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Gliding motility and host-cell invasion by apicomplexan parasites
depend on cell-surface adhesins that are translocated via an actin–
myosin motor beneath the membrane. The current model posits
that fructose-1,6-bisphosphate aldolase (ALD) provides a critical
link between the cytoplasmic tails of transmembrane adhesins
and the actin–myosin motor. Here we tested this model using the
Toxoplasma gondii apical membrane protein 1 (TgAMA1), which
binds to aldolase in vitro. TgAMA1 cytoplasmic tail mutations that
disrupt ALD binding in vitro showed no correlation with host-cell
invasion, indicating this interaction is not essential. Furthermore,
ALD-depleted parasites were impaired when grown in glucose,
yet they showed normal gliding and invasion in glucose-free me-
dium. Depletion of ALD in the presence of glucose led to accumu-
lation of fructose-1,6-bisphosphate, which has been associated
with toxicity in other systems. Finally, TgALD knockout parasites
and an ALD mutant that specifically disrupts adhesin binding in
vitro also supported normal invasion when cultured in glucose-
free medium. Taken together, these results suggest that ALD is
primarily important for energy metabolism rather than interacting
with microneme adhesins, challenging the current model for api-
complexan motility and invasion.
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The phylum Apicomplexa is a group of mostly intracellular
parasites that contains a number of human pathogens, in-

cluding Toxoplasma gondii and Plasmodium spp., the causative
agent of malaria. As intracellular pathogens, efficient host-cell
invasion is critical for survival, dissemination, and transmission
of these parasites. Although they infect different types of host
cells, apicomplexan parasites share a conserved mode of host-cell
invasion that relies on regulated secretion of adhesive proteins and
active motility that is powered by an actin–myosin motor complex
(1, 2). According to the current model, motility and host-cell in-
vasion depend on transmembrane adhesins that are secreted
apically from the micronemes and translocated along the cell
surface in a conveyor belt fashion, using the force generated
by the motor complex beneath the parasite membrane (1, 2).
Micronemal adhesins contain a variety of extracellular adhe-

sive domains, a transmembrane domain, and a short cytoplasmic
tail that is rich in acidic residues and contains a tryptophan
residue (Trp) at or near the extreme carboxyl terminus (3).
These conserved features of the cytoplasmic tails are critical to
their function, as shown by mutational studies and functional
replacement of the thrombospondin-related adhesive protein
(TRAP) tail (TRAPt) in P. berghei with the T. gondii Micro-
neme Protein 2 (MIC2) tail (TgMIC2t) (4). The cytoplasmic tails
of several micronemal adhesins are thought to be anchored to the
actin–myosin motor through a bridging molecule, the glycolytic
enzyme fructose-1,6-bisphosphate aldolase (ALD) (5, 6). Muta-
tional analysis has shown that in vitro binding of TgMIC2t and
PbTRAPt to ALD is mediated by the acidic residues and Trp
residue in the adhesin tails (5–7). ALD has also been shown
to interact with MIC2 and TRAP in coimmunoprecipitation
experiments using parasite lysates (5, 6). Further support that
this interaction plays a role in vivo comes from a conditional
knockout (cKO) of TgALD, which shows impaired invasion and
growth, consistent with a role in metabolism and/or bridging of

adhesins (8). Evidence that TgALD plays a specific role in
bridging to adhesins was provided by the TgALD mutant K41E-
R42G, which dramatically reduces TgMIC2t binding in vitro
whereas having a minimal effect on enzyme activity (8). When
expressed in the conditional knockout strain of TgALD (ALD
cKO), the K41E-R42G mutant has normal ATP levels, yet it
shows decreased host-cell invasion (8).
The micronemal adhesin AMA1 is also important for host-cell

invasion by T. gondii and Plasmodium spp. (9–11). AMA1 has
similar topology with TRAP/MIC2 with its bulky ectodomain
binding to rhoptry neck proteins (RONs) that are secreted from
the rhoptries and inserted into host plasma membrane to me-
diate formation of a moving junction between the host and
parasite membranes (12–15). The cytoplasmic tail of AMA1
(AMA1t) also binds rabbit ALD in vitro, and a TgAMA1 mutant
with a pair of aromatic residues changed to alanines (i.e., F547A,
W548A) disrupts aldolase binding in vitro and blocks host-cell
invasion (16). Similarly located FW residues in P. falciparumAMA1t
were also shown to mediate binding to rabbit aldolase in vitro, im-
plying this interaction is conserved (17). These studies suggest that
AMA1 binding to ALD may play a key role during parasite in-
vasion, similar to that proposed for MIC2 (8) and TRAP (6).
In the present study, we undertook a broader analysis of

