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Abstract
It is routinely argued that, unlike standard regression-based estimates, inverse probability
weighted (IPW) estimates of the parameters of a correctly specified Cox marginal structural model
(MSM) may remain unbiased in the presence of a time-varying confounder affected by prior
treatment. Previously proposed methods for simulating from a known Cox MSM lack knowledge
of the law of the observed outcome conditional on the measured past. While unbiased IPW
estimation does not require this knowledge, standard regression-based estimates rely on correct
specification of this law. Thus, in typical high-dimensional settings, such simulation methods
cannot isolate bias due to complex time-varying confounding as it may be conflated with bias due
to misspecification of the outcome regression model. In this paper, we describe an approach to
Cox MSM data generation that allows for a comparison of the bias of IPW estimates versus that of
standard regression-based estimates in the complete absence of model misspecification. This
approach involves simulating data from a standard parametrization of the likelihood and solving
for the underlying Cox MSM. We prove that solutions exist and computations are tractable under
many data generating mechanisms. We show analytically and confirm in simulations that, in the
absence of model misspecification, the bias of standard regression-based estimates for the
parameters of a Cox MSM is indeed a function of the coefficients in observed data models
quantifying the presence of a time-varying confounder affected by prior treatment. We discuss
limitations of this approach including that implied by the “g-null paradox”.
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1. Introduction
Inverse probability weighted (IPW) estimation of Cox Marginal Structural Models (MSMs)
[1, 2] is now a popular approach to estimating the causal effect of a time-varying treatment
on survival in observational studies. A Cox MSM is a model for the hazard ratio at a given
follow-up time comparing counterfactual time-varying treatment regimes. It is routinely
argued that, unlike standard regression-based estimates, IPW estimates of the parameters of
a correctly specified Cox MSM may remain unbiased in the presence of a time-varying
confounder affected by prior treatment. For example, in observational studies of HIV-
infected patients, CD4 cell count affects whether a patient will receive treatment and is
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associated with future survival. It is also itself affected by whether treatment has been
previously initiated.

Young et al. [3, 4] and Havercroft and Didelez [5] have proposed algorithms for simulating
data under a known Cox MSM and known model for the treatment mechanism. Westreich et
al. [6] recently applied a variant of one of these algorithms to compare the performance of
IPW estimates and standard regression-based estimates of the true Cox MSM parameters
under several simulation scenarios where time-varying confounding affected by prior
treatment is present. As knowledge of the correct functional form of the Cox MSM and of
the model for the treatment mechanism are required for unbiasedness of IPW estimation,
these previously proposed approaches are reasonably useful for simulation studies of IPW
estimator performance. In particular, under such data generating algorithms, the properties
of IPW estimators in the complete absence of model misspecification may be studied.

These previously proposed simulation approaches, however, lack explicit knowledge of the
law of the observed outcome at each time conditional on the measured past. Unlike IPW
estimates, standard regression-based estimates rely on correct specification of this law. In
settings most often of interest, where treatment and confounders are frequently updated over
time and/or covariates are high-dimensional, regression-based estimates cannot be
constructed non-parametrically and, typically, parametric models are used. It follows that, in
such settings, these previous simulation methods will not be useful for studying the
performance of standard regression-based estimates as bias due to time-varying confounding
may be conflated with bias due to model misspecification.

Xiao et al. [7] suggested an alternative approach to simulating from a Cox MSM by
generating according to standard parametric models for the joint distribution of the observed
data. These authors argued, under a particular data generating mechanism and a rare disease
assumption, that the parameters of the underlying Cox MSM may be derived analytically
from the parameters of the specified observed data generating models. These include a
regression model for the treatment mechanism used in the construction of IPW estimates.
These also include a regression model for the law of the outcome conditional on the
measured past used in the construction of standard regression-based estimates. In turn, this
approach allows a comparison of IPW and standard regression-based estimates in the
absence of model misspecification.

In this paper, we show more generally that the parameters of an underlying Cox MSM may
be derived based on a particular parametrization of the observed data distribution. This
derivation follows from the general relationship between a Cox MSM and Robins’ g-
formula [8]. We prove that solving for the true Cox MSM parameters is both possible and
computationally tractable under many data generating models with or without the
assumption of rare disease. Various examples are presented where follow-up time is
arbitrary and standard parametric models for the observed data are imposed such that time-
varying confounding affected by prior treatment is present. A large sample simulation study
is also presented. We begin with a description of the observed data to be generated.

