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Increasing concentrations of greenhouse gases in the atmosphere
are expected to modify the global water cycle with significant
consequences for terrestrial hydrology. We assess the impact of
climate change on hydrological droughts in a multimodel exper-
iment including seven global impact models (GIMs) driven by bias-
corrected climate from five global climate models under four
representative concentration pathways (RCPs). Drought severity is
defined as the fraction of land under drought conditions. Results
show a likely increase in the global severity of hydrological
drought at the end of the 21st century, with systematically greater
increases for RCPs describing stronger radiative forcings. Under
RCP8.5, droughts exceeding 40% of analyzed land area are
projected by nearly half of the simulations. This increase in
drought severity has a strong signal-to-noise ratio at the global
scale, and Southern Europe, the Middle East, the Southeast United
States, Chile, and South West Australia are identified as possible
hotspots for future water security issues. The uncertainty due to
GIMs is greater than that from global climate models, particularly
if including a GIM that accounts for the dynamic response of plants
to CO2 and climate, as this model simulates little or no increase in
drought frequency. Our study demonstrates that different repre-
sentations of terrestrial water-cycle processes in GIMs are respon-
sible for a much larger uncertainty in the response of hydrological
drought to climate change than previously thought. When assess-
ing the impact of climate change on hydrology, it is therefore
critical to consider a diverse range of GIMs to better capture the
uncertainty.
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The global water cycle is expected to change over the 21st
century due to the combined effects of climate change and

increasing human intervention. In a warmer world, the water-
holding capacity of the atmosphere will increase, resulting in
a change in the frequency of precipitation extremes, increased
evaporation and dry periods (1), and intensification of droughts
(2). This process is represented by most global climate models
(GCMs) by increased summer dryness and winter wetness over
large areas of continental mid to high latitudes in the Northern
Hemisphere (3), associated with a reduction in water availability
at continental (4, 5) and global scales (6, 7). Because such changes
have potentially very serious implications in some regions of the
world, identifying areas where there is agreement in the direction
and magnitude of changes in drought characteristics (hotspots) in

response to climate change is essential information for water
resource management aimed at ensuring water security in a
changing climate.
Most GCMs, however, are not able to reproduce the fine-scale

processes governing terrestrial hydrology (and hence runoff) and
suffer from systematic biases (8). As land-atmospheric feedbacks
are not yet fully understood and reproduced by global models
(9), and because full coupling of GCMs and global impact
models (GIMs) is not straightforward, GIMs forced by data from
GCMs have been used as tools to quantify the impact of changed
climate on the water cycle and droughts (10), despite by defini-
tion ignoring important feedbacks and their possible modi-
fication with climate change (11). GIMs vary in the types of
processes represented and the parameterisations used. Some
GIMs, particularly those designed to quantify water resources,
calculate only the water balance (12) whereas others consider
coupled water and energy balances, sometimes also representing
the dynamic response of plants to changes in atmospheric CO2
and climate (13). Until recently, the uncertainty in the simulation
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of the terrestrial water cycle related to the choice of a particular
GIM had not been investigated. However, the Water Model
Intercomparison Project (WaterMIP) (14) highlighted that sim-
ulated hydrological averages can vary substantially between GIMs,
even when driven with the same bias-corrected climatic forcing
(14, 15), and uncertainty in future projection due to GIMs can be
as large as that from GCMs in some regions (16, 17). Although in
the climate-to-impact modeling chain much effort has been di-
rected to better understand the uncertainty due to GCMs, studies
of the impact of climate change on water availability and drought
have often been based on one or a few GIMs, potentially underes-
timating the overall uncertainty.
This study focuses on identifying regions where the impact

of climate change on hydrological drought (henceforth simply
“drought”) shows a strong signal of change between the end of
the 20th and 21st centuries. We define drought as occurring
when total runoff is less than a given threshold. Drought rep-
resents the time-integrated effect of several interlinked processes
and stores, including precipitation, evaporation, and soil mois-
ture storage (10); because some of these processes are repre-
sented by GCMs and some by GIMs, it is vital to quantify the
relative uncertainty introduced by both GCMs and GIMs when
assessing climate change impacts.
We use outputs from the Inter-Sectoral Impact Model In-

