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Abstract

Photoacoustic (PA) imaging holds great promise for the visualization of physiology and pathology 

at the molecular level with deep tissue penetration and fine spatial resolution. To fully utilize this 

potential, PA molecular imaging probes have to be developed. Herein we introduce near infrared 

(NIR) light absorbing semiconducting polymer nanoparticles (SPNs) as a new class of contrast 

agents for PA molecular imaging. SPNs can produce stronger signal than commonly used single-

wall carbon nanotubes and gold nanorods on a per mass basis, permitting whole-body lymph node 

PA mapping in living mice at a low systematic injection mass. Furthermore, SPNs possess high 

structural flexibility, narrow PA spectral profiles, and strong resistance to photodegradation and 

oxidation, which enables development of the first NIR ratiometric PA probe for in vivo real-time 

imaging of reactive oxygen species—vital chemical mediators of many diseases. These results 

demonstrate SPNs an ideal nanoplatform for developing PA molecular probes.

Introduction

Semiconducting π-conjugated polymers (SPs) are optically and electronically active 

materials with many applications ranging from electronic devices1,2 and sensors,3,4 to tissue 

engineering.5 Recently, SPs have been transformed into nanoparticles as a new class of 
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photostable fluorescent nanomaterials.6 These materials are bright, completely organic and 

absent from heavy metal ion-induced toxicity to living organisms,7 and thus have been 

applied for in vivo fluorescence (FL) imaging.6,8,9 However, FL imaging suffers from the 

general limitations of whole-body optical imaging techniques such as poor spatial resolution 

and shallow tissue penetration. In comparison, photoacoustic (PA) imaging allows imaging 

beyond the optical diffusion limit by integrating optical excitation with ultrasonic detection 

based on the PA effect, providing deeper tissue imaging penetration and higher spatial 

resolution.9,10,11 Herein we report that near-infrared (NIR) light absorbing semiconducting 

polymer nanoparticles (SPNs) can serve as an efficient and stable nanoplatform to allow 

photons to be used to generate ultrasound (US) waves, permitting in vivo PA molecular 

imaging.

While endogenous molecules (i.e. hemoglobin, melanin) can generate PA contrast, many 

physiological and pathological processes often elicit little variation in these intrinsic PA 

signals, and thus it is essential to develop exogenous contrast agents for PA imaging in 

living subjects.12 Many materials have been applied as effective PA contrast agents, 

including small-molecule dyes, metallic nanoparticles, carbon nanotubes and 

porphysomes.13–18 For most, signal production mechanism relies on simple accumulation 

through passive (such as the enhanced permeability and retention effect) or active (binding 

to a receptor on the cell surface) targeting to sites of interest.10,12,14–17,19 In contrast, 

activatable molecular imaging probes can undergo an intrinsic signal evolution upon 

detecting molecular targets or events, providing a real-time correlation between probe states 

(i.e. activated vs. non-activated) and pathological processes on a molecular level.20,21 

Activatable probes have been developed for other imaging modalities such as FL imaging, 

and widely used in biology and medicine.21–23 However, very few NIR activatable probes 

have been reported for in vivo PA molecular imaging except for a very recent example 

demonstrating imaging of matrix metalloproteinase activity in thyroid tumor 

xenografts.24–26 The full utilization of the potential of PA imaging at a depth and spatial 

resolution that is unattainable by FL imaging requires new materials amenable to the 

construction of activatable PA probes.

