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Abstract
Large-scale analysis of cellular response to anti-cancer drugs typically focuses on variation in
potency (IC50) assuming that it is the most important difference between effective/ineffective
drugs or sensitive/resistant cells. We took a multi-parametric approach involving analysis of the
slope of the dose-response curve (HS), the area under the curve (AUC) and the maximum effect
(Emax). We found that some of these parameters vary systematically with cell line and others with
drug class. For cell-cycle inhibitors, Emax often but not always correlated with cell proliferation
rate. For drugs targeting the Akt/PI3K/mTOR pathway dose-response curves were unusually
shallow. Classical pharmacology has no ready explanation for this phenomenon but single-cell
analysis showed that it correlated with significant and heritable cell-to-cell variability in the extent
of target inhibition. We conclude that parameters other than potency should be considered in the
comparative analysis of drug response, particularly at clinically relevant concentrations near and
above IC50.

INTRODUCTION
Patient-to-patient variability in drug response is a primary challenge facing development and
use of new medicines 1. A recent approach to understanding such variability involves
genotyping coupled with systematic measurement of dose-response across a large and
diverse bank (“encyclopedia”) of cell lines 2–8. In the case of anti-cancer drugs that block
cell proliferation or induce apoptosis 9, the concentration of drug is usually varied over a 104

to 105-fold range and viability measured after 72–96 hr. Such data is conventionally
analyzed from the perspective of IC50 values (or similar parameters), which are descriptive
of the shape of the dose-response curve at its mid-point. However, inspection of dose-
response curves reveals that they differ substantially in shape from one drug to the next and
from one cell line to the next. Variability in shape can be quantified by performing a multi-
parametric analysis using a conventional logistical sigmoidal function:
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(1)

where y is a response measure at dose D (typically the experimental data), E0 and Einf are
the top and bottom asymptotes of the response; EC50 is the concentration at half-maximal
effect; and HS is a slope parameter analogous to the Hill coefficient 10–12 (Fig. 1a). Three
values derived from equation (1) are in common use: IC50, the concentration of drug at
which response is half its theoretical maximum (i.e. y = 0.5); Emax, the value of y at the
maximum drug concentration tested, and the area under the dose-response curve (AUC).
Although not strictly parameters of equation (1) we refer to Emax, IC50 and AUC as
“parameters” for simplicity. EC50 and IC50 are the classic measures of drug potency and
Emax and Einf are measures of drug efficacy (for anti-cancer drugs Emax varies between 1 at
low doses and 0 at high dose, which corresponds to death of all cells). AUC combines
potency and efficacy of a drug into a single parameter. AUC values can be compared for a
single drug across multiple cell lines exposed to the same range of drug concentrations but
comparison of different drugs is problematic (because the scaling between drugs and dose
ranges is generally arbitrary). In the simple case of second-order competitive inhibition, the
case considered in most pharmacology textbooks, E0 = 1, Emax = Einf = 0, EC50 = IC50 and
HS = 1 (denoted by the red dash line in Fig. 1a).

The focus to data on potency 2–4, 6–8, 13 ignores the potential impact and biological
significance of variation in other parameters such as the steepness of the dose-response
curve or differences in maximum effect (although one recent large-scale study did compute
Emax and AUC 5). In this paper we showed that different dose-response parameters encode
distinct information; some parameters varied systematically with cell line and others with
drug. For example, HS and Emax were frequently uncorrelated with each other or with GI50
but the parameters varied in a consistent way within a drug class. Because the origins of
systematic variation in HS and Emax are poorly understood, we performed single-cell
analysis of Akt/PI3K/mTOR inhibitors and found that cell-to-cell variability is one
explanation for shallow dose-response relationships. Thus, multi-parametric analysis yields
insight into understudied aspects of drug response that are particularly important near and
above the IC50 value, a concentration range relevant to human patients.

RESULTS
Dose-response parameters vary with compound and cell line

We focused on analysis of previously published data comprising CellTiter-Glo measurement
of per-well ATP levels (a metric of metabolically active cells) 14 for 64 anti-cancer drugs
(Supplementary Results, Supplementary Table 1) and 53 well-characterized breast cell
lines 3. Assays were performed before and three days after exposure to drugs at nine doses
spanning a ~105-fold range (with maximum doses between 0.5 μM and 20 mM depending
on potency 3). We computed viability as y = N/NC where the cell number N was measured in
the presence of drug and NC in a no-drug control. Since the number of cells present prior to
the start of the experiment was available (N0) we also computed y* = (N − N0)/(NC − N0) to
yield the GI50 value for y* = 0.5 (Fig. 1b). We confirmed key findings using independent
dose-response data released through the Cancer Cell Line Project (for which estimates of N0
are not available) 4.