tercomparison Project (ISI-MIP) multimodel ensemble (MME)
experiment (18) of 35 members [for representative concentration
pathways (RCPs) 2.6 and 8.5; only 27 members available for
RCP4.5 and 6.0] in which GIMs of different types were driven by
bias-corrected (8) climate from state-of-the-art CMIP5 GCMs
(19). These GIMs describe the terrestrial water cycle at global
scale and include current understanding of hydrological systems
(20). Note that statistical bias correction can influence the signal
of runoff changes but that this effect generally remains smaller
than uncertainty from GCMs and GIMs (21). The simulations we
use did not consider water management or changes of land use
so they represent the effects of climate change alone. We quantify
changes in the space-time variability of drought that are projected
to occur under four RCPs that span a wide range of radiative
forcing (22) (Methods). We also evaluate the uncertainty associ-
ated with both GCMs and GIMs so as to identify hotspots of
change where we have more confidence in the projections of fu-
ture drought severity.

Results
We analyze future droughts by comparing the temporal and
spatial patterns of simulated runoff in the years 2070–2099 (RCP
forcings) with those from a reference period 1976–2005 (historical

forcings). For each land cell and simulation, we define a runoff
deficit index (DI) that is equal to 1 if the daily runoff (not river
discharge) is less than a daily drought threshold (10th percentile)
calculated from the reference period (Methods) and is zero oth-
erwise; a grid cell with DI = 1 is therefore under drought con-
ditions. As a measure of the severity of drought, global and
regional deficit index (GDI and RDI) time series are calculated as
the fraction of land area on the globe or a given region that is
under drought conditions. Arid grid cells in which runoff is equal
to zero more than 90% of time in the reference or future periods
are excluded (white areas on Fig. 1). Also excluded were GIMs for
which on average fewer than 75% of the remaining land cells
could be used to calculate a DI because of a high proportion of
zero runoff values; therefore, a total of seven GIMs driven by five
GCMs are included in the MME for RCP2.6 and RCP8.5
(Methods; Figs. S1 and S2). The MME mean changes in GDI and
RDI are examined at the annual and seasonal scale, with signal-to-
noise ratios (S2N) (MMEmean divided by its inter-quartile range)
(Methods) used to quantify the relative sizes of variability due to
GIMs and GCMs and to identify hotspots where the signal
is strongest.

Global Changes. Under RCP8.5, the MME mean change in the
frequency of drought (i.e., DI = 1) shows a widespread increase
of drought conditions across the globe and in particular in most
parts of South and North America, large parts of tropical and
southern Africa, the Mediterranean region, Southeast China,
and Australia; little change or reduced occurrence of drought
conditions are found in northern Canada, Northeast Russia, the
Horn of Africa, and parts of Indonesia (Fig. 1). There is strong
seasonality across many mid- to high-latitude regions in the
Northern Hemisphere, with small changes or reductions in De-
cember to February (DJF) and larger increases in June to
August (JJA) (Fig. S3). For 25 members (i.e., 70% of the
ensemble), the frequency of drought increases in 60.3% of
unmasked land cells, falling to 44.9% in DJF when there is the
largest degree of disagreement between ensemble members as to
the direction of changes. Over the whole year, S2N is largest in
the Mediterranean and the Middle East, Chile, Southeast United
States, and Western Australia (Fig. 1).
In Fig. 2, we calculate the mean change in GDI for the four

RCPs. The results show a likely increase in drought severity with
an MME mean increase of 3.9% under RCP2.6, 6.3% for
RCP4.5, and 7.4% for RCP6.0 and reaching 13% under RCP8.5
(see ref. 23 for method and SI Text for detailed results); changes
are largest in JJA (17.6%) and smallest in DJF (10.6%) under
RCP8.5. The systematic increase in drought severity with radiative

