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Introduction

The optic nerve is the continuation of the axons of 
ganglion cells in the retina, and the pathway by which visual 
information is transferred from the retina to the visual 
cortex. Aging of the optic nerve can result in reduced visual 
sensitivity or vision loss due to reduction of retinal ganlion 
cells and nerve fibers (1-3). As seen in glaucoma, progressive 
neurodegeneration of retinal ganlion cells and axons can lead 
to irreversible loss of visual sensitivity or blindness (4-7).  
Normal optic nerve aging has been studied previously 
using light and electron microscopic methods on specimens 
from humans (1,8), monkeys (9-11) and rats (12). In vivo 
investigation of the optic nerve, beyond the intraocular 
optic nerve head, has been hindered in the past because the 
nerve could not be assessed non-invasively. In recent years, 
high-field MRI and fast imaging techniques have facilitated 
both animal research and clinical investigation dramatically, 
and MRI has been increasingly used in various studies of 

visual pathways, thus helping to overcome these difficulties. 
Diffusion tensor imaging (DTI) (13) is a non-invasive 

MRI technique for characterizing white matter fiber tracts 
and has been used widely to investigate white matter 
development, integrity and aging in human brains (14-23). 
In recent years, it has been applied in in vivo studies of the 
optic nerve of humans (24-34), monkeys (35,36), rodents 
(25,37-40), demonstrating that DTI can be a robust means 
to non-invasively examine optic nerve organization and 
abnormalities. 

Although rodent models of eye-related diseases are 
widely used (12,25,37,39-42), their visual system is markedly 
different from that of humans. In contrast, the visual system 
organization of nonhuman primates (NHPs), while not 
identical to that of humans, is much more human-like than 
that of rodents (43). Therefore, NHP models are particularly 
valuable for investigating the aging and neuropathology of 
the visual pathway (9,10,42,44,45). The aim of the present 
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study was to evaluate the diffusion property changes during 
the normal optic nerve aging in adult rhesus macaque 
monkeys by DTI in a clinical 3T setting. 

Materials and methods

Animal preparations

Fifteen young adult (9 to 13 years old, n=8) and old adult 
(21 to 27 years old, n=7) female rhesus monkeys were used 
in this study. Females were selected in order to minimize 
possible bias from gender difference because the nerve 
fiber degeneration with age may be different in male and  
female (46). Also, comparable sets of male macaques were not 
available to us for scanning at the time of the study. 

The animals were initially anesthetized with ketamine  
(5-10 mg/kg, IM), then orally intubated and anesthetized 
with 1-1.5% isoflurane mixed with 100% O2 during 
scanning. An IV catheter was placed for delivering 
lactated ringers solution (3.5-10 mL/kg/hr). The body 
temperature was maintained at 37.5 ℃ by a feedback-
regulated circulating warm-water blanket. The anesthetized 
animals breathed spontaneously, and were immobilized 
with a custom-made head holder and placed in the 
“supine” position in the scanner. Et-CO2, inhaled CO2, 
O2 saturation, blood pressure, the mean arterial pressure 
(MAP), heart rate, respiration rate, and body temperature 
were monitored continuously and maintained in normal 
range (47), in addition to visual inspection of animals at 
least every 30 minutes. All procedures were approved by the 
Institutional Animal Care and Use Committee (IACUC) of 
Emory University in accordance with the NIH Guide for 
Care and Use of Laboratory Animals. 

