Table 1.
Data example of a replicate/scenario, estimated effects (coefficients from logistic models) of exposure (X 1), and known “causal”/confounding factors of A on A and proxy outcome C.
| Effects on A | Effects on C |
Indicators for real causal factors (1 = Yes, 0 = No) |
||||
|---|---|---|---|---|---|---|
| Coefficient | P value | Coefficient | P value | Causal to A | Causal to C | |
| X 1 | 0.79 | 0.000 | 0.09 | 0.011 | 1 | 0 |
| X 2 | 0.19 | 0.000 | 0.92 | 0.000 | 0 | 1 |
| X 3 | 0.69 | 0.000 | 0.03 | 0.360 | 1 | 0 |
| X 4 | 0.46 | 0.000 | 0.50 | 0.000 | 0 | 0 |
| X 5 | ∗ | ∗ | 1 | 1 | ||
| X 6 | ∗ | ∗ | 1 | 1 | ||
| X 7 | 0.87 | 0.000 | 0.29 | 0.000 | 1 | 0 |
| X 8 | 0.20 | 0.000 | 0.84 | 0.000 | 0 | 1 |
| X 9 | 0.04 | 0.293 | 0.80 | 0.000 | 0 | 1 |
| X 10 | 0.77 | 0.000 | 0.13 | 0.000 | 1 | 0 |
| X 11 | ∗ | ∗ | 1 | 0 | ||
| X 12 | 0.15 | 0.000 | 0.79 | 0.000 | 0 | 1 |
| X 13 | ∗ | ∗ | 1 | 0 | ||
| X 14 | ∗ | ∗ | 0 | 0 | ||
| X 15 | 0.85 | 0.000 | 0.91 | 0.000 | 1 | 1 |
| X 16 | ∗ | ∗ | 1 | 1 | ||
| X 17 | 0.73 | 0.000 | 0.10 | 0.009 | 1 | 0 |
| X 18 | 0.15 | 0.000 | 0.89 | 0.000 | 0 | 1 |
| X 19 | ∗ | ∗ | 0 | 1 | ||
| X 20 | 0.95 | 0.000 | 0.35 | 0.000 | 1 | 0 |
| X 21 | ∗ | ∗ | 0 | 0 | ||
| X 22 | 0.27 | 0.000 | 0.16 | 0.000 | 0 | 0 |
| X 23 | 0.25 | 0.000 | 0.19 | 0.000 | 0 | 0 |
| X 24 | 0.20 | 0.000 | 0.18 | 0.000 | 0 | 0 |
| X 25 | ∗ | ∗ | 0 | 0 | ||
| X 26 | ∗ | ∗ | 0 | 0 | ||
| X 27 | ∗ | ∗ | 0 | 0 | ||
| X 28 | ∗ | ∗ | 0 | 0 | ||
| X 29 | 0.50 | 0.000 | 0.47 | 0.000 | 0 | 0 |
| X 30 | ∗ | ∗ | 0 | 0 | ||
| X 31 | ∗ | ∗ | 0 | 0 | ||
| X 32 | ∗ | ∗ | 0 | 0 | ||
| X 33 | ∗ | ∗ | 0 | 0 | ||
| X 34 | ∗ | ∗ | 0 | 0 | ||
| X 35 | ∗ | ∗ | 0 | 0 | ||
| X 36 | ∗ | ∗ | 0 | 0 | ||
| X 37 | ∗ | ∗ | 0 | 0 | ||
| X 38 | 0.13 | 0.001 | 0.17 | 0.000 | 0 | 0 |
| X 39 | ∗ | ∗ | 0 | 0 | ||
| X 40 | 0.16 | 0.000 | 0.17 | 0.000 | 0 | 0 |
*indicates variable is not known as a “causal” factor for A, therefore is not included in the models.