As SPs typically used for solar cells were designed to have high NIR absorption, we 

evaluated these photovoltaic SPs as building blocks for the development of PA molecular 

imaging nanoprobes. We found that, depending on the molecular structure of SPs, SPNs can 

show better photostability and generate higher PA signal output than two of the best current 

PA contrast nanoagents, single-wall carbon nanotubes (SWNTs) and gold nanorods (GNRs), 

on a per mass basis. The high PA brightness in the NIR region and favorable small size of 

SPNs allowed for PA lymph node (LN) mapping in living mice after a single intravenous 

administration of low doses (50 μg). By virtue of their facile yet efficient formulation, an 

SPN-based dual-peak ratiometric PA probe was synthesized for both in vitro and in vivo 

imaging of reactive oxygen species (ROS), which are key integral chemical mediators 

playing vital roles in the onset and progression of pathology ranging from cancer to 

neurodegenerative and cardiovascular diseases.27,28 This study thus provides one of the very 

few examples of NIR activatable PA probes capable of reporting the progression of 
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pathological processes in real time, and demonstrates the great potential of SPNs for 

advanced PA imaging in biomedical research.

Results

Synthesis and Characterization

Two photovoltaic SP derivatives with strong absorption in the NIR region, 

poly(cyclopentadithiophene-alt-benzothiadiazole) (SP1)29 and 

poly(acenaphthothienopyrazine-alt-benzodithiophene) (SP2) (Fig. 1a), were chosen to 

prepare SPNs. Nanoprecipitation assisted by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine 

(DPPC) (Fig. 1b) afforded water-soluble SP1-based (SPN1) and SP2-based (SPN2) 

nanoparticles as clear dark-green and olive-green solutions (Fig. 1c), respectively. 

Transmission electron microscopy (TEM) revealed the spherical morphology of both SPN1 

and SPN2, and average diameters of 41±2 and 43±2 nm, respectively (Fig. 1d). Moreover, 

dynamic light scattering (DLS) confirmed their narrow size distribution with a 

polydispersity index of 0.16±0.03 for SPN1 and 0.19±0.02 SPN2 (Fig. 1e). SPN1 and SPN2 

possessed large zeta potentials of −35±2 and −32±3 mV in PBS (pH = 7.4), respectively, 

attributable to the presence of DPPC. This excipient resulted in high SPN stability under 

physiologically relevant conditions (Supplementary Fig. S1).

SPN1 and SPN2 had NIR absorptions with maxima at 660 and 700 nm (Fig. 1f), 

respectively. Due to the difference in the molecular structures of SP1 and SP2, the peak 

mass extinction coefficient of SPN1 (93 cm−1 mg−1 mL) was 4.65-times higher than that of 

SPN2 (20 cm−1 mg−1 mL). While SPN1 was fluorescent upon excitation at 680 nm with 

emission maximum at 838 nm and a quantum yield of 0.1% in 1×PBS at pH = 7.4 

(Supplementary Fig. S2), SPN2 did not show detectable FL below 900 nm. With strong 

absorption in the NIR region, both SPNs efficiently generated PA signals upon NIR pulsed 

laser irradiation (Fig. 1f). The narrower PA spectral profile of SPN1 was due to narrower 

absorption above 600 nm relative to SPN2 (Fig. 1f). The maximum PA signals were 

observed at 690 and 705 nm for SPN1 and SPN2, respectively, both of which were red-

shifted as compared to their maximum absorption.

The PA amplitudes of both SPNs at 700 nm were determined at different concentrations in 

an agar phantom, displaying a linear relationship between PA signal and concentration for 

SPN1 and SPN2 (Fig. 1g). The narrower PA spectral profile and 5-fold greater PA 

amplitude of SPN1, attributable to its larger extinction coefficient, as compared with those 

of SPN2, make SPN1 a better platform for the construction of PA molecular imaging 

probes.

The capability of SPN1 to produce both FL and PA signals enabled a direct comparison of 

PA and FL imaging in terms of SPN performance. Two polyethylene (PE) tubes filled with 

SPN1 were implanted in a tissue-mimicking gelatin phantom (Supplementary Fig. S3), and 

in the mouse leg (Supplementary Fig. S4). In both examples, PA imaging with SPN1 

provided better spatial resolution and much larger penetration depths relative to FL imaging.
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Comparison with SWNT and GNR

The PA properties of SPN1 were compared with high-performing PA contrast agents, 

SWNT and GNR,14,19 in both agar phantoms and living mice. The SWNT produced strong 

PA amplitude at 690 nm and the GNR had a PA maximum at 705 nm (Supplementary Fig. 

