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Abstract
Our previous work showed that chronic activation of the membrane-bound estrogen receptor
GPR30/GPER significantly lowers blood pressure in ovariectomized hypertensive mRen2.Lewis
female rats which may, in part, reflect direct vasodilatory actions. The current study assessed the
hypothesis that cyclic adenosine monophosphate (cAMP) signaling contributes to GPER-mediated
vasorelaxation. In mesenteric resistance arteries from intact Lewis females, relaxation to 17-β-
estradiol (E2; 47±3% of phenylephrine contraction vs. vehicle 89±2%, P<0.001) or G-1 (44±8%,
P<0.001) was blunted to a similar extent by denuding (P<0.001) or the nitric oxide synthase
inhibitor L-NAME (P<0.001). In contrast, the cyclooxygenase inhibitor indomethacin did not alter
vasodilation (P>0.05). The cAMP analogue Rp-cAMPS partially attenuated vasodilation (65±7%,
P<0.001), while the combination of L-NAME and Rp-cAMPS exhibited additive effects to
effectively abolish vasorelaxation (P>0.05 vs. vehicle). Pretreatment of endothelium-intact vessels
with the adenylyl cyclase inhibitor SQ (63±6%) or the guanylyl cyclase inhibitor ODQ (62±9%)
both partially inhibited the response to G-1 (P<0.01), while pretreatment with the both inhibitors
completely abolished vasorelaxation (P>0.05 vs. vehicle). In denuded vessels only SQ reduced the
response (88±3%, P<0.001). Moreover, G-1 significantly increased intracellular cAMP levels in
cultured mesenteric smooth muscle cells (P<0.05). We conclude that GPER-dependent
vasorelaxation apparently involves both endothelial release of nitric oxide which activates
guanylyl cyclase and smooth muscle cell activation of adenylyl cyclase. Downstream production
of cyclic nucleotides and stimulation of protein kinases may phosphorylate proteins to promote
vascular smooth muscle cell relaxation. The ability of GPER to initiate these signaling pathways
may contribute to the beneficial vascular effects of estrogen.
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Introduction
In ovariectomized hypertensive mRen2.Lewis rats, chronic administration of the selective
GPER agonist G-1 significantly reduces blood pressure [1]. While this antihypertensive
response may be partially due to local alterations in the renin-angiotensin system, GPER
activation may also have direct effects on vascular tone. Indeed, we previously showed that
acute administration of the GPER agonist G-1 induces vasodilation of mesenteric resistance
arteries that is not different from the nonselective agonist 17-β-estradiol in hypertensive
mRen2.Lewis females and normotensive Lewis controls [2]. The vasorelaxation induced by
G-1 and 17-β-estradiol is partially dependent on endothelial nitric oxide production but also
comprises an endothelium-independent component. Moreover, we demonstrated GPER
immunoreactive staining on both intimal and medial aspects of the mesenteric vasculature.

In the initial characterization of its expression and function in breast cancer cell lines, GPER
was found to activate acute signaling pathways including cAMP accumulation [3]. Despite
the numerous studies verifying GPER expression in vascular smooth muscle [1, 4–8] and
demonstrating endothelium-independent relaxation to G-1 [2, 7, 9], no studies as of yet have
identified the intracellular signaling pathways that mediate GPER’s vasodilatory effects in
smooth muscle. Therefore, the current study assessed the hypothesis that stimulation of
cyclic AMP is an integral pathway in the vasorelaxant actions of GPER in vascular smooth
muscle cells.

Experimental Methods
Animals

Lewis female rats (Harlan, Indianapolis, IN) were used for both myography and cell
isolation at 15 weeks of age. Adequate measures were taken to minimize pain or discomfort,
and all experiments were approved by the Tulane University Animal Care and Use
Committee.