2. Observed data structure
We wish to generate samples of n i.i.d observations where each observation represents
measurements on a subject in a hypothetical observational study. In this study, subjects are
followed beginning at time t0 (baseline) and the investigator takes measurements on each
subject during frequent, regular intervals. Specifically, for m = 0, …, K: Let Am be the value
of a binary treatment measured during interval m defined by [tm, tm+1), with Am = 1 if the
subject is treated and Am = 0 otherwise. Further, let Lm be a covariate measured at the start
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of that same interval. Define Ym+1 = I(T ≤ tm+1) with T a subject’s exact failure time which
may be either continuous or discrete; equivalently, Ym+1 is an indicator of failure by tm+1.

In general, we denote the history of a random variable using overbars; for example Ām = (A0,
…, Am) is the observed treatment history through the end of interval m. By definition Y̅0 = 0
(all subjects must be at risk for failure at baseline). For notational convenience we set L̅−1
and Ā−1 to be identically 0. To simplify the presentation, we will assume no loss to follow-
up.

3. Definition of a Cox MSM
Let ā ≡ āK = (a0, …, am, …, aK) denote a treatment regime in 𝒜̅K, the support of ĀK
consisting of all possible treatment regimes. Examples include ā = 1̅ (or “always treat”) and
ā = 0̅ (or “never treat”). Treatment regimes of the form ā are known as static regimes in that
the treatment received in every future interval by someone following that regime is
deterministically known at baseline. By contrast, a dynamic treatment regime is one under
which treatment at a future time may depend on the values of evolving time-dependent
covariates. For example, see [9, 10, 11, 12, 13, 14, 15, 16]. In this paper we limit our
attention to causal contrasts involving only static regimes.

Define  as the outcome history a subject would have had if, possibly contrary to fact,
she followed regime ā with Tā her exact failure time. A discrete time Cox MSM γ(m, ām, ψ)
is defined as

(1)

where ψ is a constant parameter vector, and γ is a particular function of ψ, regime ā through
m and m. The parameter ψ encodes the causal treatment effect of following a static regime ā
compared with 0̅ up to any interval m + 1 such that ψ = 0 if and only if

 for all ām in the support of Ām, m = 0, …, K.

Following D’agostino et al. [17], when Tā is continuous and measurement intervals are
sufficiently small such that the event rate is negligible within each interval and over the
follow-up, then the discrete time Cox MSM (1) may approximate the continuous time Cox
MSM

for t ∈ [tm, tm+1) where λTā (t) and λ0(t) are the counterfactual hazards at t under regimes ā
and “never treat”, respectively, for all ā and m = 0, …, K.

4. Identifying assumptions and the g-formula
Suppose the goal of this hypothetical study is to obtain an unbiased estimate of the
parameter vector ψ under model (1). Note that, if γ(m, ām, ψ) is a saturated model – i.e., the
ratio on the LHS of (1) is allowed to differ for every possible ām and m – then the Cox MSM

is by definition correctly specified. As  for all āK in the support of ĀK are not observed
for all study subjects, in order to identify ψ based only on measured variables, we require
additional assumptions. For each m = 0, …, K and each static regime ā, suppose that the
following hold:
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1. Consistency: If Ām = ām then  and  with  the covariate
history through m under ā.

2. Positivity: fĀm−1,L̅m,Ym (ām−1, l̄m, 0) ≠ 0 ⇒ Pr[Am = am|L̅m = l̄m,Ām−1 = ām−1, Ym =
0] > 0 w.p.1.

3. Exchangeability (no unmeasured confounding):

where, in general, A ∐ B|C denotes “A is independent of B given C”.

As stated in the appendix of [3], under the above three identifying assumptions for a given

static regime ā,  is given by Robins’ g-formula [8]:

(2)

with

for m = 0, …, K.

It follows that, given our identifying assumptions, the Cox MSM (1) will hold in our study
population if the following relationship holds

(3)

for all ām and m = 0, …, K. For simplicity, we have generally expressed the g-formula h(m,
ām) above in terms of a high-dimensional sum. However, when L̅m contains continuously
measured components, we may replace sums with integrals.

5. Parametric assumptions on the g-formula
Let us now additionally assume that the components of the g-formula h(m, ām) may be
characterized by standard parametric models. Under these additional restrictions, it follows
that the Cox MSM (1) holds if

(4)

for all ām and m = 0, …, K where

(5)

with
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such that (5) is a particular parametric version of (2).

We can now explicitly connect models for the observed data likelihood to a Cox MSM.
Specifically, based on (4), when L̅m contains only discrete components, one can, at least in
theory, derive in closed form the underlying Cox MSM γ(m, ām, ψ) that holds for any choice
of parametric models. However, this derivation may become computationally unwieldy in
practice without additional restrictions (e.g. Markov assumptions) when the confounders
may take on many levels and/or K is large.