Multi-parametric analysis yielded values for EC50, IC50, GI50, HS (Hill slope), Einf, Emax
and AUC for 2789 drug/cell line combinations (Supplementary Data Set 1; http://
lincs.hms.harvard.edu/db/datasets/20120; see Methods for data filtering) and revealed
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substantial differences from one drug and cell line to the next (Fig. 1c). For example, across
cell lines, IC50 varied ~104-fold and Emax from 0–0.8 for the microtubule stabilizer
docetaxel and HSP90 inhibitor geldanamycin (Fig. 2a,b) whereas IC50 varied little for the
CDK4/cyclin D1 kinase inhibitor fascaplysin (ca. 10-fold) and maximum effect was high in
all cases (Emax ~ 0; Fig. 2c). In the case of the PI3K inhibitor GSK2126458, Hill slope was
~1.0, whereas it varied significantly for the polyamine analogue CGC-11144 (Fig. 2d,e).

Association of maximal effect parameters with cell type
We observed that potency, maximal effect and slope were well-correlated only for a subset
of drugs and cell lines (Fig. 3a and Supplementary Fig. 1). For example, whereas IC50 and
Emax correlated in the case of geldanamycin they did not for the PI3K inhibitor
GSK1059615 (Fig. 3b,c). IC50 and Emax were generally more highly correlated than GI50
and Emax (e.g. for the Src/Abl inhibitor bosutinib: P = 10−11 vs. P = 0.03; Fig. 3d–f). Thus,
parameters we might assume to be interchangeable (e.g. IC50 and GI50) were not, implying
that different dose-response parameters convey different information. To quantify this we
computed the mutual information (MI) 15 between parameter values and either cell or drug
type. MI is an information theoretic metric that reveals how informative one variable (e.g.
IC50 or Emax) is about a second variable (e.g. drug identity or cell type). For example, an MI
score of 0 bits for a parameter-drug pair means that they are independent whereas a score of
1 bit means pairs can be divided into 21 = 2 groups having either a low or a high parameter
value; similarly, a score of 1.6 bits implies division into 21.6 ≈ 3 groups. We estimated the
probabilities of observing different values of each dose-response parameter for all
compounds and cell lines and used MI P values as a statistical measure of significance (this
is necessary because non-zero MI values are expected by chance for randomly permuted
data). We computed empirical P values by randomly shuffling the dose-response data (n =
10,000) across all cell lines and drugs (see Methods for details).

Parameters quantifying maximum effect (Emax and Einf) exhibited strong association (P <
10−4) with cell type. For example, all but three drugs exhibited an equal or higher value for
Emax in SKBR3 cells than in SUM159PT cells (Fig. 4a). IC50 had a weaker association (P =
~0.05) with cell type and EC50 and HS had no significant association (Supplementary Table
2). Prevailing “fractional kill” theory 16, 17 posits that inhibitors of cell-cycle progression
(such as paclitaxel) kill only the subset of cells that pass through S or M phases in the
presence of drug. Consistent with this, SKBR3 had a substantially longer doubling time than
SUM159PT cells (~50 vs. ~20 hr, and thus lower mitotic and S phase fractions) under the
growth conditions used in this study. When we calculated the correlation between dose-
response parameters and cell doubling time for all 64 drugs, we observed a strong positive
correlation between Emax or IC50 and doubling time, particularly in the case of DNA
damaging agents and microtubule stabilizers (Fig. 4b and Supplementary Fig. 2). However,
when we excluded nominally cell-cycle specific drugs from the analysis (see Supplementary
Fig. 2 for details) the association between cell line and both Emax and Einf was still
statistically significant (P = ~0.02), albeit weaker. Moreover, drugs not classically
considered to be inhibitors of cell cycle processes exhibited Emax values that correlated with
proliferation rate; in the case of bortezemib the correlation might reflect the role of the
proteasome in degradation of cyclins, p21 and p27 18–20, etc. but this is less obvious in the
case of drugs such as the HSP90 inhibitor geldanamycin. Also unexpected was the
observation that Emax values for some cell-cycle inhibitors did not correlate with
proliferation rate. For example, the CDK4 inhibitor fascaplysin, CDC25 inhibitor
NSC663284, and DNA cross-linking agents cisplatin, carboplatin and oxaliplatin all
exhibited Emax ~ 0 in most cell lines and any variation was independent of proliferation rate.
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Association of Emax and Hill slope with drug class
We observed a strong association (P < 10−4) between drug type and potency, efficacy and
steepness of the dose-response relationships (Supplementary Table 2) meaning that virtually
all pairs of drugs could be distinguished based on cell-line dependent variation in one or
more parameters. For example, the parameters IC50, Emax and HS allowed high confidence
(P = 10−9 to 10−6) discrimination between the pairs of drugs (i) oxamflatin and vorinostat
(two HDAC inhibitors), (ii) MG-132 (a proteasome inhibitor) and 17-AAG (an HSP90
inhibitor) and (iii) GSK1059615 (a PI3K inhibitor) and trichostatin A (an HDAC inhibitor)
(Fig. 4c–e). Distinguishability by IC50 is intuitively obvious and arises when the affinity of a
drug for its target is greater than that of a second drug for its target, making the first
compound universally more potent.

