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Abstract
Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients.
Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of
brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers
including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the
site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need
for improvements in brain tumor imaging to allow for better characterization and delineation of
tumors, visualization of malignant tissue during surgery, and tracking of response to
chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon
many of these issues and may lead to breakthroughs in brain tumor management. In this review,
we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an
emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent
delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also
examined. Furthermore, we address the barriers towards clinical implementation of
multifunctional nanoparticles in the context of brain tumor management.
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1. Introduction
With the rapid development of nanotechnology for biomedical applications, it is expected
that newly developed particle systems can have a revolutionary impact on brain cancer
diagnosis and therapy [1–10]. In general, nanotechnology involves the design, synthesis, and
application of materials with at least one dimension in the size range of 1–100 nanometers
[3]. Multifunctional nanoparticles containing optical, thermal, and magnetic properties are
promising systems that offer new opportunities to overcome the limitations of current brain
tumor management options in the clinic. In this review, we begin by introducing the
prognostic and biologic features of brain tumors, followed by the major obstacles facing of
brain tumor management. We then highlight recent advances and clinical applications of
nanoparticles in brain therapeutics, focusing on (i) tumor imaging, (ii) therapy, and (iii) the
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combination of both imaging and therapeutic functions (i.e. theranostics). Furthermore,
strategies for nanoparticle administration and regulation issues surrounding nanoparticle
translation to clinic are discussed. Lastly, the barriers towards clinical implementation of
these nanoparticles are discussed in order to bring better insight into strategies for
developing the most feasible systems for treating brain tumor patients.

2. Brain tumors
Brain tumors, referring to a heterogeneous group of primary and metastatic neoplasms in the
central nervous system, are life-threatening diseases characterized by the low survival rate
[11]. The annual incidence of primary malignant brain tumors is approximately 24,000 cases
[11, 12]. Malignant gliomas are primary tumors that are derived from glial origin and
account for approximate 70% of new primary brain cancer diagnosis [12, 13]. Of these,
glioblastoma multiforme (GBM), a grade IV astrocytoma according to the World Health
Organization (WHO) classification, is the most common and aggressive form in nature [14].
Most patients with brain tumors eventually succumb to the disease despite the aggressive
standard of care treatment approach. The median survival is only about three years for
anaplastic astrocytomas and around 14.6 months for GBM patients [15, 16]. Brain
metastases are another important class of tumors in the central nervous system originating
mainly from systemic cancers in the lung, breast and skin [17]. Metastatic brain tumors
occur at a high frequency with an estimated incidence of 100,000–170,000 cases in the USA
annually [18].

Today, a multimodality treatment approach including surgical resection, radiotherapy, and
chemotherapy is the current standard of care for malignant brain tumor patients [16]. It has
been demonstrated that aggressive resection of a brain tumor and postoperative radiation
lead to a significant survival advantage [16, 19]. Adjuvant chemotherapy can be
administered at different time points as well [20, 21]. Cytotoxic and cytostatic agents are the
two major categories of chemotherapy used to treat brain tumors. The mechanism of these
agents involves direct tumor cell death, anti-angiogenesis, pro-differentiation, growth factor
pathway disruption, and inhibition of tumor invasion. Temozolomide, an imidazotetrazine
derivative, is the first line systemic chemotherapy agent used for patients with brain tumors
[22–24]. Unconventional therapies including immunotherapy, gene therapy, and
photodynamic therapy (PDT) are potential adjuvant treatments for brain tumors and are
under clinical trials. These additive therapies have broadened the spectrum of therapeutic
agents for brain tumors to antibodies, genetic material, and photosensitizers.

Furthermore, advancements in anatomical and functional imaging techniques for brain
tumors play a critical role in management as it allows for early detection, diagnostic testing,
surgical planning, and follow-up evaluation [25–30]. Imaging techniques including magnetic
resonance imaging (MRI), computed tomography (CT), and positron-emission tomography
(PET) are the most common modalities for brain tumor diagnosis, characterization and
intraoperative imaging [31–34]. Other techniques such as fluorescence imaging have been
developed for intraoperative fluorescence-guided tumor resection [35, 36]. These imaging
modalities can help delineate the boundaries between neoplastic and normal tissue, helping
doctors determine the most appropriate course of treatment.

3. Major obstacles in brain tumor treatment
Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the
treatment of brain tumors remains a formidable challenge in the field of neuro-oncology.
The major obstacles to the successful treatment of brain tumors include a) the structural
complexity of the brain, b) the heterogeneous and invasive nature of many brain tumors, c)
difficulty in identifying tumor margins and disseminated tumor burdens, d) insufficient
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accumulation of therapeutic agents at the site of a tumor, and e) acquired drug resistance to
chemotherapy.

The brain, arguably the most complex system in the body, controls a multitude of functions
including information processing, perception, motor control, arousal, homeostasis,
motivation, as well as learning and memory. Due to the complexity of brain functions, the
treatment of brain tumors requires both robust and highly selective elimination of all
cancerous tissues including those that invade beyond the main tumor mass into the
surrounding normal tissue. Highly skilled surgeons are presented with the difficult task of
accurately identifying all the diseased tissue and resecting it from the brain while attempting
to preserve surrounding normal, functional tissue. Even after extensive removal, brain
tumors usually recur locally within centimeters of the resection margin [37].

Adjuvant treatments including chemotherapy for brain tumors only achieve modest clinical
outcomes. The effectiveness of systemic delivery of therapeutic agents to brain tumors is
hampered by several physiological barriers. Unlike other organs, the brain is protected by
the blood-brain barrier (BBB) [38–40]. The BBB prevents the influx of harmful endogenous
and exogenous molecules from the bloodstream but also becomes a major limiting factor for
anti-brain tumor therapy. The BBB is composed of tight junctions between endothelial cells,
pericytes, a basement membrane, as well as the feet of astrocytes [39]. Normal brain
capillaries act as a continuous lipid layer and exhibit selective permeability based on
molecular solubility and size. Deficiency of pinocytotic vesicles within the cerebral
endothelial cells compromises cellular transcytosis and further contributes to the selectivity
of the BBB [39]. Additionally, ATP-binding cassette transporters such as P-glycoprotein act
as drug efflux transporters and their high expression limits substrate transportation across
the BBB [41–44]. Only small lipophilic molecules, electro-neutral molecules, and nutrients
under 400–600 Daltons in the blood can diffuse passively into the brain [38, 45–47].