Fig. 1. Percentage change in the occurrence of days under drought conditions for the period 2070–2099 relative to 1976–2005, based on a multimodel
ensemble MME experiment under RCP8.5 from five global climate models and seven global impact models: MME Mean change (Left) and associated signal-
to-noise ratio (S2N, MME mean change divided by its inter-quartile range, Right). See Methods for definition of drought, S2N, and masking procedure.
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forcing (Fig. 2) is associated with considerable variation in the
magnitude of the changes ranging from −1.7% to +11.2% under
RCP2.6 and −4.8% to 25.4% under RCP8.5. S2N associated with
GCMs and GIMs shows a stronger signal (less uncertainty) for
GCMs (mean S2N = 2.44) than for GIMs (1.82) primarily due to
smaller inter-quartile (IQ) for GCMs (mean IQ = 0.049) than
for GIMs (0.070) (see SI Text for details). This result indicates
that, at the global scale, the variability due to different GIMs is
larger than that due to different GCMs.
There is a statistically significant (Methods) increase in the

frequency of severe events (large GDI) for all RCP/GCM/GIM
combinations except for the Joint UK Land Environment Sim-
ulator (JULES), which shows a consistently smaller change sig-
nal [cumulative density function (CDF)] (Fig. 3). Under historical
forcing, drought affects less than 21% of the global land area at
any one time (GDI < 0.21; black lines), but this GDI of 21% is
exceeded for 23 out of 35 simulations under RCP2.6 (dark blue)
and for 30 under RCP8.5 (red). Largest increases are seen for
RCP8.5, with maximum drought severity exceeding 40% of land in
16 simulations. There is greater temporal variability in the GDI
in many simulations of the RCPs (flatter CDFs in Fig. 3), in-
creasing with radiative forcing, and associated with more
pronounced variability between GIMs.

Effects of Model Structure. All of the models shown in Fig. 3
calculate the water balance of the land, but only H08 and JULES
consider the energy balance (Table S1), and only JULES rep-
resents the effects of CO2 on stomatal opening and includes
a dynamic vegetation model that allows vegetation to grow in
response to its environment. To examine whether the different
behavior of JULES was attributable to one of these differences
in model structure, we used results from two further GIMs [Lund-
Potsdam-Jena managed Land (LPJmL) and Minimal Advanced
Treatments of Surface Integration and RunOff (MATSIRO)]
that were excluded from the MME because of a high proportion
of zero runoff values (Methods and Figs. S1 and S2) but that
share some similarities with JULES in terms of model struc-
ture: MATSIRO and JULES are energy (and water) balance
models whereas LPJmL and JULES both represent varying
CO2 and dynamic vegetation effects. For this analysis, the GDI
was calculated using the smaller sample of land cells dictated by
LPJmL and MATSIRO (Fig. S2) after the masking procedure
was applied to those GIMs. CDFs from the energy balance GIMs
show a strong response of H08 and MATSIRO to climate

change (Fig. 4), broadly similar to those from the water balance
models of Fig. 3, which is evidence that it is not the inclusion
of an energy balance that makes JULES different. (The CDFs in
Fig. 4 cannot be compared directly with those in Fig. 3 because
of the different locations sampled. However, as the sampling
does not substantially alter the distributions for JULES be-
tween these figures, qualitative comparisons of the figures can
be made.)
In contrast, the CDFs for the models that include CO2 and

