCTION
FSH and LH secretion from the gonadotrope is controlled by the hypothalamic decapeptide,
GnRH (Belchetz et al., 1978). Acting primarily in the anterior pituitary, GnRH binds to its
native high-affinity seven-transmembrane receptor (GnRHR) on the cell surface of the
gonadotrope, stimulating signaling cascades that confer the production of these
gonadotropins. FSH and LH exert their effects on the ovaries and testes, leading to
steroidogenesis and gametogenesis, highlighting their critical role in reproductive function
(Burger et al., 2004). Released in a pulsatile manner from the hypothalamus, differential
GnRH pulse frequencies and amplitudes alter the secretion patterns of FSH and LH (Savoy-
Moore and Swartz, 1987; Wildt et al., 1981), with increasing frequencies resulting in
preferential secretion of LH, whereas decreasing frequencies result in greater FSH release.

© 2013 Elsevier Ireland Ltd. All rights reserved.
‡Address all correspondence and requests for reprints to: Ursula B. Kaiser M.D., Division of Endocrinology, Diabetes and
Hypertension, Brigham and Women's Hospital, 221 Longwood Avenue, Boston, Massachusetts 02115. Telephone: 617-525-8867;
ukaiser@partners.org.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Disclosure Statement: The authors have nothing to disclose

NIH Public Access
Author Manuscript
Mol Cell Endocrinol. Author manuscript; available in PMC 2015 March 25.

Published in final edited form as:
Mol Cell Endocrinol. 2014 March 25; 385(0): 28–35. doi:10.1016/j.mce.2013.09.012.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Although considerable research has been dedicated to elucidating the mechanisms by which
GnRH controls the production and secretion of FSH and LH, less is known about how the
gonadotrope decodes the pulsatile GnRH signal.

Three members of the GnRHR family have been identified in vertebrates (type I, II and III)
(Millar, 2005). In mammalian gonadotropes, Type I GnRHR (throughout this review
referred to as GnRHR) shares 85% sequence homology amongst human, rat, sheep, cow and
pig species (as reviewed in detail (Sealfon et al., 1997)). Although type II GnRHR is present
in both the pig and monkey, it is notably absent from the mouse, rat, sheep and cow, as well
as silenced, in both the human and chimpanzee genomes (Hapgood et al., 2005; Millar,
2003). Upon stimulation, GnRHR does not desensitize, a result of an absent C-terminus
(Davidson et al., 1994; McArdle et al., 1995; McArdle et al., 1996; Willars et al., 1999).
Therefore, other potential mechanisms modulating the cellular response to pulsatile GnRH
include ligand-mediated receptor internalization, changes in receptor number, or changes in
the activity of signaling pathways downstream of the GnRHR. Indeed, lack of GnRHR
desensitization, atypical compared to most other G protein-coupled receptors, may
contribute to the ability of the gonadotrope to respond differentially to varying GnRH pulse
frequencies. It has been demonstrated previously in perifused rat pituitary cultures that
Gnrhr mRNA is expressed in a pulsatile GnRH dependent manner (Kaiser et al., 1997).
GnRH pulses increase Gnrhr mRNA levels compared to untreated controls, with levels
greater at fast than at slow frequencies (Kaiser et al., 1997). Therefore, gonadotropes could
potentially respond differentially to pulsatile GnRH by changes in the numbers of cell
surface receptor numbers (Kaiser et al., 1995).

The control of FSH and LH synthesis is closely linked to the transcription of the distinct β-
subunits, Fshb and Lhb respectively. Both FSH and LH contain a common α-subunit
(CGA); therefore, it is FSHβ and LHβ that confer the specific actions of the gonadotropins
(Gharib et al., 1990). Like FSH and LH secretion, the transcription of the gonadotropin
subunits is also dependent on GnRH pulse frequency (Dalkin et al., 1989; Haisenleder et al.,
1991; Jakubowiak et al., 1989; Kaiser et al., 1997). A decreased frequency of pulsatile
GnRH favors Fshb transcription, whilst an increased frequency favors Lhb transcription.
Although levels of Cga mRNA do respond to pulsatile GnRH, the regulation in response to
varying frequencies of pulsatile GnRH is less important for overall FSH and LH production,
since Cga is produced in excess over Lhb and Fshb at both fast and slow GnRH pulse
frequencies (Landy et al., 1991; Weiss et al., 1990). Continuous exposure to GnRH
downregulates both mRNA levels and secretion of gonadotropins, compared to pulsatile
GnRH; therefore, biosynthesis of both FSH and LH is critically dependent on the pulsatile
nature of the GnRH signal (Belchetz et al., 1978; Burger et al., 2004; Ferris and Shupnik,
2006; Gharib et al., 1990; Haisenleder et al., 1991).