When L̅m contains continuously measured components, deriving the true Cox MSM based
on a particular parametrization of the g-formula may require evaluating integrals with no
closed form. In this case, whether there is a closed form solution will depend on the choice
of parametrization and, possibly, whether additional restrictions are imposed (e.g. rare
disease assumptions). In the following sections, we consider a variety of data generating
assumptions under which we may tractably derive the true Cox MSM implied by a standard
parametrization of the observed data likelihood.

6. Cox MSMs under Markov assumptions
Suppose the following Markov assumptions hold:

(6)

and

(7)

m = 0, …, K where g and r are any real-valued functions bounded between 0 and 1. We now
have the following theorem.

Theorem 6.1 Assume that the restrictions (6) and (7) hold for all m = 0, …, K. Then, it

follows that the hazard ratio  only depends on (m, ām) through (am, am−1) with

(8)

for Lm discrete and

(9)

for Lm continuous.

A proof of Theorem 6.1 is given in Appendix A. The following is a corollary of Theorem
6.1.
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Corollary 6.2 Suppose the assumptions of Theorem 6.1 hold and denote h(m, ām) ≡ h(am,
am−1). Then, the Cox MSM γ(m, ām, ψ) = ψ0am + ψ1am−1 + ψ2amam−1 holds with

(10)

(11)

(12)

7. Binary covariates
In this section, suppose Lm is binary. By Corollary 6.2, we obtain

(13)

(14)

(15)

Equations (13), (14) and (15) follow simply by plugging the RHS of (8) into (10), (11) and
(12) for the appropriate (am, am−1).

Standard parametric assumptions on g(lm, am, am−1) and r(lm, am−1) might be regression
models with logit, probit or complementary log-log links [18]. To fix ideas, we work
through an example under logistic regression models for both g(lm, am, am−1) and r(lm,
am−1) such that

(16)

and

(17)

m = 0, …, K. To simplify the presentation, we have implicitly set the intercept in (16) to
zero, however a non-zero intercept is easily added. Plugging these choices into (13), (14)
and (15) we obtain the solutions

(18)
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(19)

(20)

Notably, if the disease were rare as in Xiao et al. [7] our solutions simplify considerably.
Specifically, given the model (17) and rare disease within each measurement interval and
history we have the approximation

(21)

Plugging (21) into expressions (13), (14) and (15) in place of (17) we obtain the simplified
approximate solutions

(22)

(23)

(24)

Equations (22) and (23) establish that the parameters of a standard time-dependent Cox
regression such as (21) do not generally match those of the Cox MSM. Specifically, the
maximum likelihood estimates (MLEs) of θ2 and θ3 based on the correctly specified model
(17) have bias approximately equal to θ2 − ψ0 and θ3 − ψ1 for ψ0 and ψ1, respectively. Given
the rare disease approximation (21), we can see by expression (22) that we have
approximately θ2 − ψ0 = 0 for any choice of θ1 or β1. However, by expression (23), we will
only have θ3 = ψ1 if either θ1 or β1 is zero; that is, if Lm is either not a confounder or not
itself affected by prior treatment. Without the rare disease assumption, by equations (18) and
(19), the bias of the MLEs of θ2 and θ3 for ψ0 and ψ1, respectively, depends not only on the
values of θ1 and β1 but also on the other components of θ.

By equation (24), we also see in this example that, given the rare disease approximation
(21), absence of an interaction term between am and am−1 in the model (17) also implies no
interaction as quantified by ψ2. However, by equation (20), in the absence of rare disease,
the presence of interaction as quantified by ψ2 generally depends on β1 and all components
of θ, despite the absence of an interaction term in the model (17). For interested readers, we
explicitly consider alternative solutions for ψ2 in Appendix B when an interaction term
between am and am−1 is added to the model (17), both with and without a rare disease
approximation. Note that solutions for ψ0 and ψ1 will remain unchanged (with or without
rare disease) under a less restricted model for g(lm, am, am−1) that allows interaction between
am and am−1 by equations (13) and (14), respectively.
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8. Continuous covariates
In this section, suppose Lm is a continuous random variable m = 0, …, K. Given the

assumptions of Theorem 6.1, whether a closed form solution exists for  in this
setting will now depend on the choice of g and r.