vegetation effects (JULES and LPJmL) (solid lines in Fig. 4
Right) show a weaker response to climate change. The effect on
plants of increased CO2 concentration is often considered to
consist of physiological and structural components. The former
results in the stomata opening less widely in a CO2-enriched
atmosphere, leading to less water loss through transpiration (24).
However, increased growth can alter the structure of the vege-
tation, potentially resulting in increased leaf area (and increased
transpiration) (25). Sensitivity experiments in which CO2 was
allowed to vary only until the year 2000, after which it remained
constant, showed increased response to climate from both
JULES and LPJmL (dashed lines in Fig. 4 Right), albeit the in-
crease is much more pronounced in JULES. Both models gave
less transpiration under higher CO2 than when CO2 was constant
despite having increased biomass (Fig. S4) indicating a strong
physiological effect of CO2. Further runs of JULES in which all
structural aspects of the vegetation (fractional coverage, leaf
area, and height) were kept constant in time showed that the
largest increase in drought occurred when both CO2 and vege-
tation were constant (Fig. S5)—that is, for the configuration
most similar to that of the other GIMs shown in Figs. 2 and 3.
This result suggests that accounting for the dynamic response of
plants to CO2 and climate is largely responsible for the outlying
(small) response of JULES in Fig. 3. This finding is consistent

Fig. 2. Mean change in drought severity (Change in GDI, y axis) as mea-
sured by the daily global deficit index (GDI) for the period 2070–2099 re-
lative to 1976–2005 based on a multimodel ensemble MME experiment
calculated over the whole year (Left), December to February (DJF, Center),
and June to August (JJA, Right). Changes are given for each MME member
and are organized by radiative forcing (from left to right: RCP2.6, R2; RCP4.5,
R4; RCP6.0, R6; RCP8.5, R8). In each RCP panel, results are organized according
to driving GCMs from left to right: HadGEM2-ES, IPSLCM5-ARL, MIROC-ESM-
CHEM, GFDL-ESM2M, and NorESM1-M. CO2 effect in GIMs is described as color:
black/open symbols, no CO2; cyan/filled symbols, CO2. GIMs are indicated by
symbols: up triangle, HO8; circle, JULES; x, Mac-PDM.09; +, MPI-HM; pentagon,
PRCGLOB-WB; down triangle, VIC; square, WBM.
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with a study showing that a substantially lower irrigation water
demand under climate change is simulated by GIMs including
CO2 effect than those without (26).

Regional Changes. We calculate the RDI for the 17 GEO sub-
regions (27) for which the DI could be calculated at more than
50% of the points in the region; note, however, the wide var-
iation in size between regions (27). Average changes under
RCP8.5 (top line in Fig. 5) vary between no change (Eastern
Africa) to 28% (Central Europe), with five regions showing
increases of at least 20% (South and Meso-America, Caribbean,
and Central and Western Europe).
For RCP8.5 S2N is larger than 1 in 6 regions, and is larger

than 1.5 in South America and Western and Central Europe.
Uncertainty is largest in Eastern Europe, South and Southeast
Asia, and Eastern Africa where S2N is less or equal to 0.7. When
calculated separately for GCMs and GIMs ensembles, the av-
erage S2N resulting from different GIMs is larger than that from
GCMs in 11 regions, and, in 4 of those, it is more than 2 times as
large (Meso America, Central Europe, South East Asia and the
Caribbean) (see Table S2 for details). Note results in Fig. 5
where the variation in mean change between the GCMs (lines
near top of figure) is smaller than that between the GIMs (lines at
bottom of figure). In North and South America, Eastern Europe,
East and South Asia, and Central and Eastern Africa, S2Ns from
GCMs and GIMs are comparable. When JULES is excluded from
the ensemble (i.e., only six GIMs included), the mean change
remains relatively similar to that from the seven GIMs ensemble,
but the S2N ratio increases, with magnitude depending on the

region (Tables S2 and S3 for details). Note, however, that, even
with JULES excluded from the MME, the uncertainty from
GIMs generally remains greater than that from GCMs, sug-
gesting that JULES is not the dominant source of uncertainty
within GIMs.