S5),14,19,30 which were spectrally similar to SPN1 (690 nm) and thus permitted direct 

comparison with a 700 nm pulsed laser. At the same mass concentration, the PA amplitude 

of SPN1 was 5.2 and 7.1-times higher than SWNT and GNR, respectively (Fig. 2a). 

Although this result was qualitatively consistent with the rank order of their mass extinction 

coefficients (93, 50 and 45 cm−1 mg−1 mL for SPN1, SWNT and GNR, respectively), the 

large differences in their PA signal amplitude suggested that additional mechanisms, such as 

the difference in heat conductance and heat capacity, should be relevant. At equal molar 

concentrations, GNR provided the highest PA amplitude (Fig. 2a) on account of its larger 

molar mass and molar extinction coefficient (5.0 × 107, 6.0 × 106, and 3.0 × 109 M−1 cm−1 

for SPN1, SWNT and GNR, respectively). However, after exposure to 2.4 × 104 pulses 

(corresponding to the total laser exposure time of 120 μs) at 9 mJ cm−2 fluence, the PA 

signal of GNR decreased by 30±3% (Fig. 2b), indicating its poor stability from laser-

induced deformation.31 In contrast, no PA signal was lost for SPN1 under the same 

conditions, revealing its superior photostability and suitability for long-term PA molecular 

imaging.

The ability to detect nanoparticle PA signal in living subjects was tested through 

subcutaneous injections of matrigel-containing solutions of SPN1, SWNT or GNR at 

different concentrations into the dorsal area of mice. Linear correlations between the 

concentration and the PA signal were observed for all nanoparticles (Fig. 2c). At each 

concentration, the PA amplitude of SPN1 was ~4.0 and 5.8-times higher than SWNT and 

GNR, respectively, which were similar to that in agar phantoms. The limit of detection of 

SPN1 in living mice was ~2 μg/mL (3.8 nM), however neither SWNT nor GNR was 

detectable at concentrations of 8 μg/mL (Fig. 2d), with PA signals approaching that of tissue 

background as calculated from the average PA signal in areas free from nanoparticles. This 

coincides with previous reports that set the limit of detection for SWNT and GNR in living 

mice by PA tomography close to 9 μg/mL.13–15

PA Imaging of Lymph Nodes (LN)

Nanoparticles with diameters ranging from 20 to 50 nm have favorable accumulation and 

retention in draining LN, and thus are promising for LN tracking, which is clinically 

important to guide surgical resection of tumor tissues.32,33 SPN1 (50 μg) were administered 

intravenously (i.v.) to healthy mice (n = 4) for LN imaging. At 24 h post-injection, the mice 

were imaged with both PA and FL modalities (Fig. 3a&b). Strong PA and FL signals were 

detected in the lymphatic networks of living mice, including accumulation in brachial lymph 

nodes (BLNs), inguinal lymph nodes (ILNs) and superficial cervical lymph nodes (SCLNs), 

which were undetectable prior to nanoparticle administration (Supplementary Fig. S6). The 

high accumulation of SPN1 in the LN was confirmed following necropsy, showing that the 

second highest nanoparticle accumulation occurred in the LN with a fluorescence intensity 

that is 63% of that from liver (Supplementary Fig. S7). Ex vivo LN imaging in an agar 

phantom showed a 13.3-fold enhancement in PA signal following SPN administration 
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relative to LN from a mouse receiving saline (Fig. 3c&d), which was similar to the observed 

FL signal enhancement (12.3-times). This result demonstrates that SPN1 can be used for LN 

mapping with both PA and FL imaging.