To better understand distinguishability by parameters other than potency, we grouped drugs
into classes based on nominal target or mechanism of action (ignoring potential secondary
targets and poly-pharmacology). We subjected dose-response data for different drug classes
to principal component analysis (PCA; Supplementary Fig. 3) so as to rotate the data into a
new principal component space in which relationships between dose-response parameters
and target could be visualized (independent of cell line). We found that drugs from the same
class usually clustered together (Supplementary Fig. 3). For example, HDAC inhibitors,
proteasome inhibitors and DNA cross-linking drugs had uniformly high maximal effects
(Emax ~ Einf ~ 0) whereas inhibitors of EGFR and HSP90 exhibited large variation in Emax
(Fig. 4f). In the case of Hill Slope, mTOR inhibitors exhibited  (with a median
absolute deviation – MAD – of 0.11) and for pyrimidine analogue or thymidylate synthase

(TYMS) inhibitors,  (MAD = 0.15). These values were
significantly less than one (P < 1×10−8), whereas values of  for HDAC and
proteasome inhibitors were significantly greater than one (P < 1×10−13). Cooperativity is the
usual explanation for HS > 1 in classical enzymology and pharmacology, and the steep dose-
response curve for proteasome inhibitors is presumed to reflect the presence of seven
catalytic subunits in the active enzyme 21. However, situations in which HS < 1 are less
commonly considered and neither sequential nor independent binding schemes with
negative cooperativity result in HS < 1 22.

We confirmed that Hill slope varied with drug class using the Cancer Cell Line Project
dataset which covers 639 human cell lines and 130 drugs 4. The published data comprise
concentration values at different fractional effect size (i.e. EC25, EC50, EC75 and EC90) and
we therefore approximated HS by the EC25/EC75 ratio (Supplementary Data Set 2). Among
the 40 breast cancer lines in this dataset, we found that EGFR inhibitors had significantly
higher HS values than PI3K inhibitors (P = 9×10−6) and PI3K and AKT inhibitors had
higher HS values than mTOR inhibitors (P = ~10−5-10−4), whereas HDAC and proteasome
inhibitors had significantly higher HS values than all three classes of drugs (P = 10−3 to
10−8); this was also true when we examined all cell lines in the Cancer Cell Line Project
dataset (Supplementary Fig. 4). We conclude that Hill slope varies in a consistent way with
drug class across multiple datasets.

Cell-to-cell variability and shallow dose-response curves
To investigate how a shallow dose-response curve might arise we focused on drugs
inhibiting the PI3K/Akt/mTOR pathway that varied widely in HS and Emax values
independent of proliferation rate. As a class, these drugs are undergoing extensive clinical
investigation 23 with more than 300 trials in ClinicialTrials.gov. For three compounds with
varying HS, we measured target inhibition by immunofluorescence microscopy and cell
killing in four breast cell lines (HER2-amplified AU565 and HCC1954 cancer cells,
hormone receptor-positive T47D cancer cells, and non-transformed MCF10A cells). We
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probed the effects of the mTOR inhibitor PP242, PI3K inhibitor GSK1059615, and dual
specificity mTOR/PI3K inhibitor dactolisib (BEZ235) 24 hr after drug exposure in 9-point
dose-response assays using antibodies specific for p-Akt (Ser473), p-4EBP1 (Thr37/46), and
p-S6 (Ser235/236) (Fig. 5a); among these measurements p-4EBP1 is thought to be
particularly informative as a downstream marker of Akt/mTOR/PI3K pathway activity 24, 25.
We also measured levels of phosphorylated Rb (p-Rb at Ser807/811) as a surrogate for
commitment to the cell cycle 26. Immunofluorescence microscopy revealed dose-dependent
inhibition of p-Akt, p-4EBP1 and p-S6 (Supplementary Fig. 5) and viability assays
performed 72 hr after drug exposure confirmed that HS ≪ 1 for PP242 and dactolisib and
HS ~ 1 for GSK1059615 in all cell lines (Supplementary Fig. 6). However, we also observed
substantial cell-to-cell variability in phospho-protein staining intensity for cells exposed to
the first two drugs (Fig. 5b,c): the coefficient of variation (CV) in p-4EBP1 staining (i.e. the
standard deviation of immunofluorescence signal intensity at the single cell level divided by
the population-average) rose for cells treated with PP242 or dactolisib near the IC50 but not
for GSK1059615, which exhibited a low and constant CV (Fig. 5d). We observed similar
results for other cell lines (Supplementary Fig. 7–9). We conclude that a shallow dose-
response curve is correlated with high cell-to-cell variability in target inhibition as compared
to drugs for which HS ~ 1 (in four of four cell lines tested).