For example, as in Xiao et al. [7], assume that Lm is normally distributed given the past with

(25)

As in (16), an intercept is easily added to (25). With this choice of r, a closed form solution
for (9) is not generally available for g the logistic regression model (17). If, however, along
with this choice of r, we choose a probit link for g such that

(26)

with Φ(·) the CDF of a standard normal, then, following Agresti [18], we have

(27)

with . By Corollary 6.2, we then also have that the Cox MSM γ(m, ām, ψ)
= ψ0am + ψ1am−1 + ψ2amam−1 holds with specifically

A similar result is available for the logistic regression model (17) provided r is alternatively
defined in terms of the more complex bridge distribution function of Wang and Louis [19].
However, if we further assume rare disease, we may maintain assumption (25) for r along
with the model (17) for g and obtain an approximate closed form solution for (9).
Specifically, using the approximation (21) for g and model (25) for r we have
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(28)

with the last equality given by the moment generating function for the normal distribution.
Note that, given (21), an analogous solution for h(m, ām; β, θ) will exist for any choice of r
provided the conditional distribution of Lm has homoscedastic errors by the general property
of the moment generating function. By Corollary 6.2, plugging the approximation (28) into
(10), (11) and (12) for the appropriate choices of (am, am−1), the Cox MSM γ(m, ām, ψ) =
ψ0am + ψ1am−1 + ψ2amam−1 holds with the approximate solutions ψ0 = θ2, ψ1 = θ3 + θ1β1
and ψ2 = 0.

Analogous to the worked example for binary Lm under the rare disease assumption (21), we
see that ψ0 = θ2 regardless of the values of θ1 and β1. By contrast, ψ1 = θ3 only if θ1 or β1 is
zero; that is, when Lm is not a confounder affected by prior treatment. As in the binary case,
our probit example illustrates more generally that the discrepancy between ψ and the
components of θ corresponding to treatment coefficients in the conditional outcome
regression model, in addition to β1 and θ1, may also depend on other components of θ.

Of the examples considered thus far, the data generating assumptions of our last example –
with r defined by model (25) and g approximated by (21) – are closest to those of the data
generating models given in Xiao et al. [7]. One key distinction, however, is that Xiao et al.
[7] allowed the distribution of Lm also to depend on Lm−1. Under this weaker assumption,
the resulting Cox MSM now depends on the entire treatment history ām and not simply the
two most recent values (am, am−1) as given by the following theorem.

Theorem 8.1 Assume the data generating mechanism (6) of Theorem 6.1 holds with g
approximated by (21). Further assume

(29)

m = 0, …, K. Data generated under these assumptions will approximately follow a Cox
MSM of the form

with ψ0 = θ2, ψ1 = θ3 + θ1β1 and , s = 1, …, m − 1.

A proof of Theorem 8.1 is given in Appendix C. Note that Xiao et al. [7] concluded that,
under their data generating models, the resulting Cox MSM should only depend on am and
am−1 for all m = 0, …, K. Theorem 8.1 appears to contradict this conclusion for K > 1. Under
these data generating assumptions, IPW estimates constructed based on a Cox MSM that
excludes the correct function of ām−2 should theoretically incur some bias because such a
Cox MSM will be misspecified. This is a particular problem when |β2| ≥ 1.
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9. Simulation Algorithm
The following general algorithm may be used to simulate a sample of n i.i.d. observations as
described in §2 that follows a particular parametrization of the g-formula.

Let Pr[Am = 1|L̅m = l̄m,Ām−1 = ām−1, Ym = 0; α] be a parametric model for the probability of
receiving treatment in interval m given survival to m and history (l̄m, ām−1). For each of i =
1, …, n simulated observations, implicitly define L̅−1,i ≡ Ā−1,i ≡ Y0,i = 0. Then for each
observation i:

For m = 0, …, K:

1. Draw Lm,i from some choice of f(Lm|Ām−1, L̅m−1, Ym = 0; β) evaluated at the
previously generated (Ām−1,i, L̅m−1,i).

2. Draw Am,i from some choice of Pr[Am = 1|L̅m, Ām−1, Ym = 0; α] evaluated at
previously generated (Ām−1,i, L̅m,i).

3. Draw Ym+1,i from some choice of Pr[Ym+1 = 1|L̅m, Ām, Ym = 0; θ] evaluated at
previously generated (Ām,i, L̅m,i). If Ym+1,i = 1 then this is the last record in the data
set for observation i. Otherwise, generate another record for observation i (i.e., go
to index m + 1).

The above algorithm may be used to confirm theoretical results under any of the data
generating assumptions considered above. As a simple illustration, we performed a
simulation study where 20, 000 samples were generated according to the above algorithm,
each with n = 100, 000 observations and K = 6. Data were generated according to the
restrictions of Theorem 6.1 with the covariate and outcome generated according to the
logistic regression models (16) and (17), respectively. Treatment was generated according to
the logistic regression model logit[Pr(Am = 1|L̅m = l ̄m, Ām−1 = ām−1, Ym = 0; α)] = α0 + α1lm
for each m = 0, …, K.

Simulations were conducted under the following six different combinations of (β1, θ1). In all
scenarios, we fixed α0 = 0.5, α1 = 0.5, θ0 = −7, θ2 = −0.8 and θ3 = 0. As all components of θ
were selected ≤ 0, the rare disease approximation (21) holds under all six scenarios. Recall
that by the analytic results of §7, under all simulation scenarios the Cox MSM γ(m, ām, ψ) =
ψ0am + ψ1am−1 + ψ2amam−1 holds with approximate values of ψ0, ψ1 and ψ2 defined as in
(22), (23) and (24), respectively.