MRI examination

MRI scans were performed on a Siemens TIM™ Trio 
3T whole body scanner (Siemens Medical Solutions, 
PA, USA) with an 8-channel phase-array volume coil 
(INVIVO, Orlando, FL, USA). A double spin-echo single-
shot echo-planar imaging (EPI) sequence with GRAPPA 
(Acceleration factor R =3) was utilized with the acquisition 
parameters: TR =7,000 ms/TE =108 ms, FOV =141 mm ×  
132.26 mm (93.8% phase FOV), data matrix =128×120, 
1.1 mm isotropic resolution, b-value =0, 1,000 s/mm2, 
60 gradient directions, and ten averages [5-pairs of phase 
reversal acquisition (48)] including five b0 scans in each 
repetition. The phase reversal acquisition was conducted by 

flipping the phase encoding direction by 180 degree in every 
other DTI scan. The total DTI acquisition time was about  
86 minutes. High-resolution (0.5 mm isotropic resolution) 
T1-weighted images were acquired for structural identification 
of the optic nerve and for measuring optic nerve diameters. 
The T1-weighted images were collected using an MPRAGE 
sequence with GRAPPA (R =2) and the acquisition parameters: 
TR =2,600 ms, TE =3.37 ms, TI =900 ms, FOV =160 mm × 
160 mm, data matrix =320×320, flip angle =8 degree, 0.5 mm 
slice thickness, 176 slices, and 3 averages.

Data analysis

DTI data from each animal were distortion-corrected, 
motion-corrected and averaged for generating MD  
(Figure 1A), FA (Figure 1B), axial diffusivity (AD or λ||) and 
radial diffusivity (RD or λ⊥) maps using FSL 4.1.3 (http://
www.fmrib.ox.ac.uk/fsl/). All the maps were interpolated in 
the three dimensions by a factor of 2 to facilitate subsequent 
data analysis. Using MRIcro 1.4 (http://www.mricro.com), 
regions of interest (ROIs) were selected manually on the 
coronal MD maps (Figure 1A, bottom image). The ROI or 
pixels of interest on each optic nerve consisted of a set of 
consecutive pixels located in the central section of the optic 
nerve, between its anterior and posterior quarters (Figure 1C).  
Also, the ROIs in each animal were cross-verified visually in 
three-dimensional views of their corresponding FA maps and 
b0 images (Figure 1B and 1D). As no significant difference 
was observed between the left and right optic nerves (see 
Results for more details), the values of MD, FA, AD and RD 
in the corresponding ROIs of the two sides were averaged 
before statistical analysis. The interpolation and mean 
value calculation were implemented with Matlab (The 
MathWorks, Inc., MA, USA) scripts developed in-house. 
Probabilistic tractography analysis was performed using FSL 
with two masks defined on the coronal plane of FA map: one 
mask was set in the optic nerve at the midpoint between the 
eyeball and the optic chiasm, and the other one was 2.2 mm 
anterior to that point, toward the eyeball (Figure 1D). Also, 
the trackability of each optic nerve was examined by sending 
virtual streamlines from one of the two seed masks and 
counting the streamlines that reached to the other one and 
repeating the procedure with the seed mask order switched. 
The cross-sectional diameters at the middle section of 
the optic nerves were measured on T1-weighted images  
(Figure 1E) with ImageJ (http://imagej.nih.gov/ij). DTI 
measures for the left and right optic nerves were compared 
by means of the Student’s paired t-test to determine whether 
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there was a systematic side bias in the measures. Measures 
for the two optic nerves were then averaged for each subject, 
and Student’s t-tests for independent samples were carried 
out to assess the differences between the young and old adult 
monkeys to uncover aging-related changes of MD, FA, AD 
and RD. 

Results

Paired t-tests of all 15 monkeys showed no significant 

differences in MD, AD, RD, FA, or optic-nerve diameter 
between the left and right optic nerves (P=0.81, 0.71, 0.81, 
0.85, 0.19 and 0.64, respectively). 