Even at the highest drug concentrations tested (10 μM) a fraction of cells exposed to PP242
but not GSK1059615 retained high p-4EBP1 staining (Fig. 5b,c). The outlier population in
PP242-treated cells with high p-4EBP1 staining exhibited ~10-fold higher p-Rb staining (P
< 10−50) as compared to the low p-4EBP1 population, implying that outliers were
committed to cell proliferation (Fig. 5e). The presence of a subset of cells in which the Akt/
mTOR/PI3K pathway is insensitive to inhibition by PP242 or dactolisib is a likely
explanation for fractional cell killing by these drugs (Emax > 0). To determine whether these
insensitive cells represent a stable subpopulation or whether they interconvert with sensitive
cells we exposed cultures to two successive drug treatments. We treated MCF10A cells with
PP242 for 72 hr at a concentration (10 μM) sufficient to induce apoptosis or block
proliferation in ~80% of cells. We exchanged the medium and allowed viable cells to
recover for 24 hr before being exposed a second time to PP242 at a range of 9 doses (1 nM
to 10 μM) for 72 hr. When we compared dose-response curves for the parental (drug-naïve)
and survivor cell populations (Fig. 5f), IC50 values (~1 μM) and HS < 1 were
indistinguishable, showing that drug-sensitive cells can arise rapidly from relatively
insensitive cells. Thus fractional response did not reflect the presence of a stable
subpopulation of drug-insensitive cells but rather rapid inter-conversion between resistant
and sensitive states. Cell-to-cell variability in response to PP242 and the shallow dose-
response curve it generates therefore appeared to be stable properties of cell populations.

Variation of cell line responsiveness to each drug class
The value of any single parameter as an effective descriptor of cellular response to a class of
drugs should depend on how well the parameter correlates across cell lines. We computed a
similarity score for drugs with related nominal targets and treated as significant only those
cases in which variation across cell lines was more highly correlated within a drug class than
across drugs randomly selected from multiple classes (as scored by P value; see Methods for
details, Supplementary Fig. 10). For example, in the case of the HDAC inhibitors vorinostat
and LBH589, Emax values had a high similarity score since they varied in a consistent way
(as illustrated by MDAMB134VI and T47D cells in Supplementary Fig. 10). For EFGR
inhibitors IC50 values were strongly correlated across cell lines (Pearson’s correlation
coefficient = 0.90, P < 10−7 for erlotinib and AG1478) but Emax was not correlated
(Pearson’s correlation coefficient ~ 0.4, P ~ 0.1). The reasons for these differences are not
known but we speculate that erlotinib and AG1478 exert their effects on the same target

Fallahi-Sichani et al. Page 5

Nat Chem Biol. Author manuscript; available in PMC 2014 March 09.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(EGFR) near their IC50 values but have additional and different targets at high drug
concentrations where Emax values become relevant. When comparing drugs we must
therefore account for the fact that different parameters are informative for different drug
classes.

An alternative way to approach this problem is to determine the ability of a single parameter
to accurately describe a full dose-response relationship. We computed the correlation
between the response estimated from a single parameter of a conventional logistic curve and
the measured response. We performed the analysis across the range of doses for all drugs
and cell lines by scoring the P values of the correlation coefficient. We observed that Emax
was best correlated with actual response at high doses, IC50 and AUC were best at
intermediate doses (near the median IC50 for all cell lines) and EC50 or GI50 were best at
low doses (near the IC50 for the most sensitive cell line). This is depicted as continuous plots
for 17-AAG, carboplatin and doxorubicin and for the full dataset, as a set of optimal
parameters for each dose range (Fig. 6a,b). A priori, we are most interested in analyzing
drugs at clinically relevant concentration ranges. We can estimate these ranges from the
plasma concentration (Cmax) at the maximal tolerated dose (MTD); in general, effective
drugs are ones in which Cmax/IC50 ≫ 1 (Supplementary Table 3). Incorporating this
information we saw that, in the clinical range, the most informative parameter varied with
drug; for example, AUC for 17-AAG, IC50 for carboplatin and Emax for doxorubicin.

DISCUSSION
To date, systematic analysis of large scale dose-response data has concentrated on the
closely related parameters EC50, IC50 and GI50, thereby making the implicit assumption that
potency at the mid-point of the dose response curve is the most important difference
between drugs or between sensitive and resistant cells 2–4, 6–8, 13. In this paper, we examined
variation in features other than potency such as maximum drug effect (Emax), the slope of
the dose-response curve (Hill Slope; HS), and the area under the dose-response curve
(AUC). For many drugs, IC50 (or GI50), Emax and HS did not correlate and mutual
information (MI) analysis revealed systematic variation with both drug and cell type: in the
latter case, differences in cell proliferation rates emerged as a probable explanation,
particularly for variation in Emax and drugs that target cell cycle processes. This is consistent
with extensive evidence that inhibitors of DNA synthesis or mitotic spindle assembly exert
their effects (at least in culture) only when cells transit S or M phase. However, not all cell
cycle inhibitors have Emax > 0. For example, inhibitors of cyclin-dependent kinase 4 (CDK4;
fascaplysin), CDK phosphatase CDC25 (NSC663284) and the DNA cross-linking agents
cisplatin, carboplatin and oxaliplatin had Emax ~ 0 for the vast majority of cell lines tested.
Moreover, observed variation in Emax was independent of proliferation rate. Conversely, we
observed a significant association between Emax and proliferation rate for drugs that are not
typically considered to be cell cycle inhibitors, including the HSP90 inhibitor geldanamycin
and the proteasome inhibitor bortezomib (although the latter drug does impact degradation
of cyclins and other cell cycle regulators). Further analysis of killing by cell cycle inhibitors
whose effects do and do not correlate with proliferation is likely to be informative,
particularly in the case of clinically important cytotoxic chemotherapeutics with similar
targets.