Ratiometric PA Imaging of ROS

The imaging of ROS is critical to understanding the etiology of disease and optimizing 

therapeutic interventions against potentially life-threatening conditions. SPN1 itself has high 

stability toward ROS (Supplementary Fig. S8), and thus we coupled it to a cyanine dye 

derivative (IR775S) that is sensitive to ROS-mediated oxidation (Supplementary Fig. S9) to 

design a ratiometric PA probe (RSPN) for ROS imaging (Fig. 4a). One-pot 

nanoprecipitation of IR775S and SP1 with DPPC yielded the water-soluble RSPN (Fig. 4a), 

which possessed a small diameter (45 nm) and good size stability similar to SPN1 

(Supplementary Fig. S10). The average number of IR775S per nanoparticle was estimated to 

be 50 based on the molar extinction coefficients of SPN1 and IR775S. The PA spectrum of 

RSPN showed three maxima at 700, 735, and 820 nm (Fig. 4b) with nearly the same 

amplitude, which differed from its absorption spectrum (Supplementary Fig. S11a): the peak 

at 700 nm corresponds to the SP1, and the peaks at 735 and 820 nm correspond to IR775S, 

which has a concentration-dependent PA spectrum. While a single PA peak at 780 nm is 

observed at low concentrations (0.01–0.04 mg/mL), an additional peak at 820 nm occurs at 

higher dye concentrations (0.10 mg/mL) (Supplementary Fig. S11b); This is likely due to 

dye aggregation at elevated concentrations and the photosaturation effect induced by the 

high-power pulsed laser excitation used for the PA measurements.30 Accordingly, as the 

local concentration of IR775S within the compact inner space of the nanoparticle is very 

high (corresponding to ~2.5 mM), the PA spectrum of RSPN also gave the same two peaks 

at 735 and 820 nm.

The PA response of RSPN toward different ROS was examined in solution under 

physiological conditions. In the presence of ONOO− and ClO−, the PA peak at 735 nm 

decreased significantly while that at 820 nm almost disappeared, however the peak at 700 

nm remained nearly the same (Fig. 4b). In contrast, in the presence of other ROS such 

as •NO, •OH, O2
•−, 1O2 and H2O2, the PA spectrum remained essentially unchanged (Fig. 

4b). The PA spectral change at 820 nm was attributed to the ROS-mediated rapid oxidative 

decomposition of IR775S (Supplementary Fig. S9),34 validating the amenability of RSPN to 

dual-peak ratiometric detection of ROS (PA700/PA820). The enhanced specificity of RSPN 

toward ONOO− and ClO−relative to unencapsulated IR775S likely stems from its 

nanoencapsulation, which limits interference from other ROS with shorter lifetimes.35 The 

PA ratio of RSPN increased from 1.2 to 25 in the presence of ONOO− and ClO−, remaining 

less than 4 for other ROS (Fig. 4C). With a good linear correlation between PA ratio and 

ONOO−/ClO− concentration and a limit of detection of ~50 nM (Supplementary Fig. S12), 

RSPN showed a large dynamic signal range and high sensitivity to detect both ROS at 

pathologically relevant concentrations.28

The capability of RSPN to detect endogenously generated ROS was then tested incultured 

murine macrophage RAW264.7 cells. After validating that SPNs have low cytotoxicity and 

efficient cell uptake (Supplementary Fig. S13), RSPN were incubated with RAW264.7, and 
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cell pellets were loaded into an agar phantom for PA imaging. For cells in the resting state, a 

strong PA signal was observed at both 700 and 820 nm (Fig. 4d), resulting in PA700/

PA820=1.4±0.43 (Fig. 4e). To mimic the inflammatory condition that stimulates resting 

macrophages to produce ROS, RAW264.7 cells were pre-treated with bacterial cell wall 

lipopolysaccharide (LPS) and a dimerized soluble cytokine, interferon-γ (INF-γ). Following 

LPS/INF-γ stimulation, the PA signal at 820 nm was nearly abolished, (Fig. 4d), leading to 

an enhanced PA700/PA820 of 7.3±0.96 (Fig. 4e). When N-acetylcysteine (NAC), a free-

radical scavenger with high membrane permeability,36 was used to treat the cells along with 