The age-related changes of the DTI-derived indices 
and the optic nerve diameters measured with T1-weighted 
images are shown in Figure 2. The most statistically reliable 
difference was in FA, which was 26.2% lower in the old 
monkeys than in the young adults (P=0.0087) (Figure 2A). 
The only other measure that approached significance 
was RD (λ⊥) (Figure 2D), which was 44.3% higher in the 

Figure 1 Illustration of optic nerve and regions of interest in the axial and coronal MRI images of an adult rhesus monkey. (A) Mean 
diffusivity (MD); (B) fractional anisotropy (FA) maps (both in 0.65 mm isotropic resolution after interpolation) of the same animal; (C) 
Region of interest (ROI) overlaid on the MD map. The ROI was selected manually between the anterior and posterior quarters of the optic 
nerve (see the axial image at the top), only including the central pixels of the optic nerve cross-sections (see the coronal image at the bottom) 
on the selected slices; (D) The two masks for optic nerve fiber tractography were selected on the middle slice (coronal image) of the optic 
nerves between the optic chiasm and retina, and 2.2 mm away from the middle slice, toward the eyeball; (E) T1 weighted images (0.5 mm 
isotropic resolution) of the optic nerve. The optic nerves are marked with arrows on the axial image at the top and on the coronal image at 
the bottom.

Figure 2 Age-related quantitative MRI changes in (A) fractional anisotropy (FA); (B) mean diffusivity (MD); (C) axial diffusivity (AD or λ||); 
(D) radial diffusivity (RD or λ⊥); (E) reconstructed fiber numbers using DTI; and (F) diameters of optic nerves in the young and old groups 
of rhesus monkeys. Young, the young group; Old, the old group; mean, mean value; SD, standard deviation; y, year. 
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old than in the young monkeys (P=0.058) (Figure 2D). 
Meanwhile, in comparison with the young group, MD 
and AD (λ||) of the old group were 24% (P=0.11) and 6.5% 
(P=0.47) higher (Figure 2B,C), and the mean fiber tract 
number and optic nerve diameter in the old group were 
–4.8% (P=0.24) and –3.5% (P=0.55) lower (Figure 2E,F), 
respectively. Obviously, there were no significant group 
differences in MD, AD (λ||), fiber tract number, or optic 
nerve diameter. 

Discussion

Light and electron microscopic methods have previously 
been used to evaluate optic nerve aging in humans (1,8,49) 
and monkeys (9,10). In vivo optic nerve studies of age-
related eye diseases in rodents and humans have been 
explored with DTI in recent years. To our knowledge, this 
is the first DTI study to characterize the normal aging 
effect of the optic nerve in vivo in large animals or NHPs. 

White matter integrity can be compromised by fiber 
demyelination and axonal degeneration, which lead to 
FA decrease and/or diffusivity increase in animal and 
human brains (50-53). As seen in the present data, FA was 
significantly lower in the old monkey group, while RD 
(λ⊥) was higher, although the latter difference statistically 
marginal (P=0.058). Experimental studies in rodent brains 
(37,54,55) have reported that degenerative changes in axons 
can result in decreased FA and decreased AD or λ||, the 
loss of axonal integrity and myelination yielding increased 
RD or λ⊥. Thus, our DTI results could be interpreted as 
reflecting the age-related loss of optic nerve axons along 
with degenerative changes in myelin sheaths. Viewed 
in this way, our results are consistent with some of the 
main findings of Sandell and Peters (10), in their light- 
and electron-microscopic studies of postmortem rhesus 
tissue. As shown in Figure 3, the total fiber loss (–44.4%, 

P<0.0001) and fiber density reduction (–41.1%, P <0.0001)
from the previous microscopic study are in good agreement 
with the FA changes during aging in our DTI study. They 
reported that the average total number of optic nerve fibers 
was approximately 44% lower (0.9×106 versus 1.6×106)  
in a group of 27-30-year-old macaques compared to a 
group of 4-10-year-old macaques (10). In addition to fiber 
reduction, their study also reported degenerative changes 
in fiber sheaths that were most prevalent in the animals 
with the lowest fiber numbers. Similarly, aging in humans is 
associated with the loss of optic nerve fibers. For example, 
Dolman et al. revealed axon loss with increasing age that 
became particularly evident from 60 years upward (1). Jonas 
et al. investigated human optic nerve from 19 to 88 years old 
and found that the nerve fiber count decreased significantly 
with age with a linear annual loss of about 4,000 fibers 
staring at a calculated original population of about 1.4×106 
fibers at birth (8).