TgAMA1t mutants that disrupt binding to TgALD in vitro to
determine the role of this interaction during host-cell invasion.
Unexpectedly, our results indicate that the TgALD–TgAMA1
interaction is not required for parasite motility or invasion. More-
over, we found that the previously described role for TgALD during
invasion is alleviated by the absence of glucose. Taken together,
these results suggest that ALD is primarily important for energy
metabolism but does not play an essential role in coupling adhe-
sins to the motor complex during invasion.

Significance

Previous studies have suggested that aldolase plays an essen-
tial role in parasite motility and host-cell invasion by connect-
ing surface-adhesive proteins to the actin–myosin motor of the
parasite. However, our studies show that Toxoplasma aldolase
is critical for metabolism but not directly required for parasite
motility or invasion. Aldolase-depleted T. gondii cells were
sensitive to glucose but showed normal motility and host-cell
invasion when grown without glucose, indicating that aldolase
does not fulfill an essential role in these important aspects of
parasite biology. This conclusion was also supported by studies
from adhesin mutants with altered interactions with aldolase
in vitro. Taken together, our results force a revision to the
current model for host-cell invasion of apicomplexan parasites.
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Results
Key Residues in the Tail of TgAMA1 Mediate Binding to TgALD in Vitro.
The cytoplasmic tails of AMA1 from T. gondii and P. falciparum
contain a pair of hydrophobic (i.e., FW) residues (Fig. 1A) that are
important for binding rabbit muscle aldolase in vitro (16, 17). To
test whether TgAMA1t also interacts with aldolase from T. gondii,
we used a pull-down assay to examine the ability of recombinant
His-TgALD to bind GST-TgAMA1t expressed and purified from
Escherichia coli. Consistent with previous reports (16), TgALD
bound efficiently to GST-TgAMA1t but not to GST alone (Fig.
1B). To define the residues important for this interaction, we in-
troduced alanine mutations into a number of residues in TgA-
MA1t and examined their interaction with TgALD using the pull-
down assay (Fig. 1 A and B). We identified the residues critical for
TgALD binding as W548 (corresponding to W520 in a previous
gene model) (16) and the four negatively charged residues im-
mediately downstream (Fig. 1 A and B). The double mutant
F547A-W548A showed decreased binding to TgALD. However,
the individual single mutants contributed differently to this phe-
notype: W548A was dramatically impaired, whereas F547A only
showed a modest decrease in binding (Fig. 1 A and B). The resi-
dues E566 and D568 at the extreme C terminus were also im-
portant for this interaction, whereas the terminal tyrosine (Y569)
played little if any role (Fig. 1 A and B and Fig. S1A).
The in vitro binding of TgAMA1t mutants to TgALD was also

examined using a semiquantitative ELISA (Fig. 1C and Table 1).
The double mutant E552A-E553A had the most dramatic effect
on binding (∼45-fold increase in observed Kd; Kobs), whereas
other mutants showed changes in Kobs that ranged from 7- to 35-
fold higher than WT or were essentially unchanged (F547A)
(Table 1). The specificity of the TgALD–TgAMA1t interaction
in vitro was also confirmed using the previously characterized
mutant TgALD K41E-R42G, which has decreased binding to
TgMIC2t in vitro (8). This TgALD mutant displayed dramati-
cally reduced interaction with TgAMA1t in the pull-down assay
(Fig. S1B), suggesting that TgAMA1t and TgMIC2t rely on the

same positively charged surface on TgALD for binding. Al-
though the TgALD–TgAMA1t interaction was readily estab-
lished in vitro, we were unable to demonstrate this interaction in
vivo, although the moving junction component TgRON4 was easily
detected in complex with TgAMA1 by coimmunoprecipitation
(co-IP) (Fig. S2). These results suggest that despite robust binding
between TgAMA1 and ALD in vitro, conditions are less favorable
for this interaction to occur in vivo.

