Skip to main content
. 2014 Feb 18;2014:872435. doi: 10.1155/2014/872435

Table 1.

Data example of a replicate/scenario, estimated effects (coefficients from logistic models) of exposure (X 1), and known “causal”/confounding factors of A on A and proxy outcome C.

Effects on A Effects on C Indicators for real causal factors  
(1 = Yes, 0 = No)
Coefficient P value Coefficient P value Causal to A Causal to C
X 1 0.79 0.000 0.09 0.011 1 0
X 2 0.19 0.000 0.92 0.000 0 1
X 3 0.69 0.000 0.03 0.360 1 0
X 4 0.46 0.000 0.50 0.000 0 0
X 5 1 1
X 6 1 1
X 7 0.87 0.000 0.29 0.000 1 0
X 8 0.20 0.000 0.84 0.000 0 1
X 9 0.04 0.293 0.80 0.000 0 1
X 10 0.77 0.000 0.13 0.000 1 0
X 11 1 0
X 12 0.15 0.000 0.79 0.000 0 1
X 13 1 0
X 14 0 0
X 15 0.85 0.000 0.91 0.000 1 1
X 16 1 1
X 17 0.73 0.000 0.10 0.009 1 0
X 18 0.15 0.000 0.89 0.000 0 1
X 19 0 1
X 20 0.95 0.000 0.35 0.000 1 0
X 21 0 0
X 22 0.27 0.000 0.16 0.000 0 0
X 23 0.25 0.000 0.19 0.000 0 0
X 24 0.20 0.000 0.18 0.000 0 0
X 25 0 0
X 26 0 0
X 27 0 0
X 28 0 0
X 29 0.50 0.000 0.47 0.000 0 0
X 30 0 0
X 31 0 0
X 32 0 0
X 33 0 0
X 34 0 0
X 35 0 0
X 36 0 0
X 37 0 0
X 38 0.13 0.001 0.17 0.000 0 0
X 39 0 0
X 40 0.16 0.000 0.17 0.000 0 0

*indicates variable is not known as a “causal” factor for A, therefore is not included in the models.