Discussion
Previous global modeling experiments have suggested that, un-
der climate change, soil moisture and runoff would decrease (4–
7, 10, 28, 29–32), albeit with large regional uncertainty in the
magnitude of changes. However, most studies include only one
or a few global impact models (GIMs) whereas recent work (17,
26) has shown that the uncertainty associated with the response
of terrestrial hydrology to climate change simulated by different
GIMs could be as large as the uncertainty in the response of the
climate to greenhouse gas forcings simulated by global climate
models (GCMs). The uncertainty associated with GIMs has been
attributed to differences in the number and type of processes
represented in the GIMs (e.g., water balance, energy balance)
and to differences in the details of their implementations. We
used a multi-model ensemble (MME) experiment including
a relatively large number of GIMs of diverse types (which are
able to reproduce the main characteristics of water deficits in
terms of regional extent and duration) (15), forced by the same
bias-corrected climate from simulations of five state-of-the-art
GCMs, to assess changes in the frequency and severity of droughts,
at the global and regional scales, under four different RCPs for the
end of the 21st century.
At the regional scale, our results show that drought frequency

(proportion of time under drought conditions) and severity
(proportion of land under drought conditions) is very likely
(i.e., more than 90% of ensemble members) to increase in the
Caribbean, South America, Western and Central Europe, Central
Africa, Australia and New Zealand, and the Western Indian
Ocean under RCP8.5; this result reinforces earlier findings based
on CMIP3/Special Report on Emissions Scenarios (SRES) pro-
jections (2). In Eastern Africa, the variation between GCMs is
large and the signal-to-noise ratio (S2N) is close to zero. Both
GCMs and GIMs contribute to the overall uncertainty in the
response; improving the representation of regional changes in
droughts is dependent on improved process representation in the
models, for example, through analyses of GIMs biases when
forced by observed climate. It is, however, beyond the scope of
this paper to diagnose the reasons for the differences between
particular GCMs and GIMs.
The MME shows a likely increase in the spatial extent (se-

verity) of dry episodes under all four RCPs, with increasingly
large changes under greater radiative forcing and S2N greater
than 1 at the global scale and in some regions. Under RCP8.5,
all five GCMs show a substantially warmer climate that will
tend to drive increased evaporation. There is more variation
in projected precipitation changes, both between regions and
between GCMs (Fig. S6). Where evaporation increases and
precipitation decreases, soil moisture deficit can build up, re-
sulting in increased drought. In our results, areas with the largest
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signal of drought increase are generally located where precipitation
is projected to decrease. However, even in those areas where
precipitation increases, drought can still increase if this extra
water is lost through greater evaporation. This is the case in
tropical areas where GCMs indicate increased precipitation (e.g.,
parts of Central Africa) (Fig. S6), but increase in evaporation
leads to more drought being simulated by GIMs (Fig. 1). Using
S2N calculated over different subsets of the MME to describe
the range of GCMs and GIMs, we showed that the total uncertainty
associated with projected changes in drought is larger from GIMs
compared with GCMs. GIMs uncertainty is particularly affected by
an outlying GIM, JULES, that shows systemically lower response to
climate change, but remains larger than the uncertainty in GCMs
even when excluding JULES from the ensemble; e.g., GDI S2N
is 2.48 from GIMs and 3.01 from GCMs when excluding JULES
(Table S2; numbers in parentheses for details).
By investigating JULES simulations further, we show that its

outlying signal is largely the result of the inclusion of a de-
scription of the plant response to enhanced CO2, a process that is
not represented in most GIMs used to simulate global water
resources. The effects of CO2 and dynamic vegetation on plant
evapotranspiration and mean runoff have been studied before
(24, 25, 33, 34), but the effect on drought and a direct compar-
ison with hydrological models has not been presented before.
When atmospheric CO2 increases, the stomata can partially close
(35), conserving the water and resulting in smaller changes of
evaporatranspiration in a warmer climate (26, 36). This process
leaves a wetter soil and thereby a less likely drought occurrence,
as found in our results. At the leaf scale, the physiological effect
of increased CO2 is well characterized by laboratory and field
studies (37), but models differ substantially in the predicted re-
sponse of transpiration at the ecosystem level (38) and the net
effect of physiological and structural changes is also highly un-
certain (39). Our results suggest that the inclusion of CO2 and
vegetation dynamics can fundamentally change the drought re-
sponse to climate change, but the magnitude of these changes
remains uncertain. This finding underlines the importance of in-
cluding a diverse range of GIMs describing various processes when
designing multimodel experiments and that more research should
be conducted to better understand the response of vegetation
water use to CO2 increase.
Our MME considered only the impact of climate change, with

no representation of water management or changes in land use.
Climate (including CO2 effects on vegetation) is not the only
forcing relevant to assessments of future droughts and water
scarcity as water demand can generate water stress (40) and the
projected future population increase will likely result in further
increases in water stress (41). For a thorough investigation of
water availability, the combined effect of climate, land use and
water management should be taken into account, using a range
of GCMs and GIMs to capture the uncertainty.