For drugs that exhibited large variation in multiple, uncorrelated, dose-response parameters,
a question arose as to which one is most informative. AUC, a parameter that combines
potency and efficacy into a single measure was robust as a response metric when the goal
was to compare a single drug across cell lines exposed to identical dose ranges. Other
parameters could be used with multiple drugs and concentration ranges but their value
varied with dose: Emax was more informative at high than low doses and the opposite was
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true of IC50 and GI50. With anti-cancer drugs it is typical to aim for a maximum serum dose
(Cmax) near the maximum tolerated dose (MTD) and drugs for which Cmax/IC50 ≫ 1 are
preferred clinically. During development of a new drug, reducing IC50 is obviously an
important goal but when the aim is to understand variability in patient responses to an
existing drug our data suggested that it is likely to be more informative to focus on Emax and
HS.

In many cases, the origins of variation in dose response parameters remain to be determined.
Association with drug class or target is confounded by polypharmacology which almost
certainly impacts the shape of dose-response curves at high drug concentrations (particularly
with phenotypic measures of response). Future analysis of different compounds having the
same nominal target should help resolve this issue. Differences in the physicochemistry of
drug/target interaction (e.g. association rate, polar surface area, etc.) are potential source of
variation in parameters other than IC50, and it should be possible to tackle this with
sophisticated cheminformatic analysis 27, 28. However, in this paper we focused on
understanding the origins of fractional maximum effect and shallow dose-response curves.

We found that HS was particularly high for drugs such as proteasome and HDAC inhibitors
(e.g. bortezomib and LBH589) whereas inhibitors of the Akt/PI3K/mTOR pathway
exhibited low and variable HS, particularly drugs such as PP242, temsirolimus, everolimus
and rapamycin. Positive cooperativity provides a framework for understanding steep dose-
response relationships (HS > 1) 10, 22 but even negative cooperativity should not result in HS
< 1. By comparing the dose-dependent inhibition of proteins in the Akt/PI3K/mTOR
pathway following exposure of cells to drugs with HS ~ 1 or HS < 1, we found that shallow
dose-response was associated with high cell-to-cell variability in target inhibition.
Moreover, when we recovered and expanded cells that were initially insensitive to a drug
such as PP242 and then re-assayed drug response several days later, we observed the same
shallow dose-response curve and fractional killing at high dose as the original cell
population. This implies that HS < 1 is a stable property of a cell population and that states
of drug-sensitivity and insensitivity interconvert on the time scale of days. We and others
have observed similar effects in receptor-mediated cell death 29, 30, activation of immune
response 31, or sensitivity to chemotherapeutic drugs 32 and ascribed it to stochastic
fluctuation in the levels or activities of intracellular signaling proteins. In principle, the
molecules of a drug target present in any single cell could exhibit a canonical HS = 1 dose-
response curve but fluctuation in target level, activity or interaction with other proteins 33

might cause the IC50 value to vary from cell to cell, giving rise to a shallow dose-response
curve at the population level.

It is striking that mTOR inhibitors exhibited some of the lowest values for HS and that this
pathway is also subject to complex feedback regulation. Importantly, what appear as static
differences from one cell to the next in the fixed-timepoint experiments in this paper are
likely to arise from temporal fluctuations that are asynchronous across the population.
Mutations and non-genetic factors that generate dose-response curves with HS < 1 and Emax
> 0 are likely to be important clinically: the incremental therapeutic benefit of getting closer
and closer to the maximum tolerated dose will be less for a drug exhibiting a shallow than a
steep dose-response curve. Studies on dose-response relationships for antiviral drugs have
also concluded that variation in HS is important for assessing drug sensitivity and
resistance 21, 34. Attempts to identify new drugs or effective combination therapies might
therefore focus on steepening the dose response relationship and increasing maximum
effect, not just decreasing IC50.
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ONLINE METHODS
Dose response curve fitting

We obtained dose-response curves for the 72 h effect of 64 drugs, including both targeted
agents and cytotoxic therapeutics on the viability and growth of 53 breast cell lines using
previously published data 3 (http://lincs.hms.harvard.edu/db/datasets/20120). Briefly, we
fitted triplicate nine-dose (1:5 serial dilution) data to the logistical sigmoidal model
(equation (1); constraints: E0 = 1 and 0 < HS < 4) using nonlinear least squares regression
performed in GraphPad Prism 6. We excluded “no response” data defined as data that (i)
showed higher statistical quality (based on extra-sum-of-squares F test) when fitted to a
constant model (y = Einf) in comparison with the sigmoidal model, or (ii) their sigmoidal
fitted curve Hill slopes were < 0.25, from the analysis. We also removed data fitted to the
sigmoidal model with R2 < 0.70 from the analysis. Approximately 82% of the 64×53
possible combinations of drug/cell line data passed all filtering requirements and were used
in all of the analyses.