The second barrier that blocks the passage of systemically administrated therapeutic agents
is known as the blood-cerebrospinal fluid barrier (CSF) [1, 39]. It is formed by tightly bound
choroid epithelial cells, which regulate molecule penetration within the interstitial fluid of
the brain parenchyma. This barrier prevents most macromolecules from passing into the
CSF through the bloodstream. In addition, the intact blood-CSF barrier is reinforced by
active transport systems for weak organic acids, which are mainly located in the choroid
plexus [48]. They are capable of actively removing therapeutic organic acids from the CSF
and preventing their diffusion into the brain parenchyma [49, 50]. Examples include the
organic anion transporter 3 (Oat 3), peptide transporter 2 (PEPT2), and P-glycoproteins (P-
gp) [50, 51]. By working as outward efflux systems, these pumps are able to decrease the
CSF concentration of several antibiotics (e.g. penicillins and cephalosporins),
chemotherapeutic agents (e.g. methotrexate) [52], and HIV proteinase inhibitors (e.g.
ritonavir and atazanavir) [53].

The blood-tumor barrier in the tumor forms a third barrier for transporting therapeutic agents
[1, 38, 39]. Unlike normal brain capillaries, the tight junctions of endothelial cells in the
tumor are significantly compromised. The high intratumoral interstitial pressure created by
the leaky tumor vasculature limits drug penetration from the bloodstream into the tumor
[54]. Moreover, different tumor microvessel populations and spatial variability in capillary
functions present in the tumor area also lead to variability in penetration [38]. This can, for
example, lead to heterogeneous distribution of drug molecules, which may significantly
compromise therapeutic outcome.
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4. Key features of nanoparticles for brain tumors
Here, we highlight the key features of nanoparticles including composition, unique physical
properties, passive targeting abilities, as well as tunable surface functionality for active
targeting. These features enable the detection of brain tumors in a sensitive and specific
manner as well as the transportation of diagnostic or therapeutic agents across the BBB.

4.1 Versatile compositions and physical properties
Nanoparticles can be made from a variety of materials such as compositing polymers, lipids,
proteins, metals, or semiconductors. A variety of nanoparticles with well-defined shapes
such as solid spheres, rods, tubes, and other complex shapes can be designed and
synthesized by top-down or bottom-up engineering techniques. Current nanoparticle
platforms for brain tumors can be classified into three major categories including organic-
based (e.g. liposomes, polymeric nanoparticles, micelles, dendrimers, and solid lipid
nanoparticles), inorganic-based (e.g. iron oxide nanoparticles, gold nanoparticles,
semiconductor nanocrystals, ceramic nanoparticles, and carbon nanotubes) and hybrid
nanoparticles [55–68]. We list examples of currently available nanoparticle platforms for
brain tumors in Table 1. Each nanoparticle system has the luxury of being individually
tailored based on size, shape, and surface chemistry to meet the objectives of the proposed
function (Table 1).

In general, nanoparticles have large surface to volume ratios that contribute to their high
loading capacity. As drug delivery systems, nanoparticles have been shown to improve drug
solubility, prolong blood circulation half-life, and control drug-release [3]. Either
hydrophilic or hydrophobic therapeutic molecules can be incorporated into nanoparticles to
improve the half-life of systemic circulation. Many nanoparticle delivery systems are
designed to respond to various environmental stimuli such as pH and temperature, allowing
for controlled therapeutic payload release [69, 70]. Furthermore, the payload can be
extended to include imaging probes and contrast agents. For example, organic fluorescence
probes can be incorporated into the nanoparticle structure for particle tracking. More
importantly, nanoparticles are easily modified to meet the demands of the intended
functionalities with the ability to combine multiple therapeutic agents and imaging probes
onto a single platform.

Nanoparticles may also contain intrinsic optical, thermal, electrical, or magnetic properties
can be utilized for imaging or therapeutic purposes. Colloidal gold nanoparticles have been
of high interest because their low toxicity, dynamic surface chemistry, size, and shape allow
for imaging properties to be attained [70–73]. Gold nanoparticles have high density and
extinction coefficients, and therefore can be applied as the contrast agents for CT, dark field
imaging and photoacoustic imaging. In addition, the nanorod or nanoshell shape of gold
nanoparticles allow them to strongly absorb light in the near-infrared range due to surface
plasmon resonance and to efficiently convert this energy into heat for photothermal therapy
[74–76]. Magnetic nanoparticles such as iron oxide-based nanoparticles are another widely
investigated inorganic-based nanoparticle system [10]. Magnetic nanoparticles can be used
as contrast agents to produce hypointense regions on T2/T2*-weighted MR images.
Magnetic nanomaterials can also either generate heat or mechanical force under an
alternating magnetic field to destroy brain tumor cells [77, 78]. In comparison to traditional
fluorophores, quantum dots made of semiconductor materials with quantum confinement
have tunable narrow emission spectra and excellent photostability. They can be used as
stable fluorescent probes for brain tumor diagnosis at the molecular level [79]. It has also
been demonstrated that quantum dots can act as PDT therapeutic agents to induce
cytotoxicity by creating free oxygen radicals under light. Additionally, titanium dioxide
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nanocrystals are a versatile photoreactive nanomaterial acting as the new generation of
photosensitizer for PDT [67, 80].

More recently, “hybrid nanoparticles” have been developed to combine the capabilities of
different nanomaterials into one platform [68]. Hybrid nanoparticles are synthesized from
two or more types of nanomaterials and are generally formed with a metallic or polymeric
core covered with a single or multiple lipid coronas to increase the biocompatibility of the
system. As a multifunctional platform, they can serve in both diagnostic and therapeutic
applications and will be discussed later in this review.

4.2 Passive targeting of brain tumors
The size of a nanoparticle is a fundamental characteristic that determines the passive
targeting of and biodistribution within brain tumors. Nanoparticles within the size range of
10–100 nm take advantage of the hyper-vascularized, leaky, and compromised lymphatic
drainage system in a brain tumor to passively target and access the intratumoral space while
being denied access to healthy brain tissue [1, 6]. In other words, nanometer-sized particles
accumulate selectively at the site of a brain tumor due to the enhanced permeability and
retention (EPR) effect [81]. Such a phenomenon is not observed with small molecular
weight compounds like chemotherapeutic agents that rely on free diffusion and therefore
cannot discriminate between normal and diseased tissues [82]. The EPR effect in the brain
tumor opens many opportunities for nanoparticles to function as diagnostic and therapeutic
tools for brain cancer. However, this passive targeting mechanism has its inherent
limitations. When given intravascularly, all nanoparticles are susceptible to opsonization and
removal by cells of the reticuloendothelial system (RES) [83]. Only a small fraction of
administered nanoparticles will therefore reach the tumor. The liver, spleen, lung, kidney,
and bone marrow are the primary locations that nanoparticles are trapped [84, 85].
Therefore, to achieve an optimal EPR effect, nanoparticles should be less than 100 nm in
diameter, and their surfaces should be biocompatible (i.e. hydrophilic and almost neutral in
electric charge) to avoid removal by cells of the RES.