Table 1 presents the bias of the IPW estimates of ψ0 and ψ1 for the true ψ0 and ψ1,
respectively, constructed under the correctly specified Cox MSM and model for treatment
for the 20, 000 runs. We see little bias at n = 100, 000 in these estimates. See Appendix D
for details of the IPW estimation procedure. Table 2 presents the bias of the MLE of θ2 for
θ2 = ψ0 constructed under the correctly specified outcome regression model (17). Table 3
presents the bias of the MLE of θ3 for θ3, along with the bias for ψ1, also under the correct
model (17). Our simulations confirm the analytic results of §7. In particular, we see little
bias of the MLE of θ2 and θ3 for θ2 = ψ0 and θ3, respectively, regardless of the values of β1
and θ1. However, we see that the bias of the MLE of θ3 for ψ1 approximates θ3 − ψ1. As
expected, this difference is approximately zero only when either β1 or θ1 is zero.

10. Relation to the g-null paradox
As discussed, a limitation of the proposed simulation approach is that, under some data
generating assumptions, it may be intractable or impossible to solve for the true Cox MSM
parameters. Interestingly, an additional limitation of the proposed simulation approach
follows from previous arguments regarding the “the g-null paradox” [20]. These arguments
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would suggest that given standard parametrizations of the observed data distribution
consistent with the presence of a time-varying confounder affected by prior treatment, it is
impossible for the null hypothesis of ψ = 0 to hold simultaneously. Our examples allow a
careful consideration of this paradox in the current setting.

Consider the data generating assumptions of the simulation study described in §9. As before,
under these assumptions, we approximately have ψ0 = 0 if θ2 = 0 by equation (22). Further,
by equation (23), we have ψ1 = 0 if θ3 is set to

regardless of the values of θ1 and β1. Thus, we have at least one example illustrating that it is
mathematically possible to generate data according to standard parametric models such that
all components of ψ are zero and a time-varying confounder affected by prior treatment is
present.

However, we do not expect such a scenario, where one coefficient is restricted to depend on
a function of other coefficients of the data generating mechanism, to occur in nature. This is
an example of the faithfulness assumption invoked when causal directed acyclic graphs are
used to represent underlying data generating mechanisms [21, 22]. We therefore may be
limited to simulation scenarios with the proposed algorithm to unrealistic settings if we wish
simultaneously to generate data under the null.

11. Discussion
In this paper, we have illustrated how to derive a closed form Cox MSM given a set of
parametric models for the observed data distribution. This gives an approach for simulating
from a known Cox MSM using a standard parametrization of the likelihood. In contrast to
previously proposed simulation methods, this approach allows a comparison of the
performance of IPW and standard regression-based estimators of the effect of a time-varying
treatment on survival in the complete absence of model misspecification. This, in turn,
allows isolation of any particular source of bias in a simulation study. These sources may
include finite sample bias, that due to (known) model misspecification and that due to
complex time-varying confounding structures.

We used our analytic results to demonstrate and confirm in an example simulation study that
the bias of standard regression-based estimates depends, at least in part, on the degree to
which parameters quantifying the presence of a time-varying confounder affected by prior
treatment are non-zero. Using analytic results, one may know, prior to undertaking a
simulation study, how much large sample bias to expect in such a standard estimate in the
absence of model misspecification. Confirmation of these expectations reduces the
possibility of coding errors.

Our arguments highlight the importance of clearly defining the target population parameter
of interest in any consideration of bias. As discussed, standard estimates will be
approximately unbiased in large samples for the coefficients on treatment history in a
correctly specified outcome regression model conditional on past treatment and
confounders. However, following previous graphical arguments in largely model-free
settings [9, 23, 24], these coefficients may fail to have a causal interpretation, even given the
identifying assumptions of §4, when Lm is a time-varying confounder affected by prior
treatment. Our arguments further highlight the need for careful consideration when imposing
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a parsimonious Cox MSM. For example, as we showed, typical assumptions that restrict
dependence of the causal hazard ratio on only the most recent values of treatment may be
difficult to justify if one is unwilling to make potentially extreme Markov assumptions on
the underlying observed data generating process.