Methods
In this paper, we have analyzed simulations from the global impact models of
the ISI-MIP ensemble experiments for which daily runoff data were available.

The experiments considered five different worlds: one representative of
historical radiative forcing and four possible future worlds. These future
scenarios included the following: a very high baseline (rising radiative forcing
reaching 8.5 Wm−2 by 2100; RCP8.5), a very low forcing level (radiative
forcing peaking at 3 Wm−2 before declining to reach 2.6 Wm−2 by 2100;
RCP2.6), and two medium stabilization scenarios (stabilization without over-
shoot pathway to 4.5/6.0 Wm−2 at 2100; RCP4.5/RCP6.0) (22, 42). Each radiative
forcing scenario was implemented by five global climate models (GCMs):
HadGEM2-ES, IPSL-CM5A-LR,MIROC-ESM-CHEM, GFDL-ESM2M, andNorESM1-M
(18). Transient GCM outputs were regridded to a common 0.5° latitude × 0.5°
longitude grid, and a two-step bias correction procedure was implemented
for each month independently (8) based on the WATer and global CHange
(WATCH) Forcing data (43).

The bias-corrected GCM outputs (8) were used as inputs for nine global
impact models: H08, JULES, LPJmL, Mac-PDM.09, MATSIRO, MPI-hm,
PRCGlobWB, VIC, and WBM (see SI Text for references). For RCP4.5 and 6.0,
VIC and Mac-PDM.09 were only driven by HadGEM2-ES. The GIMs were run
on 0.5° grids (except JULES, which was run with grid cell size 1.875° longi-
tude × 1.25° latitude, then regridded to 0.5° for analysis). GIMs were
spun up to a quasi steady state by repeated use of detrended meteo-
rology for 1951–1980, followed by a simulation of the period 1951–2005.
Simulations for each RCP covered 2006–2099 (2005-2099 for HadGEM2-
ES-forced runs). All GIMs considered contemporary patterns of land use,
except JULES, which modeled natural vegetation only, with no land use.
No anthropogenic storage (e.g., dams and reservoir) or water manage-
ment was represented.

We have not investigated the extent to which the drought results from
JULES depend on the grid scale, as no simulations at other scales are available.
However, our best assessment from otherworkwith JULES (not specifically on
drought) is that results are generally not very sensitive to the size of the grid
cells, at least for modest changes in resolution (say 0.5–3 degrees) and for
regionally or globally averaged statistics.

Daily total runoff is the sum of surface and subsurface runoff. It is an
integrated response to all basin input, storage and transfer processes, and the
useable output of river basins for various water sectors. The daily total runoff
outputs from the RCP/GCM/GIM combinations were extracted and analyzed
for two time slices: 1976–2005 (historical forcing hist or reference period)
and 2070–2099 (future forcing or RCP).

The ISI-MIP dataset also includes experiments of JULES and LPJmL in which
CO2 was allowed to vary only until the year 2000, after which it was kept con-
stant (“noCO2” runs) whereas the meteorological forcing included the climate
change signal as before. “No CO2” runs of JULES were used only in the sensitivity
analysis of Fig. 4; all other analysis used JULES runs with varying CO2.