4.3 Tunable surface functionality for active targeting
Surface functionality, which regulates the interface of nanomaterials and biological systems,
is an important factor determining the behavior and the biomedical application of
nanomaterials both in vitro and in vivo [86]. By altering their physiochemical properties (i.e.
surface charge, hydrophobicity) one can influence the half-life and localization of
nanoparticles during the circulation. For example, the development of “stealth nanocarriers”
that use hydrophilic polymers such as polyethylene glycol (PEG) for surface coating render
nanoparticles with more resistance to protein adsorption and RES uptake [87]. PEGylation
prolongs the circulation half-life of nanoparticles, subsequently increasing the chance of
reaching distant brain tumor cells.

While the vasculature of a brain tumor may be disturbed to some extent, this disruption is
not always consistent throughout a tumor and may not even be extensive in low-grade
tumors. For example, high-grade brain tumors display much more vascular permeability
than low-grade tumors, illustrating the variability of BBB integrity between different brain
tumors [88, 89]. However, active targeting of a tumor site can be achieved even without a
severely disrupted BBB. Receptors (e.g. transferrin and nicotinic acetylcholine receptor) and
integrins (e.g. αVβ3 and Aminopeptidase N) are distributed on brain capillary endothelial
cells or on proliferating endothelial cells within a tumor, sites that are in direct contact with
circulating nanoparticles in the bloodstream [90–94].
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Penetration into a tumor area can therefore be improved by simply targeting receptors that
are normally expressed on brain capillary endothelial cells. A number of studies have
demonstrated the ability to successfully enhance the delivery of therapeutic nanoparticles to
a brain tumor by targeting transferrin receptors and nicotinic acetylcholine receptors
expressed on endothelial cells. Transferrin has been incorporated onto the surface of
micelles[95], solid lipid nanoparticles [96], superparamagnetic iron oxide (SPIO)
nanoparticles [97], and dendrimers [62, 98] for targeting glioma, leading to enhancement in
drug efficacy or tumor imaging. Nicotinic acetylcholine receptors have also been used as
targets to enhance micelle penetration into the CNS to target glioblastoma [99–101].
Peptides targeting this receptor have been derived from snake neurotoxins including
candoxin and Ophiophagus hannah toxin b [101, 102].

A number of biomolecules have targets that can also be found on proliferating endothelial
cells within a tumor. For example, RGD peptide has been found to bind to αVβ3 integrin,
which is expressed on the periphery of high-grade gliomas as well as on proliferating
endothelial cells in the tumor vasculature [93]. This peptide has been incorporated into the
design of a broad range of nanoparticles targeting brain tumors including micelles [103,
104], iron oxide nanoparticles [105, 106], gold nanoparticles [107], dendrimers [108], as
well as other types of nanoparticles [109, 110]. Aminopeptidase N (CD 13) which is
overexpressed on the tumor vasculature [94] has also been targeted with another tri-peptide
(Asn-Gly-Arg (NGR) peptide) [111]. This NGR peptide has allowed for enhanced targeting
of micelles [112, 113] and liposomes [114–116] to various brain tumors including glioma
and neuroblastoma. Nucleolin is yet another specific marker for angiogenic endothelial cells
within the tumor vasculature [117]. F3 peptide was found to bind to this receptor [117], and
since this discovery, several nanoparticle systems targeting brain tumors have incorporated
this targeting peptide into their design [118, 119].

Once nanoparticles have bypassed the BBB, they must be able to target glioma cells in a
specific manner. One of the methods to achieve this is to incorporate targeting moieties that
bind to receptors that are overexpressed on these cells. Such receptors include αVβ3 integrin
and CD 13, which have already been mentioned, as well as EGFR [120, 121], IL13Ra2
[122–124], and LRP1 [125–127]. Antibodies to EGFR or EGFRvIII have been incorporated
into several nanoparticle systems targeted against glioma [128, 129]. Anti-IL13Rα2
antibodies [78] and IL13 peptide [130, 131] have also been conjugated to the surface of
various nanoparticle systems, allowing for the targeting and destruction of glioma cells.
LRP1 is a target of angiopep-2 and incorporation of this peptide into the structure of various
nanoparticle systems has enhanced therapeutic delivery to brain tumor cells [132– 134]. As
more glioma-specific receptors are identified, nanoparticles may be able to integrate
multiple targeting moieties providing a dynamic platform for targeting heterogeneous brain
tumors. Figure 1 summarizes the variety of mechanisms nanoparticles can use to target a
brain tumor including the EPR effect, carrier-mediated transportation, receptor-mediated
endocytosis, and adsorptive-mediated endocytosis.

5. Diagnostic nanoparticles for brain tumors
Having a high-resolution image before surgery is especially important for GBM, which are
characteristically invasive. Such invasiveness makes it quite difficult to accurately determine
a clear tumor boundary by eye. Appropriate imaging of a tumor is critical for measuring the
extent of tumor distribution preoperatively as well as for determining response to a treatment
regimen postoperatively, both being necessary for the successful management of brain
tumor patients. By far the most common method for imaging brain tumors is contrast-
enhanced T1-weighted MRI [135]. However, this measurement technique can be greatly
influenced by vascular leakage that may not be present throughout the entire tumor area
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[136]. Furthermore, an accurate view of postoperative response can be difficult to acquire,
especially with phenomena such pseudoprogression after radiotherapy [137] and
pseudoresponse when using anti-angiogenic therapies [138, 139]. Even though it is the
contrast agent of choice, gadolinium is nephrotoxic, leading to nephrogenic systemic fibrosis
in some patients [140]. Therefore, its use in patients with renal impairment is limited. Other
MRI techniques to image a tumor include perfusion-weighted imaging, which can measure
blood perfusion and permeability, and diffusion-weighted imaging, which can be helpful for
grading gliomas [139, 141]. Other modalities such as PET imaging and magnetic resonance
spectroscopy (MRS) can allow for the quantification of metabolic activity of tumor cells,
potentially allowing for more sensitive measurements of response rates to therapy
[139]. 11C-methionine is an example of a radiolabelled amino acid used in PET imaging that
demonstrates enhanced uptake by tumor cells compared to normal brain tissue [139, 142]. It
can be used to measure tumor progression as well as to discriminate between recurrence and
radiation necrosis on a scan [139]. Nanoparticles have the potential to enhance the
sensitivity and effectiveness of these various imaging. Here, we outline single and
multimodal nanoparticles currently in development with an emphasis on MRI,
photoacoustic, and intraoperative fluorescence imaging.