Finally, the utility of the proposed approach to known Cox MSM data generation is not
limited to simulation-based comparisons of IPW performance versus that of standard
regression-based estimators. This approach may also be useful in simulation studies aimed at
comparing IPW with other estimators of correctly specified Cox MSM parameters that rely
on a correctly specified conditional outcome regression model for optimal performance.
These include parametric g-computation [8, 25, 26, 16, 27] as well as double-robust methods
[28, 29, 30, 31].
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Appendix A
We explicitly prove Theorem 6.1 under the discrete case as the proof under the continuous
case is identical requiring integrals instead of sums. Incorporating assumptions (6) and (7)
into the g-formula (2) we have

(30)

where

The result follows by noting that ∑l̄m−1 wt(m − 1, l̄m−1, ām−1) cancels in the numerator and
denominator of (30) and ∑lm r(lm, am−1) = 1.

Appendix B
Consider the worked example of §7 but where the model (17) is replaced by

allowing interaction between am and am−1 as quantified by θ4. Plugging this alternative
choice of g into (15), along with the original model (16) for r, we have

which is equivalent to (20) when θ4 = 0.
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Given rare disease such that we have the approximation

we obtain the simplified approximate solution

which is equivalent to (24) when θ4 = 0.

Appendix C
For any m = 0, …, K define

By (29) and the moment generating function for the normal distribution we have

Next define

By the fact that (29) holds for L0, …, LK and, again, using the moment generating function
for the normal distribution we have

Analogously define

Arguing recursively for any j = 1, …, m − 1
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Setting j = 1 we have

Further, by Ā−1 ≡ L̅−1 ≡ 0, we have

By (21) we have that

(31)

Our result follows by noting that the RHS of (31) is equivalent to exp

( ) where ψ0 = θ2, ψ1 = θ3 + θ1β1 and
, s = 1, …, m − 1.

Appendix D
A typical implementation of IPW estimation is as follows. Let (ϕ̂, ψ̂) be the solution to the
estimating equation

(32)

with respect to (ϕ′, ψ′). Following the appendix of [15] and, again, suppressing the i
subscript, define

where , w(m; ϕ′) is a function of interval m and a parameter vector ϕ′,
q(m, ām) is a user-selected vector function of (m, ām) and

(33)

with α̂ the MLE of α given the treatment model Pr[Am = am|L̅m, Ām−1, Ym = 0; α].

Young and Tchetgen Tchetgen Page 14

Stat Med. Author manuscript; available in PMC 2015 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Assume the following holds for all m and ā:

1. The Cox MSM (3) holds,

2. h(m, 0̅m) = exp{w(m; ϕ′)} when evaluated at ϕ′ = ϕ,

3. the treatment model Pr[Am = am|L̅m, Ām−1, Ym = 0; α] is correctly specified and

4. h(m, ām) ≈ 0 such that (given assumptions 1 and 2)

(34)

Given these four assumptions we have

(35)

for all m and ām and the IPW estimator ψ̂ approximately consistent for ψ and asymptotically
normal. The choice of q(m, ām) in large samples affects only the efficiency of ψ̂.

Note that the approximation (35) follows under these assumptions by the equivalence
between the g-formula (2) and the ratio of expectations

where  is equivalent to  but with the true conditional probability of treatment
Pr[Am = am|L̅m, Ām−1 = ām−1, Ym = 0] replacing its MLE.

A convenient choice of q(m, ām) is . With this choice an
approximate solution to (32) may be obtained with off-the-shelf software by fitting a
weighted logistic regression model in a person-time data set of the structure described in §9.
This approach was used to construct IPW estimates in the example simulation study also
described in §9. Specifically, a logistic regression model was fit in SAS using the
LOGISTIC procedure with dependent variable Ym+1 and independent variables Am and Am−1
along with a completely flexible function of m = 0, …, 6. The WEIGHT option was used
with stabilized weights to increase efficiency. That is, the weight for observation i at time m
was defined by expression (33) under the model used to generate treatment and then

multiplied by an estimate of  with ām selected as that
observation’s treatment history through m. The weight numerator can be considered an
implicit component of q(m, ām). It is straightforward to confirm that the data generating
parameters under all simulation scenarios maintain assumption (34) for all m and ām. Code
is available upon request.

References
1. Robins, JM. Statistical Models in Epidemiology. New York: Springer; 1999. Marginal structural

models versus structural nested models as tools for causal inference; p. 95-133.

2. Hernán MA, Brumback B, Robins JM. Marginal structural models to estimate the causal effect of
zidovudine on the survival of HIV-positive men. Epidemiology. 2000; 11(5):561–570. [PubMed:
10955409]

Young and Tchetgen Tchetgen Page 15

Stat Med. Author manuscript; available in PMC 2015 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



3. Young, JG.; Hernán, MA.; Picciotto, S.; Robins, JM. JSM Proceedings, Section on Statistics in
Epidemiology. Alexandria, VA: American Statistical Association; 2008. Simulation from structural
survival models under complex time-varying data structures.