LPS/ INF-γ stimulation, PA700/PA820 returned to a low value (3.3±0.78), indicating the 

scavenging of macrophage-generated ROS by NAC and inhibition of RSPN activation. An 

overlay of pseudocolored PA images (Fig. 4d), where green and red represent PA signals at 

700 and 820 nm, respectively, facilitated the monitoring of ROS levels in cells. The 

dramatic ratiometric PA responses of RSPN were easily discernible between the resting 

RAW264.7 cells, the stimulated cells and the NAC-protected cells, with yellow representing 

a PA ratio near unity and green representing a significant elevation of ROS.

RSPN was applied for the in vivo PA imaging of ROS in a murine model of acute edema. 

Zymosan, a structural polysaccharide of the cell wall of Saccharomyces cerevisiae, which, 

similarly to LPS, can simulate the generation of ROS such as ONOO− and ClO− in vivo,37 or 

saline was injected intramuscularly into the thigh of living mice, followed 20 min later by 

the injection of RSPN (3 μg in saline) into the same location. The PA signal was 

simultaneously monitored at 700 and 820 nm, as illustrated by pseudo green and red colors, 

respectively. The PA amplitude at 700 nm for both saline- and zymosan-treated mice 

remained nearly unchanged over time (Fig. 5a). The progressive enlargement in signaling 

area was attributed to tissue diffusion of nanoparticles over time. In contrast, both the PA 

amplitude and area of signal production at 820 nm for zymosan-treated mice significantly 

decreased over time (Fig. 5a). The superposition analysis delineated a progressive 

pseudocolor variation from yellow to green for zymosan-treated mice but not for control 

mice (Fig. 5a), reporting the in situ generation of inflammatory ROS during edema. 

Quantitative analysis revealed that PA700/PA820 gradually increased to 2.7±0.31 at 120 min 

post-injection for zymosan-treated mice, which was significantly elevated relative to that for 

control mice (1.4±0.22) (Fig. 5b). Thus, RSPN effectively detected in vivo ROS production 

using a dual-peak ratiometric PA contrast mechanism, demonstrating the potential of SPNs 

for activatable PA imaging of the progression of pathological processes in real time.

Discussion

Photovoltaic SPs have been made into nanoparticles that produce ultrasound signals upon 

pulsed NIR laser irradiation. These purely organic PA nanoparticles have a unique set of 

advantages that derive from their precursor SPs, including a large mass extinction 

coefficient and high photostability, providing stronger (on a per mass basis) and more 

photostable PA signals in the NIR region when compared with SWNT and GNR (Fig. 2). At 

the same mass concentration, the PA amplitude of SPN1 at 700 nm was more than 5-times 

that of SWNT and GNR (Fig. 2a), effectively reducing their detection limit (2 μg/mL) in 

living mice relative to both SWNT and GNR (9 μg/mL) (Fig. 2d), which could decrease 

dosing levels for in vivo PA imaging applications. Their favorable size (~40 nm) enabled 
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efficient PA imaging of major LN in living mice with a high signal-to-noise ratio of 13.3 

after a single low dose (50 μg) intravenous administration (Fig. 3). Although detailed 

toxicity investigations are required for clinical translation, our preliminary studies have 

shown no overt SPN cytotoxicity (Supplementary Fig. S13a). Others have also reported that 

the implantation of SPs in living animals invoked little adverse tissue response with no 

evidence of acute and subacute toxicity.38 This level of biocompatibility was comparable to 

the FDA-approved poly(lactic acid-co-glycolic acid),38 suggesting their great promise for 

clinical applications.