5.1 MRI contrast agents
One of the primary imaging modalities used in clinic to assess the extent of a brain tumor is
MRI. MRI can provide high spatial resolution and is the usual standard for imaging brain
tumors in a clinical setting. Gadolinium chelates such as Gd-DTPA are contrast agents
typically used for MRI. Such molecules do not normally cross the BBB but can cause
marked signal change in the brain tumor where the BBB is disrupted. They have a short
half-life and require repeated injections with high dosages to achieve adequate visualization
of a tumor [143, 144]. Accurate delineation of tumor boundaries and the quantification of
tumor volume is limited due to the spatial variability of BBB disruption in a tumor area and
technical difficulties caused by the false-positive contrast enhancement [145, 146].

Nanoparticle platforms are being developed as contrast agents to provide improvements over
those currently used. Various nanoparticle constructs containing magnetic elements such as
iron, gadolinium, and manganese are in development or have already made their way to a
clinical setting for use as MRI contrast agents in the imaging of brain tumors [147]. These
nanoparticles have been shown to increase signal enhancement for a long period of time and
enhance visualization of the tumor border [148]. Iron oxide nanoparticles have been
extensively studied as T2/T2* contrast agents for brain tumor imaging. Ferumoxytol, an
ultra-small SPIO coated with polyglucose sorbitol carboxymethyl ether, has been used as the
MRI contrast agent together with a standard gadolinium chelate for patients with recurrent
high grade glioma receiving chemotherapy in phase I clinical trials (ClinicalTrials.gov
identifier: NCT00769093). Quantitative imaging changes of brain tumor vascularity after
anti-angiogenic therapy with bevacizumab versus steroid therapy with dexamethasone is
being assessed by dual agent MRI study using gadolinium and ferumoxytol.

Many recent reports describe that targeting peptide modification of iron oxide nanoparticles
can enhance uptake at a brain tumor site, resulting in better MRI contrast within a tumor
[149, 150]. Sun et al. designed PEGylated SPIO nanoparticles possessing a surface-bound
brain tumor targeting peptide chlorotoxin (CTX) that showed high selectively and binding
affinity to membrane-bound matrix metalloproteinase-2 (MMP-2) in gliomas [149]. A
significant negative contrast enhancement and higher T2 relaxivity was observed in cells
when these targeted nanoparticles were used compared to cells that had been incubated with
nanoparticles without surface-bound CTX. After retro-orbital injections into mice bearing
subcutaneous 9L rat gliosarcoma tumors, the CTX bound nanoparticles served as a MRI
contrast enhancement agent accumulating to a greater extent in the tumor when compared to
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non-CTX bound ones [149]. Although negative contrast agents such as iron oxide particles
have been shown to enhance MR imaging of intracranial tumors, a major drawback is that
they produce hypointense regions that can often be difficult to distinguish from resident
brain iron signal [151]. T2 and T2* weighted imaging in general also provides images of
lower resolution than most T1-weighted sequences [152, 153].

Positive contrast agents may therefore be of more benefit as they lead to bright signal
enhancement on T1-weighted MRI [152–154]. Gadolinium nanoparticles possess positive
contrast properties that enhance signal by accelerating longitudinal relaxation of water
protons and promoting longer retention time at the tumor site. Faucher et al. designed ultra-
small paramagnetic gadolinium oxide particles as a T1 contrast agent for brain tumors [153].
The longitudinal relaxivity of these nanoparticles was estimated to be 9.9 s−1 mM−1

compared to 4.1 s−1 mM−1 of the Gd-DTPA. These nanoparticles showed a high contrast
enhancement in rat brain tumors, increasing over the span of 2 hours. Manganese oxide
(MnO) nanoparticles are another group of T1-weighted contrast agents that have been
developed for the imaging of brain tumors [151, 155, 156]. Just like gadolinium-based
particles, these nanoparticles exert bright contrast on images and can selectively target the
brain tumor. Na et al. designed MnO nanoparticles encapsulated in a PEG-phospholipid
shell with conjugated Her-2/neu receptor antibody to target EGFRs that were expressed on
certain types of breast cancer cells and brain tumors [155]. Using a mouse model of a breast
cancer brain metastasis, the authors observed the selective enhancement of tumor cells using
T1-weighted MRI. While the nonfunctionalized MnO particles also accumulated in the
tumor due to disrupted tumor vasculature, only the functionalized nanoparticles accumulated
at the site for an extended time (up to 24 hrs was reported) [155].

5.2 Optical imaging probes
A major prognostic factor of patients with malignant gliomas is the extent of removal of
malignant tissue during surgery [157, 158]. Optical imaging can aid in the intraoperative
resection of brain tumors [159], and nanoparticle-based imaging probes with absorption and
fluorescence properties have been developed with such capabilities. Quantum dots with
intrinsic fluorescent properties allow for cancer targeting and imaging [66]. Cai et al.
developed RGD peptide-labeled quantum dots (QD705-RGD) with a maximum emission at
705 nm that could be used to image αVβ3 integrin positive tumor vasculature [66]. The
greatest contrast was observed around 6 hour post-injection in a subcutaneous U87MG
tumor, but no significant fluorescence signal was observed in non-modified QD705 injected
mice, demonstrating the importance of the targeting RGD peptide [66]. Nie et al. described
tumor-targeting deep-blue polyacrylamide nanoparticles with coomassie blue, PEG, and F3
peptide surface conjugation. These particles could target a tumor effectively and allow for
visible color staining of neoplastic tissue. This simple approach could allow for color-guided
tumor resection in real time without the need for extra equipment or special lighting
conditions [160].

In addition to optical approaches reliant only on light, photoacoustic imaging in which the
combination of light exposure and sound generation provides higher spatial resolution and
deeper tissue penetration. This imaging modality is based on the ability of different types of
probes to absorb light and generate transient acoustic signals [161–165]. Exogenous contrast
agents such as gold nanoparticles with surface plasmon resonance in the near infrared (NIR)
range can be used with this technique to enhance the visualization of different tissue types
including brain tumors [65, 166–169]. Lu et al. designed a 40 nm hollow gold nanospheres
for use with photoacoustic tomography (PAT) to successfully visualize the microvasculature
of brain tumor margins [169]. In a follow-up study, Lu et al. used PAT to visualize the
targeted accumulation of RGD peptide-modified gold nanoparticles in an intracranial U87
glioma tumor [167]. Quantitative studies demonstrated that the mean contrast-enhanced
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photoacoustic signal ratio of tumor-to-normal brain 24 hours after injection was about twice
as high as that seen in pre-contrast images [167]. Gold nanoparticles with a high extinction
coefficient can also serve as contrast agents for dark field light scattering imaging, which
allow for ex vivo diagnosis [76]. Although nanoparticle platforms enable the use of light in
the NIR range, the penetration of light through brain tissue is only in the millimeter range.
Furthermore, non-invasive optical imaging of brain tumors is severely hampered due to the
physical barrier created by the skull. Therefore, the application’s main utility is for the in
vitro diagnosis and intraoperative localization of brain tumor tissue.