4. Young JG, Hernán MA, Picciotto S, Robins JM. Equivalence between structural models for the
effect of a time-varying exposure on survival. Lifetime Data Analysis. 2010; 16(1):71–84.
[PubMed: 19894116]

5. Havercroft WG, Didelez V. Simulating from marginal structural models with time-dependent
confounding. Statistics in Medicine. 2012; 31(30):4190–4206. [PubMed: 22826156]

6. Westreich D, Cole SR, Schisterman EF, Platt RW. A simulation study of finite-sample properties of
marginal structural cox proportional hazards models. Statistics in Medicine. 2012; 31(19):2098–
2109. [PubMed: 22492660]

7. Xiao Y, Abrahamowicz M, Moodie EE. Accuracy of conventional and marginal structural cox
model estimators: a simulation study. International Journal of Biostatistics. 2010; 6(2) Article 13.

8. Robins JM. A new approach to causal inference in mortality studies with a sustained exposure
period: application to the healthy worker survivor effect. Mathematical Modelling. 1986; 7:1393–
1512. [Errata (1987) in Computers and Mathematics with Applications 14, 917–921. Addendum
(1987) in Computers and Mathematics with Applications 14, 923–945. Errata (1987) to addendum
in Computers and Mathematics with Applications 18, 477.].

9. Robins, JM. Causal inference from complex longitudinal data. In: Berkane, M., editor. Latent
Variable Modeling and Applications to Causality. Lecture notes in statistics 120. Springer-Verlag;
1997. p. 69-117.

10. Murphy SA, van der Laan MJ, Robins JM. Marginal mean models for dynamic regimes. Journal of
the American Statistical Association. 2001; 96(456):1410–1423. [PubMed: 20019887]

11. van der Laan MJ, Petersen ML, Joffe MM. History-adjusted marginal structural models and
statically-optimal dynamic treatment regimens. International Journal of Biostatistics. 2005; 1(1)
Article 4.

12. Hernán MA, Lanoy E, Costagliola D, Robins JM. Comparison of dynamic treatment regimes via
inverse probability weighting. Basic & Clinical Pharmacology & Toxicology. 2006; 98:237–242.
[PubMed: 16611197]

13. Orellana L, Rotnitzky A, Robins JM. Dynamic regime marginal structural mean models for
estimation of optimal dynamic treatment regimes, Part I: Main Content. International Journal of
Biostatistics. 2010a; 6 Article 7.

14. Orellana L, Rotnitzky A, Robins JM. Dynamic regime marginal structural mean models for
estimation of optimal dynamic treatment regimes, Part II: Proofs and Additional Results.
International Journal of Biostatistics. 2010b; 6 Article 8.

15. Cain LE, Robins JM, Lanoy E, Logan R, Costagliola D, Hernán MA. When to start treatment? A
systematic approach to the comparison of dynamic regimes using observational data. International
Journal of Biostatistics. 2010; 6 Article 18.

16. Young JG, Cain LE, Robins JM, O’Reilly EJ, Hernán MA. Comparative effectiveness of dynamic
treatment regimes: an application of the parametric g-formula. Statistics in Biosciences. 2011

17. D’agostino RB, Lee M, Belanger AJ. Relation of pooled logistic regression to time-dependent Cox
regression analysis: the Framingham Heart Study. Statistics in Medicine. 1990; 9:1501–1515.
[PubMed: 2281238]

18. Agresti, A. Categorical Data Analysis. Connecticut, USA: Wiley Series in Probability and
Statistics; 2012.

19. Wang Z, Louis TA. Matching conditional and marginal shapes in binary random intercept models
using a bridge distribution function. Biometrika. 2003; 90(3):765–775.

20. Robins, JM.; Wasserman, L. Estimation of effects of sequential treatments by reparameterizing
directed acyclic graphs. In: Geiger, D.; Shenoy, P., editors. Proceedings of the Thirteenth
Conference on Uncertainty in Artificial Intelligence. San Francisco: Morgan Kaufmann; 1997. p.
409-420.

21. Spirtes, P.; Glymour, C.; Scheines, R. Causation, Prediction and Search. New York: Springer-
Verlag; 1993.

22. Pearl J. Causal diagrams for empirical research. Biometrika. 1995; 82:669–710.

Young and Tchetgen Tchetgen Page 16

Stat Med. Author manuscript; available in PMC 2015 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



23. Hernán MA, Hernández-Diáz S, Robins JM. A structural approach to selection bias. Epidemiology.
2004; 15:615–625. [PubMed: 15308962]

24. Robins, JM.; Hernán, MA. Estimation of the causal effects of time-varying exposures. In:
Fitzmaurice, G.; Davidian, M.; Verbeke, G.; Molenberghs, G., editors. Advances in Longitudinal
Data Analysis. Boca Raton, FL: Chapman and Hall/CRC Press; 2009. p. 553-599.