SPNs are readily prepared through a nanoprecipitation-based bottom-up approach, allowing 

for facile adjustment of PA properties by choosing different constituent photovoltaic SPs 

without significantly affecting particle dimensions. For example, SPN1 and SPN2 displayed 

similar sizes (~40 nm) but different PA spectral profiles (Fig. 1d & 1g). This independence 

of photophysical properties from particle size differentiates SPNs from many of the metallic 

nanoparticles with strongly size-dependent spectral properties.18,19 This attribute of SPNs is 

beneficial to in vivo multiplexed imaging, as nanoparticles can be formulated to have 

distinct PA wavelengths without altering pharmacokinetic profiles. Additionally, other 

molecules, such as dyes and drugs, may be simultaneously doped into SPNs during 

nanoprecipitation, potentially endowing properties to SPNs beyond sole PA imaging.

The synthetic and structural flexibility of SPNs permitted the further development of SPN1 

into an activatable NIR ratiometric PA probe (RSPN) for in vivo ROS imaging. To our 

knowledge, this study is the first demonstration of a PA imaging probe to detect ROS, since 

existing ROS probes are mainly based on FL imaging.39,40 Among nanoparticle agents, 

SPNs uniquely possess properties of a narrow PA spectral profile, good photostability and a 

ROS-inert PA signal. Neither SWNT (planar PA spectrum, Supplementary Fig. S5b)14 nor 

GNR (poor photostability and poor stability to ROS, Fig 2b & Supplementary Fig. S8a, 

respectively) possess all of these characteristics necessary for designing ratiometirc ROS 

probes. Porphysomes are purely organic and photostable PA nanoagents with PA brightness 

similar to GNRs,16 however the porphyrin-derived generation of singlet oxygen under laser 

irradiation limits their application for ROS detection and makes them more well-suited to 

photo-induced therapy applications. Coupling of the excellent resistance to oxidation of 

SPN1 with the ROS sensing ability of IR775S, ROS were effectively detected by RSPN 

with PA ratiometric signal enhancements of 25, 7.3, and 2.7-times in solution (Fig. 4c), in 

cells (Fig. 4e) and in living mice (Fig. 5b), respectively, comparable to that reported for FL 

probes.39,40 As PA imaging has the advantages of deep tissue penetration, high spatial 

resolution (Supplementary Fig. S3&S4), and the capability to simultaneously acquire 

anatomical and molecular information, RSPN can further outperform existing FL probes, 

allowing interrogation of the key role of ROS in the etiology of diseases at levels not 

achievable by FL imaging.

In summary, we have introduced SPNs as a new class of NIR PA contrast agents for in vivo 

PA molecular imaging. They can serve not only as simple accumulation-based probes (as 

demonstrated for LN mapping) but also as a nanoplatform to develop activatable probes (as 

shown by ratiometric PA imaging of ROS in living mice). Given the many key merits of 

SPNs, we believe that SPNs can provide opportunities for advanced PA molecular imaging, 
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from facilitating the preclinical investigation of physiological and pathological processes in 

living subjects to enhancing the PA imaging modality now in the process of clinical 

translation.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Synthesis and characterization of SPNs
(a) Molecular structures of SP1 and SP2 used for the preparation of SPN1 and SPN2, 

respectively. (b) Schematic of the preparation of SPNs through nanoprecipitation. SP is 

represented as a long chain of chromophore units illustrated as red oval beads. DPPC 

contains a short hydrophobic tail and a charged head, and is illustrated as a string with a 

dark green ball at its end. (c) Photographic images of the SPN solutions (10 μg/mL). (d) 

Representative TEM images of SPN1 (left) and SPN2 (right). (e) Representative DLS 

profiles of SPNs. (f) UV-Vis absorption (dash lines) and PA spectra (solid lines) of SPNs. 