5.3 Nanoparticles for multimodality imaging
More and more studies are starting to design nanoparticles that incorporate the use of
multiple imaging modalities [150, 168, 170–175]. Each imaging modality (e.g. MRI, PET,
optical, and SPECT) has its own advantages and drawbacks. However, when used in
combination, they may allow for earlier detection of cancer, better characterization of the
molecular and metabolic features of a tumor, as well as better tracking of the effects of
treatment. Thus, particles with multimodal imaging features may have a role in preoperative
delineation of a tumor, intraoperative visualization of malignant tissue location, as well as
follow-up during treatment with chemotherapy or radiotherapy.

Veiseh et al. developed a dual-imaging modality nanoparticle to overcome the BBB,
allowing for MRI and near-infrared fluorescence (NIRF) imaging of brain tumors [170,
172]. In this study, an iron oxide nanoparticle coated with a PEG-grafted chitosan
copolymer with the addition of CTX and fluorescent Cy5.5 was synthesized [170]. After
intravenous injection of particles into a transgenic mouse model, ND2:SmoA1, which
resembles human medulloblastoma, the authors observed the accumulation of nanoparticles
in neoplastic tissue but did not observe any significant accumulation of the nanoprobes in
healthy tissue. No contrast enhancement was observed with the nanoparticles that lacked the
CTX targeting ligand. Signal intensity increased over the first 50 hrs after injection and then
stayed stable for the next 70 hours [170]. Lee et al. designed an RGD-conjugated
radiolabeled iron oxide nanoparticle for both MRI and PET imaging [171]. MRI signal
intensity decreased significantly after tail vein injection of the nanoparticle conjugate
compared to the non-targeted nanoparticle and to the nanoparticle co-administered with a
αVβ3 integrin blocking agent. For PET imaging, these nanoparticles were labeled with 64Cu
and provided greater signal-to-noise ratio. Again, the RGD conjugated nanoparticles
displayed greater tumor uptake and better visualization on imaging [171].

Nanoparticles with triple imaging modality capabilities have also been developed and may
enhance the ability to visualize the extent of invasive tumors. Kircher et al. developed a gold
nanoparticle-based platform with triple-modality MRI, photoacoutic, and Raman imaging
capabilities (Figure 2) [168]. These particles were detected by all three modalities with at
least picomolar sensitivity, and co-localization of tumor imaging was observed using all
three modalities in an orthotopic U87MG mouse model. Furthermore, the authors
demonstrated that tumor resection could be guided using the photoacoustic and Raman
signal properties of these nanoparticles 24 hours after intravenous injection. Photoacoustic
imaging was used to delineate malignant tissue in situ, and high-resolution intraoperative
Raman images were taken during resection. Such a nanoparticle system could improve both
preoperative and intraoperative resection of GBM tumors, which may lead to better patient
outcomes. However, a current drawback for these particles is that the new instrumentation
for endoscopic and intraoperative photoacoustic and Raman imaging that would be required
for the approach is still under development [168]. Xie et al. demonstrated another triple-
modality imaging using an iron oxide nanoparticle labeled with 64Cu-DOTA and Cy5.5 for
MRI, PET and NIRF in a subcutaneous U87MG xenograft mouse model. These particles

Cheng et al. Page 9

Adv Drug Deliv Rev. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



demonstrated extensive accumulation at the tumor site and led to enhanced visualization of
the entire tumor using the combination of all three imaging modalities [176].

6. Therapeutic nanoparticles for brain tumors
Another vital role for nanoparticles is to serve as therapeutic agents, with the potential to
overcome many of the hurdles conventional therapies face. Various nanoparticle systems
have been explored as carriers to overcome the BBB for targeted treatment of brain tumors.
Additionally, nanoparticles responding to external triggers such as an applied magnetic field
and light offer new therapeutic avenues targeting malignant brain tumors. Here, we focus on
novel therapeutic nanoparticles and highlight examples currently under clinical evaluation.

6.1 Nanoparticles as delivery systems
The advantages of nanoparticles as therapeutic carriers are: 1) improved therapeutic agent
circulation, 2) targeted drug delivery, 3) controlled drug release, 4) high loading capacity,
and 5) co-delivery of more than one therapeutic agent. Nanoparticle-based delivery systems
for therapeutic agents such as chemotherapy drugs are expected to have a great clinical
impact on brain tumor treatment [130, 177, 178]. Many hydrophobic agents that normally
cannot cross the BBB can accumulate at a tumor site when incorporated into a nanocarrier
[108, 179, 180]. As discussed previously, modification of the nanoparticle surface with
targeting moieties that specifically bind to receptors overexpressed on the tumor vasculature
and/or cancer cell membrane could provide an effective delivery system for brain tumor. In
addition, controlled drug release approaches to the cancer cells could further enhance the
specificity and efficacy of the therapeutic payload to the brain tumor.

Liposomes, self-assembled spherical phospholipid bilayers, have received a lot of attention
as the pharmaceutical carriers for brain tumor therapy (Figure 3) [181, 182]. Major
advantages of liposomes include selective accumulate to brain tumors by passive and active
targeting and improved pharmacokinectic effect [181, 183]. There are several liposome-
based drug delivery systems under clinical trials. 2B3–101 is a PEGylated liposomal
doxorubicin formulation conjugated with glutathione that allows for enhanced drug-delivery
to the brain by specialized transporters on the BBB. A phase I/II clinical trial with 2B3–101
was started in 2011 in patients with glioma or brain metastases secondary to breast cancer
(ClinicalTrials.gov identifier: NCT01386580). The purpose of the study was to determine
the safety, tolerability and pharmacokinetics of 2B3–101 as a monotherapy and in
combination with trastuzumab, a monoclonal antibody that interferes with the human
epidermal growth factor receptor. A liposomal encapsulation of the camptothecin derivative
and topoisomerase I inhibitor CPT-11 is another delivery system being examined in clinic
trials (ClinicalTrials.gov Identifier: NCT00734682) [63, 177]. Currently, it is under
investigation in a phase I trial to assess the safety, pharmacokinetics, and maximum
tolerated dose in patients with recurrent high-grade gliomas who are wild type or
heterozygous for the UGT1A1*28 gene. The structural stability, low drug-loading capacity,
and scale-up methods are issues of liposomal systems that need to be further improved [184,
185].