Although our in vivo DTI results are largely congruent 
with results from postmortem histology, there are also 
disparities. For example, we observed no statistically 
significant difference in number of DTI-derived streamlines 
in the young versus old macaques, while the postmortem 
macaque and human studies report large differences in 
fiber numbers. This suggests that the numbers of DTI-
derived streamlines may not be strongly correlated with 
the numbers of axons in a fiber tract as the DTI-based fiber 
tracking technique allows the visualization of fiber bundles 
and functional connectivity in brain central nervous system 
but cannot reconstruct the actual fibers (56). Furthermore, 
while we observed a robust difference in FA between 
the old and young group, the difference in RD or λ⊥ was 
statistically marginal, and there was no difference in AD or 
λ||. Based on the work of Song and colleagues (37,54,55), we 
would expect that loss of axons and myelin integrity would 
result in reduced AD. It is possible that the failure to find a 

Figure 3 Data of Sandell and Peters (10) showing age-related changes in (A) total fiber number; (B) fiber area (cross-section area of optic 
nerve); and (C) fiber density of optic nerves in the young adult and old adult rhesus monkeys measured with light and electron microscopy. y, 
year. 
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difference in AD in the present study reflects small samples 
and inadequate statistical power or lack of subjects aged  
27 years old or more in the old group. This could also 
account for the lack of an age-related difference in optic-
nerve diameter in our MRI study (Figure 2F).

In addition, the scatterplots in Figures 2 and 3 may 
illustrate the tendency of the parameters from MRI and 
light and electron microscopy examination during optic 
nerve aging. However, due to the lack of middle-aged 
animals in the present or previous study, the linear fits 
suggesting the alteration of these parameters between the 
young and old animals during optic nerve aging should 
be considered tentative. Also, it should be noted that 
involuntary eye movement in isoflurane-anesthetized 
animals may cause motion artifact in MRI images of eyes 
and retinas (57,58). In the present study, the eyeball was 
nearly invisible in the diffusion-weighted raw images as 
the water signal in the eyeball was suppressed due to the 
applied diffusion gradient (b =1,000 s/mm2). In contrast, the 
eyeball movement was still visible in some raw b0 images 
(acquired with b =0 s/mm2) of DTI scans. But no motion 
artifact was observed in the diffusion weighted images of the 
interested optic nerve section, indicating the involuntary 
eye movement didn’t affect the DTI examinartion of the 
optic nerve in the present study. 

Due to the limited spatial resolution of the DTI images, 
the DTI measures of optic nerve might be contaminated 
with the partial volume effect (PVE) from the surrounding 
cerebrospinal fluid (CSF) (59,60). In our present study, we 
used the proposed ROI selection procedure to mitigate the 
adverse effect. Also, as no significant reduction (–3.5%, 
P=0.55) was seen between the mean optic nerve diameters of 
the young and old adult monkeys (Figure 2F) in agreement 
with the fiber area change (–10%, P=0.16, Figure 3B), we 
believe that the DTI index changes observed in our study 
are age-related but not due to the PVE contributions from 
the diameter difference of optic nerve bundles between the 
young and old adult monkeys.

DTI is increasingly used in studying the optic nerve related 
diseases (24-27,35,37) and optic nerve development (36).  
With the advent of high field MRI and fast imaging technique, 
the DTI examination in diagnostic application of the 
optic nerve is becoming more widespread. Therefore, the 
present study of rhesus monkey optic nerves may provide a 
translationally relevant imaging protocol and also a normal 
reference baseline for studying the optic nerve related diseases 
in clinical settings.

In conclusion, this study demonstrates DTI can be a 

robust means to evaluate the optic nerve aging in a clinic 
setting. A substantial and significant decrease of FA (P<0.01) 
in the optic nerve was observed, highly consistent with 
the previous findings of fiber loss in a light and electron 
microscopic study, suggesting FA is sensitive to aging effect 
and may be used for quantitatively characterizing the optic 
nerve abnormality in aging or age-related vision diseases.
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