Myography
Second-order mesenteric vessels (~200 μm I.D.) were isolated and sectioned into 2 mm
rings. Vessels were mounted in a DMT wire myograph containing Krebs-Henseleit solution
(in mM): NaCl (118), KCl (4.8), CaCl2 (2.5), MgSO4 (1.2), NaHCO3 (25), KH2PO4 (1.2)
and glucose (11) at 37°C and oxygenated with 95% O2 - 5% CO2. Internal circumference
was normalized to 0.9·IC100, where IC100 is the internal circumference at a transmural
pressure of 100 mmHg. Viability and endothelial integrity were tested with phenylephrine
(PE, 10−5 M; MP Biomedicals, Solon, OH) followed by acetylcholine (Ach, 10−6 M; Enzo,
Farmingdale, NY) and rings with > 50% relaxation to Ach were considered endothelium
intact. Rings were washed and again constricted with PE before cumulative additions of
vehicle (DMSO), 17-β-estradiol (E2; EMD Millipore, Billerica, MA), or G-1 (EMD
Millipore). The following inhibitors were added to the bath 10 minutes prior to PE
preconstriction for the concentration response curve: NG-Nitro-L-arginine-methyl ester (L-
NAME, 10−4 M; Enzo), indomethacin (10−5 M; Sigma, St. Louis, MO), Rp-Diastereomer of
adenosine-3′,5′-cyclic monophosphothioate (Rp-cAMPS, 10−5 M; Santa Cruz
Biotechnology, Santa Cruz, CA), SQ 22536 (SQ, 10−4 M; Enzo), and ODQ (10−4 M; Enzo).
All data are expressed as percent of the PE preconstriction, and two-way ANOVA was used
to compare treatment groups and agonist concentrations.

cAMP measurements
Smooth muscle cells were isolated from the mesenteric arterial branch as previously
described [10]. Cells were passaged a maximum of four times, as previous studies show that
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GPER expression is only stable for this time in culture [7]. Cells were cultured in Medium
199 containing 10% fetal bovine serum and penicillin/streptomycin, then switched to phenol
red-free medium containing 5% charcoal-stripped serum two days before experiments. Cells
were pretreated with the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (IBMX,
10−9 M; Sigma) for 20 minutes before the addition of vehicle (DMSO) or G-1. In some
experiments, cells were also pretreated with the GPER antagonist G15 (10−8 M; EMD
Millipore). Cells were incubated at 37 °C for 15 minutes, and cAMP was measured by EIA
kit (Cayman Chemical, Ann Arbor, MI). One-way ANOVA was used to determine
differences between groups.

Results
In isolated mesenteric resistance arteries from 15 week-old Lewis females, vasorelaxation to
17-β-estradiol (E2) and the GPER agonist G-1 was dose-dependent and became significant
at 10−6 M. The maximum dilation reached was 47 ± 3% for E2 and 44 ± 8% for G-1
(P<0.001 vs. vehicle, Figure 1A–B). The cyclooxygenase inhibitor indomethacin had no
effect on vasodilation to either E2 or G-1 (P>0.05 vs. agonist). Denuding or pretreatment
with the nitric oxide synthase inhibitor L-NAME (10−4 M) similarly attenuated vasodilation
to E2 and G-1 (P<0.001) as previously reported in mRen2.Lewis female vessels [7].

We next determined the signaling mechanisms involved in the endothelium-independent
portion of the vasodilatory response. To ascertain whether the signaling molecule cyclic
adenosine monophosphate (cAMP) was involved in the smooth muscle cell mechanism,
endothelium-intact vessels were pretreated with the cell permeable cAMP analogue Rp-
cAMPS, and the response to G-1 was partially inhibited (P<0.001; Figure 2). Pretreatment
of intact vessels with a combination of L-NAME, to inhibit the endothelial component, and
Rp-cAMPS completely abolished the response (P>0.05 vs. vehicle).