In Vivo Characterization of TgAMA1 Mutants. To examine the role
of mutations in TgAMA1 in vivo, we expressed FLAG-tagged
mutants under the endogenous promoter in the conditional knock-
out strain (AMA1 cKO) (9), which expresses a myc-tagged copy
of TgAMA1 that is suppressed by addition of anhydrotetracy-
cline (ATc) (Fig. 2A). Stable clones were selected based on similar
expression levels of TgAMA1 (Fig. 2B) and efficient suppression
of the regulatable copy of TgAMA1-myc by ATc (Fig. S3). The
WT and mutant alleles of TgAMA1 were all correctly localized
to micronemes at the apical end of the parasite, as shown by
colocalization with MIC2-associated protein (M2AP) (Fig. S4).
TgAMA1 is necessary for parasite growth on fibroblast mono-

layers, as shown by the inability of the AMA1 cKO strain to form
plaques in the presence of ATc, in contrast to the robust growth
seen in its absence (Fig. 2C). Complementing the AMA1 cKO
strain with WT FLAG-TgAMA1 fully restored the growth in the
presence of ATc, as evident by normal plaquing (Fig. 2C). To
test the function of TgAMA1 mutants in supporting parasite
growth, we compared their ability to complement the formation
of plaques in the presence of ATc. Of the six mutants tested,
F547A, W548A, and the combined F547A-W548A did not make
any visible plaques, indicating that these two residues are critical
for TgAMA1 function (Fig. 2 C and D). In contrast, the mutants
D549A-E550A and E566A-D568A produced similar numbers of
plaques as the WT complement, although the plaques were
slightly smaller (Fig. 2 C and D). The plaquing phenotype of the
E552A-E553A mutant was indistinguishable from that of WT
parasites (Fig. 2 C and D).
In comparing the various mutants, there was no correlation

between TgALD binding activity in vitro and the ability to sup-
port growth in vivo. Mutants such as W548A and F547A-W548A
had reduced TgALD binding and failed to complement the
AMA1 cKO strain. However, the mutant F547A showed only
a modest drop in TgALD binding yet it did not complement
growth, and mutant E552A-E553A, which had the least TgALD
binding activity among all the mutants, was fully functional
for growth.

Binding of TgAMA1t to TgALD Is Neither Sufficient Nor Necessary for
Host-Cell Invasion. To examine the potential role of TgALD
binding for TgAMA1 during host-cell invasion, we compared the
invasion efficiency of the above TgAMA1 mutants using a quan-
titative invasion assay. Consistent with previous studies (9),
depletion of AMA1 in the AMA1 cKO strain led to impaired
invasion, which was rescued in the WT-complemented line
(Fig. 2E). Invasion by strains complemented with the single mutants
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Fig. 1. Interaction between TgAMA1t and TgALD in vitro. (A)
Amino acid sequence of the cytoplasmic tail of TgAMA1.
When mutated to alanine, the residues colored in green had
no effect on TgALD binding, whereas residues in blue in-
creased binding and residues in red decreased binding. (B)
Pull-down assay between recombinant TgALD and WT or
mutant alleles of TgAMA1t fused to GST (GST-TgAMA1t), re-
solved by SDS/PAGE, and stained with Coomassie blue. (C)
Binding between TgALD and TgAMA1t mutants measured by
ELISA. Expressed as % of maximum binding to WT TgAMA1t.
Means ± SD (n = 3) from one representative of three in-
dependent experiments.

Table 1. Summary of in vitro TgALD binding and host-cell
invasion properties of TgAMA1 mutants

TgAMA1 alleles
Kobs of TgALD
binding, nM* Host-cell invasion, %†

WT 27.28 ± 1.41 100.0 ± 11.0
F547A-W548A 494.60 ± 27.79 9.8 ± 2.0
F547A 41.54 ± 3.14 12.8 ± 3.9
W548A 288.00 ± 10.03 10.5 ± 2.6
D549A-E550A 920.00 ± 68.65 83.2 ± 10.1
E552A-E553A 1251.00 ± 85.75 106.3 ± 6.6
E566A-D568A 186.00 ± 13.95 83.7 ± 9.6