The importance of the differential control of FSH and LH secretion is highlighted by
disorders associated with dysregulation of their release from the pituitary. Patients with low
levels of GnRH, FSH and LH, for example in association with idiopathic hypogonadotropic
hypogonadism or Kallmann syndrome, are infertile (Seminara et al., 1998). Conversely,
accelerated GnRH pulse frequency, associated with increased levels of LH over FSH, is
associated with polycystic ovarian syndrome (PCOS). This disorder affects 5-15 % of the
female population within reproductive age, and is also linked to obesity, insulin resistance,
as well as other metabolic and cardiovascular abnormalities (Blank et al., 2007; Dunaif,
1997; Hoffman and Ehrmann, 2008). Therefore, it is evident that highly controlled
interactions between the hypothalamic GnRH neurons and pituitary gonadotropes are critical
for appropriate control of FSH and LH release and subsequent gonadal stimulation and
reproductive function.
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CURRENT CELLULAR MODELS
Gonadotropes comprise 5-15% of the total anterior pituitary cell population (Ooi et al.,
2004), which can make studies of gonadotropin regulation using primary cultures difficult.
Several factors need to be considered whilst investigating the regulation of FSH and LH
synthesis in response to GnRH stimulation of the gonadotrope, such as paracrine effects of
factors secreted from gonadotropes or other pituitary cell types, as well as the effects of
factors secreted from folliculostellate cells (Denef, 2008; Fallest and Schwartz, 1991;
Kawakami et al., 2002; Thackray et al., 2010). Numerous in vivo animal models have been
employed to examine gonadotrope biology, including gonadectomized rats (Dalkin et al.,
1989; Haisenleder et al., 1991) and rhesus-monkeys (Wildt et al., 1981). The generation of
genetic mouse models, such as gonadotrope-specific ERK1/2 knock-out mice (Bliss et al.,
2009), provide an opportunity to elucidate the effects of abrogating signaling pathways
implicated in the regulation of Fshb and Lhb transcription in vivo. It is also worth
highlighting two transgenic mouse models that allow for cell sorting and subsequent
isolation and purification of primary gonadotropes (Wen et al., 2008; Wu et al., 2004).
However, other limitations present themselves, such as acquiring enough purified
gonadotropes to carry out significant characterization studies. Heterologous cell models such
as HeLa cells have recently been published (Armstrong et al., 2009a, 2010), requiring
relatively fewer cell numbers and utilizing techniques such as live cell imaging.

The emergence of two murine gonadotrope-derived cell lines, αT3-1 and LβT2 cells, have
allowed researchers to study homogeneous gonadotropic cell populations (Alarid et al.,
1996; Thomas et al., 1996; Turgeon et al., 1996; Windle et al., 1990). Representing an
immature gonadotrope at an earlier stage of differentiation, αT3-1 cells express CGA,
GnRHR, and SF1, although they lack expression of Fshb and Lhb subunits (Windle et al.,
1990). In comparison, the generation of LβT2 cells provided a significant advance (Alarid et
al., 1996). LβT2 cells have been shown to produce Fshb in response to activin A (Graham et
al., 1999), coupled with other studies that demonstrated that these cells express Fshb and
Lhb subunits, as well as secrete both FSH and LH (Graham et al., 1999; Pernasetti et al.,
2001; Turgeon et al., 1996). LβT2 cells remain the only homologous cell line available for
the study of FSH and LH synthesis and secretion; therefore this model heavily influences the
material covered in this review, with comparison to the in vivo murine models mentioned
above. As a result of being a homologous cell line, studies conducted with LβT2 cells may
lack the effects of paracrine factors produced by other pituitary cell types that may influence
GnRH signaling in the gonadotrope. However, these cells express activin and follistatin, two
autocrine effectors of Fshb transcription (Takeda et al., 2007). Another potential limitation
of this cell line is the relatively low levels of FSH production in LβT2 cells compared to
primary gonadotropes. While it is not clear if the regulatory pathways identified in LβT2
cells accurately reflect those used in primary gonadotropes, they reflect the best in vitro
gonadotrope-derived cell line currently available.