Nitric oxide activates guanylyl cyclase in vascular smooth muscle to increase the production
of cyclic GMP, while adenylyl cyclase is responsible for the production of cAMP. To
ascertain the role of these two enzymes in the GPER vasodilatory response, we utilized the
soluble guanylyl cyclase inhibitor ODQ and the adenylyl cyclase inhibitor SQ. As shown in
Figure 3A, both ODQ and SQ partially attenuated GPER-mediated vasodilation in
endothelium-intact vessels (P<0.01), and the combination of the two inhibitors completely
blocked relaxation (P>0.05 versus vehicle). Additional studies showed that ODQ was
ineffective in the absence of the endothelium, while the adenylyl cyclase inhibitor SQ
completely abolished relaxation in denuded vessels (P>0.05 versus vehicle; Figure 3B).

In order to confirm that GPER activation by G-1 increases cAMP in vascular smooth
muscle, we isolated cells from the same arteries used in the myograph experiments. We
previously showed that GPER expression in these cells that was stable in culture through
passage four [7]. As shown in Figure 4, G-1 elicited a significant increase in cAMP
production in mesenteric artery smooth muscle cells that was significant at nanomolar
concentrations. Pretreatment with the GPER antagonist G15 abolished the cAMP response
to G-1.

Discussion
The present study demonstrates that GPER-dependent relaxation of female Lewis
mesenteric arteries involves both endothelial and smooth muscle cell signaling pathways. In
endothelial cells, GPER stimulates the release of nitric oxide which diffuses to smooth
muscle and activates guanylyl cyclase. In smooth muscle cells, GPER activates adenylyl
cyclase resulting in an increase in cAMP. The ability of G-1 to increase cAMP was
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confirmed in cultured vascular smooth muscle cells isolated from the mesenteric vessels.
Because the G protein subunit Gαs is known to activate adenylyl cyclase and stimulate the
production of cAMP, we propose that in vascular smooth muscle cells GPER is coupled to
this alpha subunit and upon ligand binding utilizes this signaling mechanism to induce
vasodilation (Figure 5).

Our results showing a contribution of both cell types to vasorelaxation are similar to those
recently reported by Li and colleagues in the thoracic aorta of ovariectomized Sprague-
Dawley rats [11]. However, others have shown that the GPER response is completely
endothelium-dependent in epicardial porcine coronary arteries [12] and Sprague-Dawley
carotid arteries [6]. Still others have shown a response that is completely endothelium-
independent in female Sprague-Dawley inferior vena cava [13] and porcine coronary arteries
[9]. The reason for these disparate results is unclear and may suggest differing levels of
GPER expression and/or signaling in endothelial versus smooth muscle cells depending on
the model and arterial bed investigated. For example, Reslan et al. showed greater
vasodilation to G-1 in mesenteric and renal arteries versus carotid and pulmonary arteries
[14]. Furthermore, we and others have demonstrated sex and age differences in the
contribution of endothelium versus smooth muscle in GPER-mediated vasodilation [2, 15]
and have also shown that disease conditions such as salt-loading influence this response
[16].

The cAMP analogue Rp-cAMPs and the adenylyl cyclase inhibitor SQ partially inhibited the
vasodilatory response in intact vessels. However, in denuded or L-NAME pretreated vessels
these inhibitors were completely abolished vasorelaxation. Therefore, the signaling
mechanism in endothelial cells is distinct from the activation of adenylyl cyclase. In
endothelial cells, GPER may couple to a different alpha subunit or utilize a signaling
pathway which does not include adenylyl cyclase. Additional studies using isolated
endothelial cells may elucidate the mechanisms by which GPER influences nitric oxide
synthase and release of nitric oxide.