We estimated doubling times for cell lines from the ratio of cell numbers at 72 h to 0 h for
untreated cells. We estimated different dose-response parameters for each individual curve,
including EC50, IC50, GI50, Hill slope (HS), Einf, and Emax. In the case of IC50 and GI50,
when the dose-response data were of high quality but IC50 or GI50 values were not reached,
we set the values to the largest concentration tested. Additionally, we calculated a parameter
AUC representing the area under the relative viability curve, defined as the sum of measured
responses (relative viability) at all tested concentrations of the drug. Hence, AUC = 9
corresponds to an inactive compound, whereas smaller AUC values correspond to higher
drug activities in inhibiting cell proliferation and/or inducing cell death. When multiple
replicates of data on a drug/cell line combination are available, we used medians of the
dose-response parameters estimated across replicates for the statistical analysis.

Association of different dose-response parameters with anti-cancer drugs and breast cell
lines

We assessed associations of each of the key dose-response parameters, log10 (EC50), log10
(IC50), Hill slope, Emax and Einf, with the set of n = 64 drugs (or n = 38 when excluding cell
cycle inhibitors) and the set of m = 53 cell lines using mutual information 15. A rationale for
using mutual information is to capture differences not only in the median (or mean) but also
in the variance of dose-response parameters across different cell lines and compounds. We
discretized each of the dose-response parameters X, into q equally spaced bins where q =
floor [log2 (# of samples) + 1] = 12 (or q = 11 when excluding cell cycle inhibitors) 35. We
defined matrix N for each individual dose-response parameter so that Ni,j was the number of
cell lines whose dose-response parameter values for the ith drug (1 ≤ i ≤ n) lied within the jth

bin of Xd, the discretized form of X (1 ≤ j ≤ q). We computed the empirical mutual
information between Xd and the drugs as:

(2)

where , and . Similarly, we
defined matrix M, where Mk,j was the number of drugs whose dose-response parameter
values for the kth cell line (1 ≤ k ≤ m) belonged to the jth bin of Xd. The empirical mutual
information between Xd and the cell lines was given by:

(3)
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where , and .

Mutual information scores of zero correspond to independence of the dose-response
parameters from the tested drugs and cell lines, whereas larger values imply strong
association, indicating that knowing a dose-response parameter value gives significant
information about drugs and cell lines to which the parameter is expected to belong. To
evaluate the significance of the mutual information scores, we computed empirical mutual
information P values by randomly shuffling (10,000 trials) the dose-response parameter
values among all the tested cell lines and drugs.

Statistical analysis of drug response profiles
We evaluated differences in values of a dose-response parameter between different drugs or
different cell lines by using nonparametric Wilcoxon signed rank test. We evaluated
differences in dose-response parameters between different drug classes that might contain
different numbers of drugs by using nonparametric Mann-Whitney U test. We corrected P
values from the Mann-Whitney U test and Pearson correlation analyses using the Benjamini-
Hochberg method 36 for multiple independent comparisons, and the Bonferroni-Holm
correction 37 for other comparisons.

To measure the extent of similarity among drug response profiles, we used pairwise Pearson
correlation scores by considering for each drug its pattern of dose-response parameter values
across the cell lines. We computed Similarity score for a selected group of N drugs (e.g.
drugs within a class defined based on drug target or mechanism of action) as the average
similarity between all the possible pairs of drugs belonging to the selected group (average
correlation), divided by the expected average similarity between all the possible pairs of
drugs in a randomly selected set of N drugs. To evaluate the significance of the similarity
score for a selected group of N drugs (SS), we computed empirical P values by permutation
test; for a number of n = 10,000 trials, we sampled a random set of N drugs from the whole
set of 64 drugs and computed the similarity score for that set (SS*). For a given SS ≥ 0 we
counted the number of times (r) that SS ≤ SS* across the n permutation trials. We then
computed the empirical P value as (r+1)/(n+1).

Principal component analysis
Principal component analysis (PCA) is an efficient way to simplify and present multi-
dimensional data into fewer dimensions 38. For example, each drug in our analysis can be
described by 53 IC50 values, 53 HS values and 53 Emax values corresponding to the
parameters for growth inhibition assays for 53 breast cell lines. Therefore, each drug can be
represented by a vector pointing into 53×3 = 159 dimensional space that depicts its effect on
the cell line panel. Because it is not possible to visualize 159-dimensional graphs, we used
PCA to recognize the 159-dimensional relationships into three primary dimensions (i.e.
principal components) that can be plotted on a graph. These principal components are a
linear combination of the original dimensions. We organized dose-response parameters into
a matrix with 64 rows (corresponding to drugs) and 159 columns (corresponding to dose-
response parameters IC50, HS and Emax for all cell lines), took the logarithm of parameters,
imputed missing values from the nearest-neighbor row (the closest row in Euclidean
distance), normalized each parameter value via calculating the z-score for each parameter
across the 64 drugs, and performed PCA. We can discuss the results of PCA in terms of
component scores (the transformed variable values corresponding to a particular data-point)
and loadings (the weight by which each normalized original variable should be multiplied to
get the component score).
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Cell lines and reagents
We obtained AU565, HCC1954 and T47D breast cancer cell lines and MCF10A mammary
epithelial cells from the American Type Culture Collection (ATCC). We cultured AU565
and HCC1954 cells in RPMI 1640 (ATCC) supplemented with 10% fetal bovine serum
(FBS), T47D cells in RPMI 1640 supplemented with 10% FBS and insulin (0.2 U/ml), and
MCF10A cells in DMEM/F12 (Invitrogen) supplemented with 5% horse serum, EGF (20
ng/ml), insulin (10 μg/ml), hydrocortisone (0.5 μg/ml), and cholera toxin (100 ng/ml). We
added penicillin (50 U/ml) and streptomycin (50 μg/ml) to all growth media.