SIGNALING PATHWAYS ACTIVATED BY PULSATILE GNRH
The GnRHR, a member of the seven-transmembrane G protein-coupled receptor family, and
the signaling pathways that are stimulated by the receptor upon activation by GnRH, have
been studied extensively. However, it still remains elusive as to how the gonadotrope
decodes the pulsatile GnRH signal to preferentially produce either FSH or LH.

The GnRHR has been shown to couple with Gαq/11, Gαi and Gαs (Krsmanovic et al., 2003;
Liu et al., 2002b) in hypothalamic cell lines and LβT2 cells, implicating a wide range of
pathways that may potentially mediate the pulsatile GnRH response. On the other hand,
some studies, such as those investigating G protein coupling to GnRHR in other cell types,
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including αT3-1 (Grosse et al., 2000; Hsieh and Martin, 1992), CHO-K1, and COS-7
(Grosse et al., 2000) cells support preferential or even exclusive interaction with Gαq/11.
Several studies (Han and Conn, 1999; Lin and Conn, 1998; Stanislaus et al., 1998) provide
yet another perspective, identifying GnRHR coupling to multiple G protein subunits in the
heterologous rat somatolactotropic GGH3 cell line and in primary rat gonadotropes.
Therefore an important consideration when investigating the role of G proteins in GnRHR
signaling is the cell model being used.

MAPK Pathways
It has been demonstrated that several mitogen-activated protein kinase (MAPK) cascades,
including extracellular signal related kinase (ERK), jun N-terminal kinase (JNK), and p38
are stimulated by GnRH (Ben-Menahem and Naor, 1994; Benard et al., 2001; Bonfil et al.,
2004; Harris et al., 2002; Levi et al., 1998; Liu et al., 2002b; Mulvaney and Roberson,
2000). These MAPK cascades have been implicated in playing a role to mediate the control
of FSH and LH synthesis in response to pulsatile GnRH (Kanasaki et al., 2005).

Rapid and sustained ERK1/2 phosphorylation and activation following slow GnRH pulse
frequencies, coupled with higher levels of ERK1/2 phosphorylation versus fast frequency
GnRH, implies that distinct patterns of ERK activation/inactivation are regulated by GnRH
pulse frequency (Kanasaki et al., 2005). Therefore, the difference in ERK activation in
response to varying GnRH pulse frequency could be responsible for the differential
expression of Fshb and Lhb in the gonadotrope (Kanasaki et al., 2005). The dependence of
Lhb transcription on ERK activation has been well characterized, mediated through the early
growth response-1 protein (EGR1) (Dorn et al., 1999; Fortin et al., 2009; Lawson et al.,
2007; Lee et al., 1996; Wolfe and Call, 1999). As previously reviewed (Bliss et al., 2010),
studies involving male gonadotrope-specific ERK knock-out mice demonstrated little
change in the regulation of Fshb expression by GnRH (Bliss et al., 2009). However, in
female mice, the increase in Fshb mRNA following ovariectomy was impaired, suggesting
an impaired induction by GnRH (Bliss et al., 2009). The direct induction of Fshb and Lhb in
gonadotropes by pulsatile GnRH has yet to be assessed in this gonadotrope-specific ERK
knock-out model.

A recent study examined the potential for ERK1/2 to be the GnRH pulse frequency signal
decoder (Armstrong et al., 2010). Using live-cell imaging to track ERK2-GFP translocation
in HeLa cells, this group demonstrated that in response to both fast and slow GnRH pulse
frequencies, ERK2-GFP translocated into the nucleus, a mark of both activation and
involvement in transcription events. Based on mathematical modeling predictions, they
argue that a lack of desensitization of this response, at either pulse frequency, suggests that
ERK is not the decoder of the GnRH signal (Armstrong et al., 2010). However, downstream
effects of ERK translocation, which may take longer to return to the basal state after each
pulse, may provide a mechanism by which the gonadotrope differentially senses fast and
slow GnRH pulse frequencies.