Other organic-based nanoparticle including micelles, biodegradable polymeric
nanoparticles, and dendrimers are also potential candidates for brain tumor treatment (Figure
3) [64, 99, 186]. Polymeric micelles are core-shell nanoshperes composed of self-
assembling amphiphilic block copolymers [187]. Compared to liposomes, micelles with
smaller sizes have high structure solubility to delivery hydrophobic drugs to malignant brain
tumors. Guo et al. designed an aptamer-functionalized poly(ethylene glycol)-poly (D,L-
lactic-co-glycolic acid) PEG-PLGA nanoparticle for anti-glioma delivery of paclitaxel (Ap-
PTX-NP) [186]. AS1411, a DNA aptamer specific for nucleolin which was highly expressed
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in the plasma membrane of both cancer cells and endothelial cells in angiogenic blood
vessels, was conjugated to the surface of PEG-PLGA nanoparticle with a final particle size
of 156±54.8 nm in diameter. The aptamer-nucleolin interaction significantly enhanced the
nanoparticle uptake into C6 glioma cells and resulted in enhanced cytotoxicity of the drug
payload. Prolonged circulation and enhanced drug accumulation of Ap-PTX-NP were
demonstrated in vivo in C6 glioma-bearing mice when compared with Taxol and the
unmodified nanoparticledrug system.

Biodegradable polymeric nanoparticles with nanosphere and nanocapsule structures also
show great promise for the delivery of BBB-impenetrable therapeutic agents [59, 188–191].
These systems are also useful in controlling drug payload release and protect drug from the
surrounding environment [192]. Wang et al. evaluated the antitumor effect of 1%
polysorbate-80 coated PBCA nanoparticles loaded with a nucleoside reductase inhibitor
gemcitabine in vitro and in vivo in C6 glioma cells [188]. The nanoparticle formulation
could inhibit the proliferation of glioma cells and extend the survival time in a rat brain
tumor model. Ding et al. demonstrated another polymeric nanoplatform incorporating poly
(β-L-malic acid) (PMLA) with an antisense oligonucleotide (AON) payload [59]. This
system showed pH-regulated release of AON and significant inhibition of intracranial
human glioma tumor growth by specifically blocking the synthesis of the tumor neovascular
trimer protein laminin-411 [59].

Dendrimers are highly branched polymers with multivalent functional groups, allowing for
the easy incorporation of therapeutic agents within their structure [193]. Several studies have
demonstrated that dendrimers can overcome the BBB and increase drug accumulation at the
site of a brain tumor [62, 194]. Controlled drug-release from dendrimers can be achieved
using different types of stimulus-sensitive groups [62]. Li et al. developed a pH-sensitive
dual-targeting dendrimer conjugated with transferrin and tamoxifen for treating brain
gliomas [62]. The anticancer drug doxorubicin was covalently linked to the interior of the
poly(amidoamine) (PAMAM) dendrimers via a pH-sensitive hydrazone bond. Only 6% drug
release was observed at a pH of 7.4 while 32% release was observed at pH 4.5. Studies in an
in vitro BBB model indicated that these dual-targeting dendrimers showed an enhanced
transport efficiency when compared to the non-targeted and transferrin-targeted dendrimers
[62].

Inorganic nanoparticles are physically and chemically more stable compared to the organic
nanoparticles, allowing for long-term storage. The concept of using biocompatible inorganic
nanocarriers such as iron oxide and gold nanoparticles to gain access to a tumor through the
BBB is gaining the momentum for treating brain tumor. Most of these nanoparticles are
protected by hydrophilic polymers, making them more water-soluble and biocompatible.
Studies have shown that magnetic nanoparticles can accumulate within a tumor area after
systemic administration with a locally applied magnetic field [57, 195, 196]. Chertok et al.
showed that the iron oxide nanoparticle concentration in glioma tumors could be enhanced
by 5-fold when an external magnetic field was applied [57]. Hua et al. demonstrated the
effectiveness of a poly[aniline-co-N-(1-one-butyric acid) aniline] (SPAnH) coated iron
oxide core based delivery system for the chemotherapy drug 1, 3-bis(2-chloroethyl)-1-
nitrosourea (BCNU) in the treatment of glioma under external magnetic field [195]. In this
system, the bound-BCNU on the nanoparticle was more thermally stable than free BCNU
and could be concentrated in vitro and in vivo at targeted sites upon exposure to the external
magnet [195]. Recently, gold nanoparticles with 5 nm core size have been explored as a
drug delivery system to overcome the BBB for anti-glioma therapy [71]. Cheng et al.
demonstrated that the hydrophobic PDT drug Pc 4 could be attached to the nanoparticle
surface via a non-covalent attachment and a 10-fold improvement in the selectivity for a
brain tumor was achieved in vivo through the use of epidermal growth factor peptide-
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modified gold nanoparticles. This selectivity was due to the EPR effect within the tumor and
receptor-mediated endocytosis of the nanoparticle into the cancer cells [71].

6.2 Innovative therapeutic nanoparticles
6.2.1 Magnetic nanomaterials—Nanomaterials with magnetic properties that respond to
magnetic fields in a non-invasive manner have been recently explored as therapeutic agents
for brain tumors. To date, the most successful application of magnetic nanoparticles is for
magnetic hyperthermia. A remarkable example is SPIO nanoparticles, which are in a phase
II study for patients with recurrent GBM in Europe [197–199]. The principle of this
approach is based on heat generated from the movement of magnetic nanoparticles under a
high frequency alternating magnetic field. Due to the non-invasive nature of this therapy,
inaccessible brain tumor tissues can be reached with magnetic nanoparticles. The therapeutic
efficacy of magnetic nanoparticles is dependent on several factors including the targeting
ability of the nanoparticles to tumor tissue, the magnetization and Curie temperature reached
by the magnetic nanoparticle, as well as parameters of the magnetic field. Preclinical studies
indicate that magnetic hyperthermia achieved by SPIO nanoparticles can effectively
promote glioma cell death and increase survival [198]. The safety and efficacy of
intratumoral hyperthermia using SPIOs coated with aminosilane under a 2.5–18 kA/m and
100 kHz alternating magnetic field in conjunction with radiotherapy has been investigated in
patients with recurrent GBM [198–200]. Results of the study showed that the combination
therapy is relatively safe and leads to longer overall survival following tumor recurrence
compared to conventional therapies alone. However, an improvement of the nanoparticle
composition and intratumoral distribution is required to achieve an optimal risk-benefit ratio
in patients with glioma.