*Kobs (means ± SD, n = 3 replicates) obtained from the ELISA in Fig. 1C.
†Invasion efficiency (number of intracellular parasites per host-cell nucleus)
expressed as a % of the wild-type complement; data are based on Fig. 2E.
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F547A and W548A, as well as the double mutant F547A-W548A,
was reduced to levels similar to that of TgAMA1-depleted cells
(AMA1 cKO, +ATc) (Fig. 2E). In contrast, mutants D549A-
E550A and E566A-D568A showed a mild (∼20%) reduction in
invasion, whereas E552A-E553A invaded as efficiently as the
WT complement (Fig. 2E). Although the invasion and plaquing
phenotypes of the TgAMA1 mutants were similar, there was
again no correlation between TgALD binding and host-cell in-
vasion, suggesting that TgALD–TgAMA1 interactions may not
be required for invasion.
Recently, glyceraldehyde 3-phosphate dehydrogenase (GAPDH)

was reported to bind the cytoplasmic tails of several merozoite
Duffy binding-like (DBL) and reticulocyte homology (RH) ligands
in P. falciparum (18). We tested whether TgAMA1 might also bind
to GAPDH, as this might provide an alternative means to connect
adhesins to the motor, thus potentially masking defects in aldolase
binding. We detected an interaction between TgAMA1t and rabbit
muscle GAPDH in vitro, and binding was significantly reduced in
some TgAMA1t mutants (Fig. S5). However, the interaction of
TgAMA1t mutants with GAPDH was not correlated with ob-
served invasion phenotypes. In particular, mutants D549A-E550A,
E552A-E553A, and E566A-D568A, which all showed reduced
binding to ALD (Fig. 1) and GAPDH (Fig. S5) in vitro, displayed
normal or nearly normal invasion (Fig. 2).
We also examined gliding motility of the TgAMA1 mutants

using staining of surface antigen 1 (SAG1), which is deposited in
the trails when parasites glide on substrate. Consistent with pre-
vious studies (9), TgAMA1 was not required for gliding motility
because the AMA1 cKO displayed very similar gliding properties
in the presence and absence of ATc (Fig. 2F). Similarly, none of
the TgAMA1 mutants displayed an obvious change in motility
compared with theWT complement (Fig. 2F), indicating that they
do not have a dominant-negative phenotype for gliding.