In 1967, Szego and Davis showed that 17-β-estradiol stimulates uterine cAMP levels in less
than one minute [17]. This acute cAMP response results from stimulation of adenylyl
cyclase and is not dependent on RNA or protein synthesis, suggesting a non-genomic
mechanism [18]. The estrogen-induced increase in cAMP is one possible mechanism for the
acute vasodilatory effects of the hormone. In rat aorta, Rp-cAMPs inhibits the vasodilatory
response to estrogen and diethylstilbestrol [19, 20]. In addition, cAMP and adenylyl cyclase
are implicated in estradiol-induced relaxation of porcine coronary arteries [21]. We show
here that the vasodilatory response to GPER activation also involves the adenylyl cyclase/
cAMP signaling pathway in vascular smooth muscle.

Increases in cAMP can activate protein kinase A and can also cross-activate other protein
kinases such as protein kinase G [22]. Subsequently, these protein kinases phosphorylate
effector proteins that decrease the contractile state of smooth muscle cell. Possible targets
include plasma membrane ion channels such as L-type calcium channels [23] and large-
conductance potassium channels [24]. Alterations in sarcoplasmic reticulum proteins, such
as the inositol trisphosphate receptor [25] and phospholamban [26], may increase
intracellular calcium uptake. Alternative targets may include proteins which directly regulate
the contractile apparatus, including myosin light chain kinase [27] and myosin phosphatase
[28]. While the ability of GPER to alter many of these targets remains to be studied, Yu and
colleagues recently found that G-1 alters large-conductance potassium channel activity in
porcine coronary arteries [9]. In addition, Gros et al. showed that GPER increases myosin
light chain phosphorylation in rat aortic smooth muscle cells [8]. Studies are in progress to
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identify the protein kinases and phosphorylation targets of GPER in mesenteric artery
smooth muscle cells of the Lewis female rat.
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Highlights

• Activation of the estrogen receptor GPER relaxes Lewis female mesenteric
arteries.

• Vasorelaxation is partially dependent on endothelial production of nitric oxide.

• In vascular smooth muscle, vasorelaxation is dependent on cAMP production.

• In isolated vascular smooth muscle cells, GPER activation increases cAMP.

• These signaling pathways may promote vasorelaxation and oppose
hypertension.
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Figure 1.
(A) Estradiol (E2) and (B) G-1 significantly relaxed mesenteric arteries (*P<0.01). While
the response to E2 was not altered in the presence of indomethacin (10−5 M, P>0.05 vs E2
or G-1), both L-NAME (10−4 μM) and endothelial denuding inhibited vasorelaxation to a
similar extent (*P<0.001).
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Figure 2.
The cAMP inhibitor Rp-cAMPS (10−5 M) partially reduced the response to G-1 (P<0.001),
while pretreatment with Rp-cAMPS and L-NAME abolished the response (P>0.05 versus
vehicle).

Lindsey et al. Page 10

Steroids. Author manuscript; available in PMC 2015 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
(A) The adenylyl cyclase inhibitor SQ (10−4 M) and the guanylyl cyclase inhibitor ODQ
(10−4 M) both partially inhibited the response to G-1 in intact vessels (P<0.01). The
combination of the two inhibitors abolished the response (P>0.05 versus vehicle). (B) In
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denuded vessels, ODQ did not alter the response to G-1 (P>0.05 vs. G-1) while SQ
abolished endothelium-independent vasorelaxation (P>0.05 versus vehicle).
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Figure 4.
In cultured cells, 15 minute treatment with G-1 (10−9 M to 10−5 M) increased the production
of cAMP in comparison to DMSO (*P<0.05, n=4–13). The GPER antagonist G15 (10−8 M)
abolished the response to 10−9 M G-1 (P>0.05 vs. DMSO, n=5).
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Figure 5.
GPER activation causes increases in nitric oxide (NO) through an endothelium-dependent
mechanism. In vascular smooth muscle cells, GPER may couple to the αs subunit to activate
adenylyl cyclase (AC), increase cAMP, and trigger protein kinases (PKA, PKG) to
phosphorylate proteins involved in vascular smooth muscle cell contractility. IP3R: inositol
trisphosphate receptor, SERCA: sarcoplasmic reticulum Ca2+-ATPase, PLB:
phospholamban.
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