We have previously suggested (Ciccone and Kaiser, 2009) that MAPK phosphatases (MKP)
may be responsible for the differential ERK1/2 phosphorylation patterns observed after
pulsatile GnRH treatment (Kanasaki et al., 2005). This hypothesis is supported by data
demonstrating an increase in MKP1 and MKP2 expression in response to GnRH, both in
gonadotrope cell lines and in vivo (Zhang and Roberson, 2006). However, two related
studies in both static and perifused cultures argue against this possibility. Although LβT2
cells treated with continuous GnRH demonstrated augmented pERK levels after MKP
knock-down (Armstrong et al., 2009b; Caunt et al., 2008), perifused HeLa cells (transfected
with GnRHR and ERK2-GFP) demonstrated only a 10-20% increase in MKP's compared to
cells treated with continuous GnRH (Armstrong et al., 2010). Coupled with data

Thompson and Kaiser Page 4

Mol Cell Endocrinol. Author manuscript; available in PMC 2015 March 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



demonstrating that mutation of the site which governs ERK MKP binding affects ERK2-
GFP translocation kinetics in response to continuous, but not pulsatile, GnRH (Armstrong et
al., 2010), the findings from this group argue against a major role for MKP's in mediating
the decoding of the pulsatile GnRH response. Lastly, studies conducted in LβT2 cells
demonstrated a significant increase in dual-specificity kinase 1 (DUSP1) after fast GnRH
pulse frequencies compared to control and slow frequency stimulated samples (Purwana et
al., 2011). In these LβT2 cells, overexpression of MAP3K1 induced both Fshb and Lhb
subunit promoter activities, which was inhibited by cotransfection with DUSP1 expression
vectors (Purwana et al., 2011). DUSP1 overexpression also prevented the induction of Fshb
and Lhb by pulsatile GnRH, suggesting a role for this phosphatase, and therefore MKPs, in
the regulation of gonadotropin transcription.

Calcium Signaling
Calcium signaling has been shown to contribute to the gonadotrope response to GnRH.
Rapid gonadotropin secretion and activation of CamK1/2 (Ca2+/calmodulin-dependent
kinases) have been attributed to GnRH dependent calcium mobilization (Haisenleder et al.,
2003a; Haisenleder et al., 2003b; Lim et al., 2007). Importantly, perifusion studies have
demonstrated a GnRH pulse frequency dependent effect of calcium on FSH and LH (Burger
et al., 2008; Haisenleder et al., 2001). Rat primary cells perifused with BayK8644, a calcium
channel agonist, demonstrated increased expression of gonadotropin genes. A slow pulse
frequency induced Fshb transcription, whilst conversely, fast frequency pulsatile BayK8644
treatment preferentially stimulated Cga and Lhb subunit transcription (Haisenleder et al.,
1997). These findings immediately draw parallels with the actions of pulsatile GnRH on
Cga, Lhb and Fshb transcription. It has been demonstrated that calmodulin activation by
calcium is required for ERK signaling in the gonadotrope (Roberson et al., 2005), also
leading to calcium/calmodulin-dependent kinase II (CamKII) activation (Haisenleder et al.,
2003a; Haisenleder et al., 2003b). On the other hand, it was demonstrated that CamKII
activation is not regulated by GnRH frequency (Burger et al., 2008; Haisenleder et al.,
2003a; Haisenleder et al., 2003b). However, due to the rapid kinetics of CamKII
inactivation, faster GnRH pulses may favor prolonged activity and subsequently greater Lhb
transcription than Fshb. This model favors calcium signaling as a mechanism by which the
gonadotrope decodes GnRH pulse frequency.