Glucose Inhibits the Growth of TgALD-Depleted Parasites. The lack
of correlation between aldolase binding to TgAMA1 in vitro and
invasion in vivo led us to consider other models to explain the
previously reported requirement for aldolase. In other micro-
organisms, aldolase deficiency leads to growth arrest only when
cells are cultured with glucose or related sugars (19, 20), likely as
a consequence of a toxic intermediate(s) that accumulates due
to interrupted glycolysis. To test whether aldolase depletion in
T. gondii led to growth arrest in a nutrient-dependent manner, we
grew the ALD cKO strain and the WT complement (ALD cKO/
ALD) with or without glucose in medium containing glutamine
and pyruvate. Parasite growth was monitored by the lysis of host-
cell monolayers, as described previously (21). When expression
of TgALD was suppressed by ATc treatment in the ALD cKO
strain, parasite growth was inhibited only when glucose was
present in the medium, whereas the WT TgALD-complemented
strain grew well under both conditions (Fig. S6). To confirm this
phenotype under more stringent suppressive conditions, we
pretreated the ALD cKO strain with ATc for 36 h in glucose-free
medium, resulting in suppression of the regulatable copy of
TgALD to less than 2% of the endogenous level (Fig. 3A).
TgALD-depleted parasites were then used to infect fresh mon-
olayers in the presence or absence of glucose plus ATc, and
parasite growth was monitored by monolayer lysis. Depletion of
TgALD in ALD cKO treated with ATc prevented lysis of the
host monolayer in the presence of glucose at any inoculation
density, yet TgALD-depleted parasites cultured without glucose
grew similar to WT TgALD-complemented cells (Fig. 3B). We
also compared the growth of TgALD-depleted parasite in fruc-
tose vs. glucose using similar procedures. Although fructose also
decreased the growth of TgALD-depleted cells at high concen-
trations, it was substantially less toxic than glucose, which com-
pletely blocked the growth at ≥800 mg/L (Fig. 3C).
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Fig. 2. Characterization of TgAMA1 mutants with altered TgALD binding. (A) Diagram of the AMA1 cKO strain complemented with FLAG-tagged TgAMA1
(FLAG-AMA1). The AMA1 cKO strain contains an anhydrotetracycline regulatable copy of TgAMA1 (pTet-off::AMA1-myc), whereas the endogenous TgAMA1
is deleted. (B) FLAG-TgAMA1 mutants were expressed in the AMA1 cKO at similar levels as the WT complement. Western blot using mouse anti-FLAG and
rabbit anti-TgALD as a loading control. Primary antibodies were detected using IRDye-conjugated secondary antibodies and imaged using the LI-COR Odyssey
imaging system. (C) Parasites were grown ±0.5 μg/mL ATc for 8 d to form plaques on HFF monolayers. (D) Average plaque size in C. Mutants that formed no
plaques are shown as having a size of zero (i.e., F547A-W548A, F547A, and W548A). Means ± SD from three independent experiments each with triplicate
wells. Each dot represents one plaque; separate experiments are indicated by a different color. Two-way ANOVA with Bonferroni posttest comparisons.
Differences were significant in all three experiments at the indicated P values of 0.05 (*), 0.01 (**), or <0.001 (***). (E) Host-cell invasion of TgAMA1 mutants
evaluated by a two-color assay to distinguish intracellular from extracellular parasites, with a 20-min infection. Student t test, **P ≤ 0.005, ***P ≤ 0.0001.
Means ± SD from three independent experiments each in triplicate (n = 9). (F) Gliding motility of TgAMA1 mutants as determined by SAG1 trail formation.
Means ± SD from three independent experiments each in triplicate (n = 9). For both E and F, parasites were cultured in 0.5 μg/mL ATc for 48 h before
evaluation. The AMA1 cKO strain grown without ATc served as a control.
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Impaired Motility, Invasion, and Replication of TgALD-Depleted Parasites
Are Dependent on Growth in Glucose. Previous studies on the ALD
cKO strain indicated that depletion of TgALD inhibited parasite
motility and invasion; however, these studies were conducted in
glucose-rich medium (i.e., 4,500 mg/L) (8). Because the above
findings clearly show that glucose has a toxic effect on TgALD-
depleted parasites, we wanted to reexamine the cellular phenotypes
of the ALD cKO strain grown under glucose-replete vs. -depleted
conditions. In the presence of ATc, the ALD cKO strain displayed
a dramatic reduction in host-cell invasion when grown in glucose-
containing medium, compared with the same strain grown in the
absence of ATc (Fig. 4A). This invasion defect was fully reverted
in the WT TgALD-complemented strain (Fig. 4A). In contrast,
depletion of TgALD had no effect on invasion when parasites
were grown in glucose-depleted medium (Fig. 4A). Similarly,
gliding motility was impaired only when ALD cKO was grown
in the presence of ATc and glucose, but not in glucose-free me-
dium (Fig. 4B). TgALD-depleted parasites showed significantly
slower replication than control parasites when grown in the
presence of glucose (Fig. 4C). However, when glucose was ex-
cluded from the medium, replication of TgALD-depleted para-
sites was normal (Fig. 4C). In other systems, disruption of aldolase
leads to accumulation of fructose-1,6-bisphosphate (FBP) (22, 23).
Consistent with this, we observed a dramatic increase in the
concentration of FBP in TgALD cKO parasites grown in the
presence of ATc and glucose, and this was largely eliminated
when parasites were grown in the absence of glucose (Fig. 4D).
Taken together, these results indicate that the impairment of
TgALD-depleted parasites is only apparent when cells are grown
in glucose, likely as the result of accumulation of toxic metabo-
lites such as FBP.

TgALD Mutant Defective in Adhesin Binding Showed Normal Invasion
When Cultured in Glucose-Free Medium. The complete reversal of
the phenotypes of TgALD-depleted parasites by growth in the
absence of glucose calls into question the adhesin-bridging role
proposed previously (5, 8). Key support for this model comes
from the mutant TgALD K41E-R42G, which has a partial in-
vasion defect but also reduced enzymatic activity despite normal
cellular ATP levels (8). Consistent with this previous report (8),
we found that TgALD K41E-R42G had dramatically reduced
TgMIC2t and TgAMA1t binding in vitro (Fig. S1). We reasoned
that if the decrease in adhesin binding was responsible for the
decreased invasion, the phenotype of the TgALD K41E-R42G
mutant should be independent of growth in glucose. However,
when cultured in glucose-free medium, the partial invasion de-
fect of the TgALD K41E-R42G mutant seen in the presence of
glucose was reverted to normal levels (Fig. 4E). Although we did
not detect accumulation of FBP in this mutant when grown in
the presence of glucose (Fig. 4D), the defect in this mutant is

likely due to a metabolic insufficiency, as invasion was normal
when grown in the absence of glucose (Fig. 4E).