We purchased dactolisib (BEZ235), GSK1059615 and PP242 from Selleck Chemicals. All
compounds were at least 97% pure as evaluated by HPLC and MS analysis. All compounds
were dissolved in DMSO as 10 mM stock solutions. For dose-response experiments, we
plated cells in 2 replicates at 7,000 cells per well in 96-well plates (Corning) in full growth
media for 24 hr and then treated them with 9 doses in serial dilutions (10−10 to 10−5 M) of
each compound for 6, 24 and 72 hr.

Immunofluorescence microscopy
Cells were fixed in 2% paraformaldehyde for 10 min at room temperature and washed with
PBS with 0.1% Tween 20 (Sigma-Aldrich) (PBS-T), permeabilized in methanol for 10 min
at room temperature, rewashed with PBS-T and blocked in Odyssey Blocking Buffer (LI-
COR Biosciences) for 1 hr at room temperature. Cells were incubated overnight at 4°C with
rabbit monoclonal antibodies to p-Akt (1:400, Ser473, 4060, Cell Signaling Technology),
p-4EBP1(1:400, Thr37/46, 2855, Cell Signaling Technology), p-S6 ribosomal protein
(1:400, Ser235/236, 4858, Cell Signaling Technology), and a goat polyclonal antibody to p-
Rb (1:400, Ser807/811, sc-16670, Santa Cruz) in Odyssey Blocking Buffer. Cells were
washed three times in PBS-T and incubated with rabbit and goat secondary antibodies
labeled with 647 and 568 Alexa Fluors (Invitrogen), respectively, diluted 1:2,000 in
Odyssey Blocking Buffer. Cells were washed once in PBS-T, once in PBS and incubated in
250 ng/ml Hoechst 33342 (Invitrogen) and 1:1,000 Whole Cell Stain (blue; Thermo
Scientific) solutions. Cells were then washed twice with PBS and imaged with 10× objective
on Operreta (Perkin Elmer). Image segmentation and storage was performed using
ImageRail software 39. Data were analyzed using Matlab software. Selected images were
RGB-transformed and merged using ImageJ software.