25. Robins, JM.; Hernán, MA.; Siebert, U. Effects of multiple interventions. In: Ezzati, M.; Lopez,
AD.; Rodgers, A.; Murray, CJL., editors. Comparative Quantification of Health Risks: Global and
Regional Burden of Disease Attributable to Selected Major Risk Factors. Geneva: World Health
Organization; 2004.

26. Taubman SL, Robins JM, Mittleman MA, Hernán MA. Intervening on risk factors for coronary
heart disease: an application of the parametric g-formula. International Journal of Epidemiology.
2009; 38(6):1599–1611. [PubMed: 19389875]

27. Westreich D, Cole SR, Young JG, Palella F, Tien PC, Kingsley L, Gange SJ, Hernán MA. The
parametric g-formula to estimate the effect of highly active antiretroviral therapy on incident
AIDS or death. Statistics in Medicine. 2012

28. van der Laan, MJ.; Robins, JM. Unified Methods for Censored Longitudinal Data and Causality.
New York: Springer; 2002.

29. Bang H, Robins JM. Doubly robust estimation in missing data and causal inference models.
Biometrics. 2005; 61:692–972. [PubMed: 16135020]

30. van der Laan MJ. Targeted maximum likelihood based causal inference: Part I. International
Journal of Biostatistics. 2010; 6(2) Article 2.

31. van der Laan MJ. Targeted maximum likelihood based causal inference: Part II. International
Journal of Biostatistics. 2010; 6(2) Article 3.

Young and Tchetgen Tchetgen Page 17

Stat Med. Author manuscript; available in PMC 2015 March 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Young and Tchetgen Tchetgen Page 18

Ta
bl

e 
1

B
ia

s 
of

 I
PW

 e
st

im
at

es
 u

nd
er

 th
e 

si
x 

ch
oi

ce
s 

of
 (
β 1

, θ
1)

 f
or

 n
 =

 1
00

, 0
00

 a
nd

 K
 =

 6
. ψ
̂ j i

s 
th

e 
IP

W
 e

st
im

at
e 

of
 ψ

j, 
E

 [
ψ
̂ j] 

is
 th

e 
m

ea
n 

of
 th

e 
es

tim
at

es
 ψ
̂ j o

ve
r

th
e 

20
, 0

00
 s

im
ul

at
io

n 
ru

ns
 a

nd
 B

ia
s(
ψ
̂ j, 
ψ

j) 
=

 E
 [
ψ
̂ j] 

−
 ψ

j, 
j =

 0
, 1

.

β 1
θ 1

ψ
0

E
 [
ψ
̂ 0]

B
ia

s(
ψ
̂ 0,

 ψ
0)

ψ
1

E
 [
ψ
̂ 1]

B
ia

s(
ψ
̂ 1,

 ψ
1)

−
2.

0
−

2.
0

−
0.

8
−

0.
80

56
−

0.
00

56
0.

45
74

0.
45

11
−

0.
00

63

−
0.

5
−

0.
5

−
0.

8
−

0.
80

21
−

0.
00

21
0.

05
83

0.
05

86
0.

00
03

0.
0

−
0.

5
−

0.
8

−
0.

80
11

−
0.

00
11

0
0.

00
04

0.
00

04

−
0.

5
0.

0
−

0.
8

−
0.

80
04

−
0.

00
04

0
0.

00
02

0.
00

02

0.
5

−
2.

0
−

0.
8

−
0.

79
73

0.
00

27
−

0.
20

64
−

0.
20

47
0.

00
17

2.
0

−
2.

0
−

0.
8

−
0.

77
72

0.
02

28
−

0.
86

76
−

0.
87

09
−

0.
00

33

Stat Med. Author manuscript; available in PMC 2015 March 15.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Young and Tchetgen Tchetgen Page 19

Table 2

Bias of the MLE of θ2 for θ2 = ψ0 under the six choices of (β1, θ1) for n = 100, 000 and K = 6. θ̂2 is the MLE

of θ2, E [θ̂2] is the mean of the estimates θ̂2 over the 20, 000 simulation runs and Bias(θ̂2, θ2) = E [θ̂2] − θ2.

β1 θ1 θ2 E [θ̂2] Bias(θ̂2, θ2)

−2.0 −2.0 −0.8 −0.8006 −0.0006

−0.5 −0.5 −0.8 −0.8006 −0.0006

0.0 −0.5 −0.8 −0.8006 −0.0006

−0.5 0.0 −0.8 −0.8004 −0.0004

0.5 −2.0 −0.8 −0.8004 −0.0004

2.0 −2.0 −0.8 −0.7992 0.0008
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