(g) PA amplitudes of SPNs at 700 nm in an agar phantom as a function of mass 

concentration. R2 = 0.998 and 0.997 for SPN1 and SPN2, respectively. Error bars represent 

standard deviation of three separate measurements.
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Figure 2. Comparison of PA properties of SPN1 with SWNT (1.2 × 150 nm) and GNR (15 × 40 
nm)
(a) PA amplitudes of the nanoparticles based on the same mass (25 μg/mL) (top) and molar 

(48 nM) (bottom) concentrations in an agar phantom. (b) PA amplitudes of indicated 

nanoparticles in agar phantoms versus number of laser pulses; the total laser exposure time 

was 120 μs for 24,000 pulses. (c) PA amplitudes of the nanoparticle-matrigel inclusions (30 

μL) in the subcutaneous dorsal space of living mice as a function of nanoparticle mass 

concentration. The tissue background signal calculated as the average PA signal in areas 

where no nanoparticles were injected was 0.21 ± 0.03 a.u. R2 = 0.992, 0.990 and 0.992 for 

SPN1, SWNT, and GNR, respectively. (d) PA/US coregistered images of the nanoparticle-

matrigel inclusions at a concentration of 8 μg/mL. The images represent transverse slices 

through the subcutaneous inclusions (dotted circles). A single laser pulse at 700 nm with a 

laser fluence of 9 mJ cm−2 and a pulse repetition rate of 20 Hz were used for all 

experiments. All data represent standard deviation of three separate measurements.
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Figure 3. In vivo and ex vivo PA and FL imaging of lymph nodes using SPN1
(a) US (upper) and PA/US coregistered (lower) images of mouse lymph nodes following tail 

vain injection of SPN1 (50 μg/mouse). The images represent transverse slices through the 

lymph nodes. BLN: brachial lymph node; ILN: inguinal lymph node; SCLN: superficial 

cervical lymph node. (b) FL/bright-field images of the corresponding mouse. (c) Ex vivo 

PA/US coregistered (top) and FL/bright-field (bottom) images of resected lymph nodes from 

the mouse in (a) (left) or a control mouse without SPN1 injection (right) in an agar phantom. 

(d) Ex vivo quantification of PA and FL signals of the lymph nodes from SPN1-

administrated mice (n=4) and control mice (n=4). *Statistically significant difference in both 

PA and FL signals between the lymph nodes from SPN1-administrated and control mice (p 

< 0.05).
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Figure 4. In vitro characterization of RSPN for ROS sensing
(a) Proposed ROS sensing mechanism. (b) Representative PA spectra of RSPN in the 

absence and presence of ROS. [RSPN] = 5 μg/mL, [ROS] = 5 μM. (c) The ratio of PA 

amplitude at 700 nm to that at 820 nm (PA700/PA820) after treatment with indicated ROS (5 

μM). (d) PA images of macrophage RAW264.7 cell pellets (1.5 × 106 cells) without (upper) 

or with (middle) stimulation with LPS/INF-γ, and with NAC protection (lower). Cell pellets 

were inserted into an agar phantom and imaged with pulsed laser tuned to (i) 700 nm or (ii) 

820 nm, (iii) overlays of images from columns i and ii. The cells were incubated with RSPN 

(6 μg/mL) for 3 h before trypsinization. (e) Quantification of the absorption ratio (PA700/

PA820) for macrophage cell pellets with and without LPS/INF-γor LPS/INF-γ/NAC 

treatment. The error bars represent the standard deviation from four separate measurements. 

*Statistically significant difference in PA700/PA820 between LPS/INF-γ treated and 

untreated or NAC-protected cell pellets (p < 0.05).
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Figure 5. In vivo PA imaging of ROS generation from a mouse model of acute edema using 
RSPN (n=3 each)
(a) PA/US overlaid images of saline-treated (i) and zymosan-treated (ii) regions in the thigh 

of living mice (n=3). RSPN (3 μg in 50 μL) was intramuscularly injected into the thigh 20 

min after zymosan treatment. (b) The ratio of PA amplitude at 700 nm to that at 820 nm 

(PA700/PA820) as a function of time post-injection of RSPN. *Statistically significant 

difference in PA700/PA820 between zymosan-treated and saline-treated mice at all time 

points starting from 10 min (p<0.05).
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