Online databases
Dose-response data (both raw and processed), including estimates of all dose-response
parameters used in this study are available online through the Harvard Medical School
Library of Integrated Network-based Cellular Signatures (HMS LINCS) database (http://
lincs.hms.harvard.edu/db/datasets/20120).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Diversity of anti-cancer compounds with respect to variation in dose-response parameters
across a panel of breast cell lines. (a) Schematic of key dose-response parameters (EC50,
IC50, Einf, Emax and AUC) calculated following curve fitting to the cell survival data. The
pink area represents area under the curve (AUC). The red dash line represents the simple
case of E0 = 1, Emax = Einf = 0, EC50 = IC50 and HS = 1. Effects of variations in EC50, slope
(HS), and Einf on the shape of dose-response curve are shown on the right; see text for
details of parameters and logistic equation. (b) Schematic of key dose-response parameters
(GI50, TGI) that can be calculated by fitting logistic curves to data on relative cell growth
comprising a change in cell number after drug treatment normalized to the change in cell
number in an untreated control well. (c) The range of dose-response parameters, IC50 (a
measure of potency), Emax (a measure of efficacy), and Hill slope (HS) estimated for all 64
compounds across all the 53 breast cell lines represented by box and whisker plots drawn
and median parameter values and inter-quartile ranges; bars extending to 1.5-times the inter-
quartile range are shown for each drug as a measure of variance. Parameter values for outlier
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cell lines are denoted by stars. Compounds are sorted based on the median IC50 value. Drug
targets are nominal and do not include off-target effects.
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Figure 2.
Selected examples of dose-response curves representing different types of variation in dose-
response relationships. Patterns of dose-response across the breast cell line panel for (a)
docetaxel, a microtubule stabilizer, (b) geldanamycin, an HSP90 inhibitor, (c) fascaplysin, a
CDK4 inhibitor, (d) CGC-11144, a polyamine analogue, and (e) GSK2126458, a PI3K
inhibitor are shown. These drugs are highlighted in red in Fig. 1c. The range of IC50 and
Emax values is represented by box and whisker plots drawn and median parameter values
and inter-quartile ranges shown above and to the right; bars extending to 1.5-times the inter-
quartile range are shown for each drug as a measure of variance. Parameter values for outlier
cell lines are denoted by stars.
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Figure 3.
Different dose-response parameters do not always correlate with each other. (a) Pairwise
correlation between different key dose-response parameters estimated for each drug across
the breast cancer cell line collection. P values were corrected using the Bonferroni-Holm
method. A complete view of panel (a) including drug names corresponding to each drug
index is presented in Supplementary Fig. 1. Correlation coefficient values and corrected P
values are presented in Supplementary Data Set 3. (b, c) Pairwise distribution and
correlation of Emax and IC50 for geldanamycin (an HSP90 inhibitor) and GSK1059615 (a
PI3K inhibitor). (d–f) Pairwise distribution and correlation of Emax, IC50 and GI50 for
bosutinib (a Src/Abl inhibitor) across the cell line panel. Each circle represents a cell line.
Colors represent different drugs.
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Figure 4.
Association of dose-response parameters with cell type, drug type and drug class. (a) An
example showing that two cell lines (SUM159PT and SKBR3) are distinguishable by Emax
values with SUM159PT cells having lower values for all but three compounds. Significance
of difference between the Emax values for the two cell lines was evaluated by a P value
based on nonparametric Wilcoxon signed rank test. (b) Correlation between different dose-
response parameters estimated for the set of anti-cancer compounds and the doubling times
across the breast cell lines. Drugs are grouped in two groups: cell cycle phase-specific and –
nonspecific drugs. See Supplementary Fig. 2 for the complete list of drugs in each group.
The percentage of drugs within each group that exhibit significant correlation (P < 0.05)
between doubling time and parameters Emax and IC50 is shown. P values were corrected
using the Benjamini-Hochberg method. Correlation coefficient values and corresponding P
values are presented in Supplementary Data Set 4. (c–e) Three examples of anti-cancer
drugs that are distinguishable based on dose-response parameter values across the breast cell
line panel as discovered by mutual information analysis. The Significance of differences
between drugs was evaluated by P values based on nonparametric Wilcoxon signed rank
test. (f) Variation of Emax and Hill slope for different classes of drugs defined based on
target or mechanism of action across the breast cell lines. Significance of differences
between drug classes was evaluated by P values based on nonparametric Mann-Whitney U
test and corrected using Bonferroni-Holm method.
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Figure 5.
High cell-to-cell variability is associated with shallow dose-response and suboptimal
maximum effect for pharmacological inhibition of mTOR. (a) PI3K/Akt/mTOR pathway
and its associated downstream effectors. Highly simplified schematic showing how drug
response was assessed by measuring levels of phosphorylated Akt, S6 ribosomal protein,
4EBP1 and Rb on a single-cell level by immunofluorescence microscopy. (b) Dose-
dependent inhibition of p-4EBP1 with increasing drug concentrations as illustrated by
intensity values on a single-cell basis. (c) Selected immunofluorescence images of p-4EBP1
(green), p-Rb (red) and Hoechst (blue) staining of MCF10A cells in the absence of drug and
24 hr after exposure to 10 μM PP242. (d) The effect of PP242, dactolisib and GSK1059615
on coefficient of variation (CV; the standard deviation for single cell measurements divided
by the population-average) of single cell p-4EBP1 levels. Data represent mean values ± s.d.
calculated from two replicates per dose of drug. (e) Cells with high p-4EBP1 levels (i.e.
cells with p-4EBP1 levels above the population average) 24 hr after exposure to 10 μM
PP242 exhibit >10 times higher levels of p-Rb than low-p4EBP1 cells (cells with p-4EBP1
levels below the population average). Median p-Rb signal intensities and inter-quartile
ranges, and bars extending to 1.5-times the inter-quartile range are shown. (f) Retreating
surviving MCF10A cells (exposed to 10 μM PP242 for 72 hr followed by fresh growth
media for 24 hr) with 9 doses of PP242 for 72 hr results in a shallow dose-response curve
with similar dose-response parameters as observed for parental cells.
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Figure 6.
Different dose-response parameters capture cell line to cell line variation at different dose
regimes. (a) Variations of the predictive value (coefficient of Pearson correlation with
relative viability) for each of the three key dose-response parameters (IC50, Emax and AUC)
with dose for three selected drugs, 17-AAG, carboplatin and doxorubicin. (b) Predictive
value of different dose-response parameters for drug sensitivity is a function of the clinical
concentration of drug. Dose-response parameters corresponding to the most significant
correlation (as evaluated by P value) with cellular response (i.e. relative viability) at doses
spanning a range from the most sensitive cell line’s IC50 to the highest tested dose for each
drug are shown. For example for the mTOR inhibitor PP242, EC50 (denoted by green bar) is
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the parameter with the highest correlation with relative viability when cell lines are exposed
to drug concentrations around 10−4 times the maximal tested dose (i.e. 10−5×10−4.3 M 0.5
nM). At a 100-fold higher concentration (i.e. 10−3×10−4.3 M ≈ 50 nM), AUC (denoted by
red bar) shows the strongest correlation with relative viability.
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