NFAT
The nuclear factor of activated T-cells (NFAT) transcription factor has been linked to
mediating the GnRH control of transcription upon activation by calcineurin, a protein
phosphatase (Armstrong et al., 2009a; Gardner and Pawson, 2009; Lim et al., 2007;
Oosterom et al., 2005). It has been demonstrated that emerald fluorescent protein tagged
NFAT2 (NFAT2-EFP) translocates into the nucleus upon GnRH stimulation (Armstrong et
al., 2009a), and the response is reversible. This mimics studies with ERK2-GFP,
demonstrating reversibility of the ERK translocation between GnRH pulses (Armstrong et
al., 2010), although the reversibility observed with NFAT2-EFP is markedly slower than
that of ERK2-GFP, suggestive of effectors of GnRH signaling further downstream
(Armstrong et al., 2009a). NFAT2-EFP undergoes desensitization regardless of GnRH pulse
frequency, which challenges mathematical models (Washington et al., 2004) and the
hypothesis that calcium/NFAT signaling is responsible for decoding the pulsatile GnRH
signal. The two studies investigating ERK and NFAT translocation were carried out in HeLa
cells (Armstrong et al., 2009a, 2010), raising the possibility that these effects were cell
specific. However, further examination of NFAT2-EFP translocation in LβT2 cells produced
results similar to those observed in HeLa cells (Armstrong et al., 2009a).
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PKA
GnRH stimulation of PKA in the gonadotrope has been reported previously (Duan et al.,
2002; Garrel et al., 2010; Grafer et al., 2009; Thompson et al., 2013; Tsutsumi et al., 2010),
alongside elevations in cAMP following GnRH stimulation (Lariviere et al., 2007; Liu et al.,
2002b; Tsutsumi et al., 2010). Studies investigating the role of PKA activity in modulating
the response to pulsatile GnRH, however, are limited. Using phosphorylated cAMP response
element binding protein (CREB) levels, Fshb LUC activity, and Fshb mRNA quantification,
it has recently been shown that PKA can mediate stimulation of Fshb, but not Lhb,
transcription in gonadotrope cells in response to GnRH at both fast and slow pulse
frequencies (Thompson et al., 2013). Coupled with these observations, PKA activity was
significantly increased in response to slow pulse frequencies. Interestingly, others have also
described increases in PKA activity in response to pulsatile GnRH, although not always in a
frequency dependent fashion (Tsutsumi et al., 2010). These two studies implicate PKA in
the gonadotrope response to pulsatile GnRH. Differences in the level of activation of PKA
measured at both pulse frequencies (Thompson et al., 2013; Tsutsumi et al., 2010) could be
due to the greater duration of pulsatile GnRH stimulation (Thompson et al., 2013), or
induction of other unknown factors to limit adenylyl cyclase activity, cAMP accumulation,
or PKA activity.

It is clear that the pathways regulating the transcription of Fshb and Lhb in the gonadotrope
upon stimulation by pulsatile GnRH are complex. Careful consideration must be given to the
model used in conducting such pathway studies. Ultimately, the physiological relevance of
data generated in cell line models should be investigated using in vivo animal models. The
search for the GnRH pulse frequency decoder continues. Techniques such as live-cell
imaging have been utilized to investigate the activation and translocation of various kinases
and phosphatases upon pulsatile GnRH treatment, yet current focuses on specific signaling
pathways have not definitively yielded the decoder. A combination of existing data and
further investigation based on mathematic modeling predictions of pulsatile GnRH signaling
will lead to a broader understanding of the key signaling pathways involved. Considering
the current evidence, it appears that the GnRHR differentially activates multiple distinct
signaling pathways in response to either fast or slow GnRH pulse frequencies, potentially as
a result of changes in associations with Gαq/11, Gαi and Gαs.

TRANSCRIPTIONAL REGULATION OF FSH AND LH SUBUNITS
The signaling pathways described in this review culminate to mediate an effect of pulsatile
GnRH stimulation on three gonadotropin subunit genes: CGA, FSHB and LHB. CGA
combines with either FSHB or LHB to form the heterodimeric glycoprotein hormones, FSH
and LH, respectively (Gharib et al., 1990). Mediators of β-subunit transcription that are the
focus of this review include CREB, ICER, c-Fos, c-Jun, EGR1 and activating transcription
factors (ATFs). These transcription factors have been studied extensively, although the
mechanisms driving their control by pulsatile GnRH are still to be fully elucidated.