TgALD Knockout Parasites Invade Normally When Grown in Glucose-
Free Medium. To further confirm the independence of host-cell
invasion of aldolase, we constructed a loxP-TgALD strain and
subsequently used Cre recombinase to delete TgALD, as described
(24) (Fig. 5 A and B). Following Cre transfection and growth for
48 h, ∼25% of replicating parasites were YFP+ and lacked de-
tectable TgALD expression (Fig. 5C). After FACS sorting (Fig.
5D), we grew aldolase-deleted (YFP+ TgALD−) vs. wild-type
(YFP− TgALD+) parasites in glucose-free medium for another
48 h (approximately eight generations) to ensure complete de-
pletion of the protein (Fig. S7). Subsequent invasion assays
showed that YFP+ TgALD− cells had similar invasion efficiency to
YFP− TgALD+ parasites (Fig. 5E), confirming that host-cell in-
vasion does not require aldolase. Collectively, these findings sug-
gest a revision to the bridging model, as discussed further below.

Discussion
The current model for gliding motility and host-cell invasion by
apicomplexan parasites postulates the need for a mechanical
connection between surface adhesins and the actin–myosin mo-
tor to generate power (1, 2). For the past decade, this connection
was thought to be mediated via aldolase bridging between the
adhesin tails and F-actin (5). There are a number of features that
make this an attractive model. ALD is tetrameric, with four
binding sites, such that it can bind to and cross-link actin fila-
ments (25). The binding sites important for this interaction are
also conserved in parasite actins (26) and aldolases (27). The
cytoplasmic tails of many transmembrane adhesins bind to
ALD in vitro, including MIC2 (5), MIC6 (28), and AMA1 (16) in
T. gondii, as well as RH1, RH2B, RH4 (18), TRAP (6), and AMA1
(17) in Plasmodium spp. The molecular details of the interaction
between ALD and TRAPt and MIC2t have been probed by
structural (29) as well as mutational studies (6, 8). Together, these
prior studies reveal that the binding site is mediated by a positively
charged groove in aldolase that interacts with negatively charged
residues in the adhesin tails, combined with hydrophobic inter-
actions. Moreover, ALD, actin, and TgMIC2 or PbTRAP can be
coprecipitated from cell lysates of T. gondii (5) or P. berghei (6),
suggesting these interactions occur in vivo. However, the signifi-
cance of such interactions was largely untested, with the exception
of TgALD mutants made in T. gondii (8).
Although initially established from studies in the related adhe-

sins MIC2 and TRAP (5, 6), recent attention has focused on other
adhesins that may also interact with ALD, broadening interest in
the role of this interaction during host-cell invasion (16, 17).
For example, TgAMA1t was shown to bind rabbit muscle ALD
in vitro, and a TgAMA1 mutant (F547A-W548A) defective in
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ALD binding lost the ability to invade host cells, suggesting this
interaction was critical for function (16). To explore this in-
teraction further, we generated additional TgAMA1 mutants
and tested their ability to bind TgALD in vitro and the ability to
complement the AMA1 depletion strain for growth and invasion.
There was no correlation between the ability of TgAMA1 mutants
to bind TgALD in vitro and their ability to support host-cell
invasion. In addition, we were unable to detect the TgAMA1–
TgALD interaction by co-IP, implying that it is of low affinity or
absent in vivo. Together, these results suggest that if binding
betweenTgAMA1 and TgALD occurs in vivo, it is not essential
for invasion.
The lack of a requirement for binding between TgAMA1 and

TgALD during invasion led us to reexamine the proposed role
for aldolase in bridging to adhesins during host-cell invasion. We
discovered that growth of TgALD-depleted parasites was only
inhibited when high levels of glucose or fructose were present in
the medium. In contrast, when TgALD-depleted parasites were
cultured in medium containing pyruvate and glutamine, growth
and host-cell invasion were normal. Furthermore, the reversal of

the invasion defect of the TgALD K41E-R42G mutant in the
absence of glucose suggests that the defect in this mutant is not
due to the decreased binding to adhesins but rather to metabolic
deficiency as a result of its lower enzyme activity (8). In light
of the present findings, we conclude that if ALD–adhesin
interactions occur in vivo, they do not play an essential role in
invasion but rather aldolase is primarily important in energy
metabolism. Our finding that aldolase is dispensable in the ab-
sence of glucose is consistent with the observation that growth is
normal following deletion of the major glucose transporters in
T. gondii, as long as glutamine is present (30). Whether ALD is
required for long-term growth of T. gondii under these con-
ditions is uncertain, although it might be necessary to participate
in gluconeogenesis, a pathway that is complete in the genome
(www.toxodb.org).
The dramatic inhibition of ALD-depleted parasites in the