Recently, magnetic nanomaterials have been utilized under a low frequency magnetic field
for the treatment of brain tumors [56, 61]. Kim et al. designed anti-IL13Rα2
biofunctionalized magnetic-vortex microdiscs for targeted brain cancer therapy [61]. Discs
were composed of 20:80% iron-nickel permalloy coated by a 5 nm thick layer of gold and
were 60 nm in thickness and 1 µm in diameter. Under an alternating magnetic field with low
frequency, the discs oscillated, creating mechanical torque. The authors demonstrated that
the system could selectively destroy N10 glioma cells via mechanical stimulus generated by
the disc oscillations. The proposed therapeutic mechanism was that membrane integrity was
compromised due to mechanical damage and programmed cell death was initiated due to
changes in calcium equilibrium. It should be noted that the discs need to be further scaled
down into the nanometer range and cell destruction should be tested in other brain cancer
cell lines to better support applications for brain tumor treatment [61].

6.2.2 Photosensitive nanomaterials—Semiconductor nanomaterials such as titanium
dioxide (TiO2) and quantum dots possess photosensitive properties and have recently been
developed as therapeutic agents for light-mediated glioma treatment [67, 201]. One
promising application of these photosensitive nanoparticles is to treat a brain tumor with
PDT. Under light exposure, these particles absorb energy from light and transfer it to
molecular oxygen, generating a variety of cytotoxic reactive oxygen species (ROS) to react
with essential cellular components such as DNA, proteins, and lipids [67, 80]. Rozhkova et
al. demonstrated that a 5 nm anti-IL13Rα2 functionalized 3,4-dihydroxyphenilacetic acid
(DOPAC) modified TiO2 nanoparticle could specifically target brain cancer cells and initiate
programmed cell death following visible light treatment [67]. Modification of TiO2
nanoparticles with electron donating enediol ligands enabled visible light harvesting and
generated superoxides [67].
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Another potential application of photosensitive nanoparticles is photothermal therapy. It has
been demonstrated that gold nanoparticles including gold nanoshells and nanorods can
convert absorbed NIR light to heat and induce cell death [58, 202]. Day et al. investigated a
silica-gold nanoshell, with a 120 nm diameter silica core coated by a 10–20 nm thin layer of
gold, as a photothermal cancer therapeutic agent for glioma therapy [58]. Under NIR laser
light excitation, successful targeted ablation of glioma cells in vitro and in vivo was
demonstrated in a subcutaneous implanted U373 glioma mouse model. However,
photothermal therapy for noninvasive treatment of human brain tumors in an actual clinical
setting could be difficult because light cannot penetrate the human skull. During surgery, the
brain tumors become accessible and light can be introduced to the areas where the tumor
cells have been resected. PDT using conventional photosensitizers has been tested on the
clinical setting for brain tumors as an intraoperative adjuvant therapy (ClinicalTrials.gov
Identifier: NCT01682746, NCT00118222, NCT01148966). Light can be placed at the
surgical cavity through optical fibers to active the photosensitizers, which can guide the
tumor resection as well as help kill any cells that had been left behind.

7. Theranostic nanoparticles for brain tumor treatment
The incorporation of multiple functions into a nanoparticle system would be highly
beneficial for clinical translation. With the combination of imaging and carrying capabilities,
nanoparticles could allow for the simultaneous delivery of therapeutic agents to the tumor
area and real-time tracking of their biodistribution and fate in vivo [203, 204]. Innovative
nanoparticles such as magnetic nanoparticles, gold nanoparticles, and quantum dots, which
possess both imaging and therapy functions simultaneously, may serve as emerging
theranostic nanoparticles [118, 149, 203, 205, 206]. Here, we focus on a few reports of
nanoparticles that exemplify theranostic systems.

7.1 Combination of MRI and therapy
Liu et al. developed a theranostic system using iron oxide nanoparticles conjugated with the
anticancer drug epirubicin for delivery and image tracking functions in a C6 tumor-bearing
rat model [207]. In this study, the authors included focused ultrasound to disrupt the BBB at
the tumor site to improve nanoparticle accumulation. Drug delivery to the brain tumor was
further enhanced by magnetic targeting and monitored in real time. A 2.6 fold increase in
relaxation rate with MRI was observed in the animals injected with the nanoparticles after
focused ultrasound/magnetic targeting treatment compared to the nontreated groups [207].

Reddy et al. demonstrated an example of a theranostic system based on a polymeric
nanoparticle formulation containing Photofrin® and iron oxide conjugated with F3 for MRI
and PDT in a 9L glioma rat model [118]. Photofrin® was able to generate singlet oxygen
(1O2) and induce the cytotoxicity under light exposure. The pharmacokinetics of the
nanoparticles could be evaluated by MRI due to the magnetic properties of iron oxide.
Compared to the untargeted nanoparticles, the F3 modified nanoparticles showed longer
retention at the brain tumor area with a 2-fold increase of the contrast enhancement. The
authors also demonstrated the targeted theranostic nanoparticles exhibited significant
improvement of survival rates of mice bearing brain tumors after the PDT-mediated laser
irradiation compared with the non-targeted theranostic nanoparticles or Photofrin® alone.
Forty percent of animals in the targeted theranostic nanoparticle treated group were found to
be tumor-free at the end of the study period [118].

In another study, Hadjipanayis et al. developed iron oxide nanoparticles with bound anti-
EGFRvIII antibody for targeted glioma imaging and therapy [128]. Glioma cells
demonstrated preferential uptake of these functionalized nanoparticles via receptor-mediated
endocytosis, resulting in caspase-3 activation and strong T2-weighted contrast on MRI. In

Cheng et al. Page 13

Adv Drug Deliv Rev. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



vivo studies revealed increased survival after intratumoral administration of these particles to
animals implanted with EGFRvIII-expressing intracranial xenografts [147]. Additional
reports have described the use of tumor-specific CTX-peptide conjugated iron oxide
nanoparticles to track toxicity and inhibition of glioma cell invasion by MRI, further
demonstrating theranostic applications of nanomaterials [172, 208].

7.2 Combination of optical imaging and therapy
Optical imaging has demonstrated ex vivo and intraoperative applications. Organic
fluorescence imaging probes can label therapeutic nanoparticles and allow for in vitro and in
vivo tracking of nanoparticle distribution. Recent studies have been focused on the potential
theranostic application of optical nanoprobes such as quantum dots for brain tumors [205].
Jung et al. designed a multifunctional quantum dot-based siRNA delivery system for brain
cancer cells [205]. siRNA was attached through two strategies: 1) enzymatic cleavable
disulfide linkage for payload release and 2) a non-cleavable linkage for imaging and
tracking. In vitro experiments indicated theranostic nanoparticles selectively inhibited the
expression of EGFRvIII in U87 glioblastoma cells. The resulting nanoparticle uptake and
localization in the cells were monitored by fluorescence imaging. The potential for targeted
delivery was demonstrated at the cellular level by introducing active targeting ligands such
as RGD peptide and HIV-derived Tat peptide onto these quantum dots [205]. As most of
these combinations are still restricted to preclinical studies, further investigation is necessary
in order to establish efficacy and a safety profile of the systems.