FSH and LH production and release follow distinct pathways in the gonadotrope. Fshb
transcription is the rate limiting step of FSH synthesis. Once GnRH signaling pathways are
initiated, synthesis of FSH is directly coupled to release through the constitutive secretory
pathway (Farnworth, 1995; McNeilly et al., 2003; Nicol et al., 2004). Conversely, LH
release upon GnRH signaling is controlled through the regulated signaling pathway, with
LH stored in secretory granules until stimulation of secretion (Crawford and McNeilly,
2002; Crawford et al., 2002; Watanabe et al., 1991). Both Fshb and Lhb transcription rates
respond differentially to pulsatile GnRH; the signaling pathways responsible for these
effects have been studied extensively, with the goal to elucidate the role of transcription
factors in decoding this oscillatory signal.
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Fshb
Fshb transcription has been reviewed previously in detail (Bernard et al., 2010). Several
studies have demonstrated that activation of MAPKs, including pERK1/2, JNK and p38,
result in activation of transcription factors, including CREB, c-Fos, c-Jun and ATF's
(Ciccone et al., 2008; Liu et al., 2002a; Xie et al., 2005). Using the LβT2 cell line, our group
(Ciccone et al., 2008) and others (Coss et al., 2004; Wang et al., 2008) have identified a
GnRH responsive element in the Fshb promoter region, which is conserved in humans
(Wang et al., 2008) and contains a partial cAMP response element (CRE)/AP1 site. Having
established that upstream stimulating factor (USF)1 and USF2 are involved in basal rat Fshb
transcription in LβT2 cells and that CREB is involved in the response to continuous GnRH
in static culture (Ciccone et al., 2008), subsequent investigations explored the role of CREB
further under the perifusion paradigm. It was demonstrated that in LβT2 cells, pulsatile
GnRH stimulation of rat Fshb transcription, which occurs preferentially at slow GnRH pulse
frequencies, is dependent on CREB binding to the rat Fshb promoter (Ciccone et al., 2010).
Coupled with previous data implicating CREB binding protein (CBP) in binding to CREB to
stimulate Fshb transcription (Ciccone et al., 2008), this site appears to be important for the
response to pulsatile GnRH. CREB promotes Fshb transcription by recruiting CBP when
phosphorylated at position Ser133, an event also controlled by pulsatile GnRH, occurring
preferentially at slow frequencies and mediated by PKA activity (Ciccone et al., 2008;
Ciccone et al., 2010; Thompson et al., 2013). Furthermore, the inducible cAMP early
repressor (ICER) has been implicated in regulating the response to pulsatile GnRH. In
contrast to CREB phosphorylation, ICER expression and synthesis occurs preferentially at
faster GnRH pulse frequencies. ICER protein subsequently competes with CREB at the CRE
site on the Fshb promoter to reduce GnRH-stimulated transcription (Ciccone et al., 2010).
The signaling pathways that regulate ICER synthesis are yet to be elucidated; however, it is
worth noting that ICER phosphorylation at Ser41 marks it for ubiquitination and proteasomal
degradation (Yehia et al., 2001). As previously discussed in this review and others (Bernard
et al., 2010; Bliss et al., 2010; Ciccone and Kaiser, 2009; Gharib et al., 1990; Naor, 2009;
Thackray et al., 2010), ERK and calcium signaling pathways both respond differentially to
GnRH frequency and are potential candidates for ICER regulation.

AP1 homo- and hetero-dimers, comprised of a combination of Jun and Fos intermediate-
early gene family members, are induced by GnRH (Coss et al., 2004; Kakar et al., 2003;
Wurmbach et al., 2001). A recent study demonstrated that pulsatile GnRH increased c-Fos
and c-Jun at both slow and fast GnRH pulse frequencies (Mistry et al., 2011). Intriguingly,
this group demonstrated that both c-Fos and c-Jun proteins were expressed to a greater
extent at fast GnRH pulse frequencies, initially surprising since these factors are enhancers
of Fshb transcription. However, they present a model showing that at fast GnRH
frequencies, negative effectors of Fshb transcription, namely SKIL and TGIF1, are also
induced. These bind to the Fshb promoter and repress any potential action of c-Fos and c-
Jun (Mistry et al., 2011). MAPK proteins such as pERK, JNK and p38 can also lead to
increased expression of these AP1 proteins (Coss et al., 2004; Liu et al., 2002a). It is not yet
understood how GnRH stimulates signaling pathways to induce expression of CREB, ICER
and AP1 proteins in an integrated manner to decode pulse frequency and control FSH
synthesis (see Figure 1). It is also worth noting that other pathways contribute to regulation
of Fshb transcription, including those stimulated by activin and gonadal steroids, although
these are not the focus of this review.