presence of glucose/fructose mirrors the growth inhibition of
temperature sensitive ALD mutants of bacteria and yeast (19,
20) grown in glucose and related sugars, as well as fructose
intolerance caused by aldolase B (an isoform preferentially
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expressed in the liver) deficiency in humans (22). The basis for
the latter defects is thought to be the toxic effects of accumu-
lated FBP or fructose-1-phosphate (22, 23). A similar mecha-
nism may explain the growth inhibition of TgALD-depleted
parasites cultured in glucose, because we observed a dramatic
increase in the concentration of FBP when grown in the presence
of glucose. Hence, it is likely that most of the previous effects of
aldolase depletion can be attributed to the accumulation of toxic
intermediates. Aldolase is also likely to be essential in vivo, be-
cause human serum has ∼1,000 mg glucose/L, levels that would
completely block the growth of TgALD-depleted parasites.
Although ALD is important for sugar metabolism in T. gondii,

it is apparently not required to link microneme adhesins to the
motor during host-cell invasion. It has been suggested that other
adaptors may contribute to this function, including GAPDH that
binds to several Plasmodium adhesin tails in vitro (18) and TgAMA1
as shown here. Our data suggest that binding to GAPDHmay also
not be required for AMA1 function because mutants that were
defective in binding to both GAPDH and ALD (i.e., E552A-
E553A) showed nearly normal invasion. Also, the phenotype of
mutants such as TgAMA1t-F547A, which still binds aldolase and
GAPDH although is unable to support invasion, suggests that
neither interaction is sufficient for invasion. Rather, it is possible
that adhesin tails serve other functions, as mutational studies
clearly demonstrate critical roles for conserved residues in
TgAMA1 (16), TgMIC2 (7), PbTRAP (4), and others. As gliding
motility and cell invasion are critical for parasite survival, defining
these functions remains an important focus for future study.

Materials and Methods
Parasite Strains and Growth Conditions. T. gondii tachyzoites were main-
tained by growth in human foreskin fibroblasts (HFFs) cultured as described
previously (8) (SI Materials and Methods). The AMA1 cKO strain (9) was
kindly provided by Gary Ward (University of Vermont, Burlington, VT), and
complementing mutants were constructed in the plasmid pDHFR-AMA1 and
used to obtain transgenic parasites (SI Materials and Methods). The TgALD

cKO and complementing (WT and K41E-R42G) strains were described pre-
viously (8). Anhydrotetracycline (0.5 μg/mL) (Clontech Laboratories) was used
to treat parasites for 36 or 48 h unless otherwise indicated. Plaque assays
were performed on HFF monolayers as described in SI Materials and
Methods. Motility, invasion, and replication assays were done as previously
described (8), with modifications described in SI Materials and Methods.

Mass Spectrometry. Parasites were grown under the indicated conditions for
36 h, harvested, purified, washed with PBS, extracted, and processed for LC-
MS/MS as described in SI Materials and Methods. Samples were analyzed
using a Shimadzu LC system interfaced with an AB Sciex 4000 QTRAP mass
spectrometer. Pipes [piperazine-N,N′-bis(2-ethanesulfonic acid)] was spiked
into the samples before extraction and used as an internal standard to nor-
malize the extraction efficiency, as described in SI Materials and Methods.

Protein Purification, Pull-Down, and ELISA. His-TgALD and GST-TgAMA1t were
purified from E. coli BL21(DE3) containing pET16b-TgALD (8) and pGEX3X-
TgAMA1t, respectively, as described previously (7). Pull-down assays were
conducted as described (7). Western blotting was performed as described in
SI Materials and Methods. Quantitative ELISA was done as previously de-
scribed (7), with modifications as described in SI Materials and Methods.
Samples were tested in triplicate, and the Kobs was determined using the
nonlinear regression curve-fitting function in Prism version 5 (GraphPad
Software).

Statistics. Statistical comparisons were conducted in Prism (GraphPad Soft-
ware) using two-tailed Student t test with unpaired samples with equal
variance. For comparing multiple datasets or more than two groups, ANOVA
statistical tests were conducted in Prism.
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