Following ref. 6, drought episodes were defined relative to a time-varying
threshold corresponding to the 10th percentile of total runoff (Q90) simu-
lated under hist (notation follows convention from ref. 44 with Q90 being
the runoff value exceeded or equaled 90% of the time). We calculated
a daily Q90 value using a 30-d moving window to capture intramonthly
temporal patterns, as in ref. 15. Q90 was used as a threshold to calculate
daily runoff deficit indices (DIs), such that DI = 1 when runoff is <Q90 and
DI = 0 otherwise. All years were treated as having 365 d, with data for 29 Feb
removed from models that included that day. The difference in the fre-
quency and fraction of land cells for which runoff is below this threshold
between the future and historical runs quantifies any signal of increase in
severity and frequency of drought. To capture geographical and seasonal
characteristics of the runoff, thresholds were calculated for each land cell
independently. To reduce uncertainty due to climate-impact modeling bia-
ses in the results, thresholds were also calculated for each climate-impact
model combination as in ref. 45.

For each land cell of each simulation, we calculated a measure of drought
frequency to be the fraction of days under drought for each hist and RCP
scenario. We quantified a signal as the difference between the fraction of
days under drought between each RCP scenario and the corresponding
historical scenario. We calculated the signal-to-noise ratio (S2N) as the en-
semblemean change divided by the inter-quartile IQ range of changes for the
full MME and certain subsets of RCP/GCM/GIM combinations (i.e., S2N as-
sociated with GCMs is the S2N associated with each GIM driven by all GCMs,
then averaged across all GCMs; for GIMs uncertainty, it is the S2N associated
with each GCM for all GIMs, then averaged across all GIMs). Sensitivity of S2N
to the definition of spread was tested (SI). It showed that values based on IQ
range are similar but slightly more conservative (i.e., smaller S2N) than those
based on SD, and therefore S2N-IQ was chosen.

Similarly to ref. 46, we removed arid regions from the analysis. We de-
fined arid cells to be those that had more than 90% of the runoff time series
equal to zero in any single climate-impact model combination; the land-
mask of these cells is displayed in SI Text. Of the remaining cells, the seasonal
variation in the runoff resulted in some very dry periods. We therefore also
implemented a daily veto for each cell of each GCM/GIM combination, which
discarded days for which the value of Q90 was zero. There were two GIMs
(LPJmL and MATSIRO) for which the masking and vetoing removed too
many points to be able to calculate global averages (see SI Text for details),
so we did not consider them in the global analysis. After applying the
masking procedure to the remaining seven GIMs, 82% of the total land cells
(55,051 out of 67,420 grid cells) was included in the analysis. For JULES, the
unmasked area corresponds to 83% of the total land cells (6,270 out of 7,558
grid cells). Note that we investigated the effects of model structure (in-
clusion of dynamic effect of CO2 on plants) using the two discarded GIMs
(LPJmL and MATSIRO) along with JULES, using the full 9GIMs mask, which
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retained only 64% of the total land cells (68% of the JULES land cells) (see SI
Text for details). Therefore, these sensitivity tests are not global results.

The global impact of changing drought was studied by calculating a daily
global deficit index (GDI) for each GIM/GCM/RCP combination over the
unmasked land cells. This is the weighted average of the number of land cells
under drought conditions, with weights proportional to the area of each grid
cell. It represents the global proportion of land (or spatial extent) under
drought and gives a measure of the global severity of a dry episode; it varies
between 0 (no land cells under drought conditions that day) to 1 (all land cells
under drought conditions that day). The method differs from that of ref. 47,
which calculated the spatial extent of droughts over contiguous cells but is
similar to that of ref. 6 to avoid potential discontinuity introduced by minor
events. Seasonal GDIs were derived by extracting GDI time series for two
specific 3-mo periods: December to February (DJF) and June to August (JJA).

We also calculated a daily regional deficit index (RDI) for 17 of the Geo
regions defined in ref. 27. These regions were those for which we could
calculate a DI value for at least 50% of the land cells.

Differences between hist and RCP GDIs were assessed using the 1-sided
Kolmogorov–Smirnov (48) test, which measures the distance between the
empirical cumulative distribution functions of two samples of n1 observa-
tions (here n1 = 365 × 30 = 10,950). Results are presented at the 95% level.
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