Lhb
In comparison, Lhb transcription has been characterized to a greater extent than its Fshb
counterpart. Increased Lhb transcription at fast GnRH pulse frequencies corresponds to
elevated EGR1 levels in LβT2 cells (Kanasaki et al., 2005), a key factor in gonadotropin
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regulation. Two EGR1, two SF1, and a homeodomain element exist in the proximal Lhb
promoter (Halvorson et al., 1996; Quirk et al., 2001). EGR1/2 and inhibitors of the EGR
family, NAB1/2 (Ngfi-A binding proteins) respond to pulsatile GnRH to a greater extent at
fast and slow frequencies, respectively (Kaiser et al., 2000; Lawson et al., 2007).
Pharmacologic blockade of ERK reduces both Fshb and Lhb transcription (Kanasaki et al.,
2005), in correlation with studies demonstrating that Egr1 transcription is dependent on
ERK (Dorn et al., 1999; Fortin et al., 2009; Lawson et al., 2007; Lee et al., 1996; Wolfe and
Call, 1999). The more rapid and sustained phosphorylation of ERK at slow GnRH pulse
frequencies could be a mediator of NAB1/2 induction, since an increase in EGR1 would still
be expected, although this needs to be challenged further in perifusion paradigms.
Alternatively, or in addition, GnRH pulsatility has been shown to induce proteasome
function. Ubiquitination of EGR1 (as well as SF1) corresponds to GnRH pulse frequency
and binding of these transcription factors to the Lhb promoter (Walsh and Shupnik, 2009).
In order to differentiate between GnRH pulses, NAB1/2 expression at slow frequencies may
serve as a mechanism to reduce (relative to fast GnRH pulse frequencies) Lhb transcription
(Lawson et al., 2007).

EGR1 contributes to the induction of MKP2 (Zhang et al., 2001a; Zhang et al., 2001b),
providing a potential mechanism by which a classical regulator of Lhb could also affect
Fshb transcription. Increased EGR1 and subsequent MKP2 expression at fast GnRH pulse
frequencies may decrease phosphorylated ERK levels, followed by reduction in the activity
of inducers of Fshb transcription, such as AP1 proteins.

The differential activation of signaling pathways dependent on GnRH pulse frequency
underpins the expression or activation of the transcription factors that modulate Fshb and
Lhb transcription (see Figure 1). Signaling pathways that are stimulated at both fast and slow
GnRH pulse frequencies have been identified; therefore, these cascades are not unique to
either pulse frequency condition. This raises the possibility that the magnitude and duration,
in addition to the frequency of activation of these pathways, are important in decoding
pulsatile GnRH. This is highlighted when we consider the role of ERK, whereby changes in
the pattern of ERK activation due to pulsatile GnRH signaling have been observed. Multiple
transcription factors are involved in the response to the pulsatile GnRH signal. This
represents an apparent sensing by the gonadotrope of the frequency of the GnRH signal.
Considering that our example, ERK, also has a fundamental role in Lhb synthesis, further
understanding of these signaling mechanisms is required to ultimately reveal how the
gonadotrope decodes the pulsatile GnRH signal.

CONCLUSIONS AND FUTURE DIRECTIONS
The most significant question remains unanswered, how do gonadotropes respond
differentially to the same ligand? The control of ovulatory and menstrual cycles is extremely
complex, so it is not surprising that the mechanisms required to orchestrate these are equally
so. A network of signaling pathways have been implicated in both FSH and LH synthesis at
both slow and fast GnRH frequencies. In order to decode the GnRH signal, further insight
into the kinase cascades and regulation of phosphatase activity and other pathways involved
in the inactivation of kinases is necessary. Furthermore, the responses to GnRH could be
further mediated or modulated by other pathways such as inhibins and activins, sex steroid
feedback, or epigenetic regulation, which have not been discussed here.
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HIGHLIGHTS

• The pituitary gonadotropin hormones, FSH and LH, are essential for fertility

• GnRH regulates FSH and LH synthesis and secretion from gonadotropes

• Preferential Fshḅ or Lhḅ subuniṭ transcription is dependent on GnRH pulse
frequency

• Varying frequencies of pulsatile GnRH activate multiple distinct signaling
pathways

• Both stimulatory and repressive transcription factors are activated by pulsatile
GnRH
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FIG. 1.
Model for the regulation of Fshb and Lhb transcription by pulsatile GnRH. Fast and slow
frequency pulsatile GnRH stimulates signaling cascades that mediate the activity and
synthesis of transcription factors controlling gonadotropin subunit gene transcription. The
pathways stimulated by GnRH can vary in magnitude and duration (as indicated by
weighted arrows) in a manner dependent on pulse frequency and lead to the induction of
distinct transcription factor networks.
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