8. Administration strategies for nanoparticles
The diagnostic and therapeutic potential of nanoparticles could be improved for clinical
translation if the administration method of these particles could 1) allow for specific
distribution to and diffuse distribution within a tumor and 2) the neurotoxicity and systemic
toxicity could be minimized. Here, we review relevant strategies for nanoparticle
administration and discuss their pros and cons for treating brain cancer.

8.1 Systemic administration
Systemic administration of nanoparticles is a very convenient strategy for delivery, allowing
for repetitive dosing. Despite the diversity of nanoparticle systems in development, most
have the potential to target brain tumors through passive and active targeting mechanisms.
As previously described, passive targeting occurs through the diffusion of nanosized
particles through the disrupted BBB, a phenomenon known as the EPR [81]. Active
targeting involves functionalizing nanoparticle surfaces with BBB and glioma-specific
targeting moieties [1].

One obvious method for the delivery of nanoparticles is via intravenous (IV) injections. IV
administration of nanoparticles has been used in countless reports including many of those
mentioned previously. In the preclinical models, the nanoparticle-based therapeutics are
often given to the animals in multiple doses with the injection frequency from every3 days
to 2 weeks to control the tumor growth [179, 209]. The maximum tolerated dose for
nanoparticle-based therapeutics is usually significantly greater than the free drug [210].
These therapeutics, with lower starting dose in phase I trials compared with the free drugs,
are given to patients every three and four weeks (ClinicalTrials.gov Identifier:
NCT01386580). Besides tuning of nanoparticle size and surface properties to influence
intratumoral accumulation [211], external forces such as a magnetic field and focused
ultrasound can also help capture systemically administered nanoparticles at the site of a
tumor [207]. Low-frequency focused ultrasound provides local disruption of the BBB [207,
212, 213], and preclinical studies have shown that this technique can safely enhance the
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focal delivery of the therapeutic agents into brain tumors [212]. This ultrasound-mediated
disruption of the BBB is transient and reversible without permanent neuronal injury or other
undesired long-term effects [213]. Magnetic targeting, another noninvasive strategy to
facilitate magnetic nanoparticle accumulation at a target site [214, 215], has been applied in
clinical trials (ClinicalTrials.gov Identifier: NCT0005495, NCT00034333). Based on the
FDA guidelines, exposure to magnetic field devices up to 8 Tesla for adults and 4 Tesla for
children do not represent any safety concerns. Chertok et al. demonstrated that IV
administered iron oxide particles to rodents with 9L-gliosarcoma could be monitored by
MRI [57]. The authors demonstrated that magnetic targeting induced a 5-fold increase in the
total exposure of glioma cells to the nanoparticles over non-targeted tumors and a 3.6 fold
enhancement in target selectivity for accumulation in the tumor versus normal brain tissue
[57]. Although some strategies have been developed for systemic administration to
overcome the BBB, the overall percentage of systemically injected nanoparticles found in
the brain is typically less than 1% [6, 190]. This non-specific accumulation of nanoparticles
in normal tissues may cause severe adverse effects and increase mortality and morbidity in
patients.

Intracarotid administration of nanoparticles appears to be a feasible means of ensuring that
more nanoparticles accumulate within a brain tumor on the first pass. Han et al. examined
the effect of implanted BCNU-loaded wafers and intracarotid perfusion of BCNU-loaded
nanoparticles for glioma treatment in vivo [216]. BCNU-loaded nanoparticles were made
from poly(D,L-lactic acid)(PLA) and coated with transferrin (Tf-PLA-BCNU). Rats with
intracranial C6 glioma tumors had improved survival with treatment of Tf-PLA-BCNU
delivered via intracarotid injections when compared with no treatment controls and even
greater survival when intracarotid injections of these nanoparticles were done in conjunction
with the implantation of BCNU-loaded wafers. Chertok et al. developed polyethyleneimine-
modified magnetic nanoparticles and found that intratumoral levels of the nanoparticles after
“active” magnetic capture were increased by 30-fold after intracarotid injections versus
intravenous injections with the same magnetic capture technique [217].

The major downside of systemic delivery is the risk for accumulation of nanoparticles in
non-target organs such as the liver, kidneys, spleen, and lungs. Nanoparticles such as iron
oxide and gold nanoparticles are thought to be non-toxic to normal tissues, but the long-term
consequences of nanoparticle deposition in the brain have not been fully addressed as of yet.
A few studies have shown that nanoparticles can be cleared from the brain [218, 219]. Jain
et al. studied the biodistribution and clearance of iron oxide nanoparticles in rats [218].
Changes in tissue iron levels including in the brain were analyzed over three weeks after IV
injection. The iron concentration in the brain increased 24 hours after administration and
then decreased after 3 days. Wang et al. studied the fates of gold nanorods in a rat model
from 0.5 hours to 28 days after IV injection (0.6 µg g−1) [219]. Kinetic results demonstrated
that gold nanorod accumulation in the brain declined from 0.08 ng g−1 to 0.02 ng g−1 within
7 days and remained at 0.02 ng g−1 after 28 days. However, the clearance mechanism of
these nanoparticles in the brain remains unclear and will require further investigation.

8.2 Intracranial administration
Local administration of nanoparticles directly into a tumor site provides another option to
overcome the BBB and circumvent non-specific systemic accumulation. Although this
method of administration using degradable or non-degradable polymers has shown some
ability to destroy tumor cells[220, 221], it is characterized by poor drug penetration and
dosing limitations [222].

Convection enhanced delivery (CED), another method for intratumoral delivery of
nanoparticles, appears to overcome these issues [222]. CED is a means of delivering

Cheng et al. Page 15

Adv Drug Deliv Rev. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



therapeutic agents directly to the site of the tumor with the benefit of enhancing the
distribution of molecules within tumor tissue. This method relies on pressure gradients
driving bulk flow of nanoparticles and agents are delivered continuously via a catheter
connected to a syringe pump which can be implanted during surgery [222]. In this case,
higher drug concentrations and more widespread distribution can be achieved in a tumor
compared to systemic administration with minimal systemic toxicity [222–224]. CED of
therapeutic agents has even made its way into clinical trials, which can be applied for
nanoparticle administration [63]. Noble et al. demonstrated a single CED infusion of 1.6 mg
nanoliposomal CPT-11 significantly prolonged median survival over 100 days compared to
28.5 days of the free drug or 19.5 days of the control liposomes in an intracranial U87
xenograft model [63]. In addition, the prolonged exposure to nanoliposomal CPT-11 had no
measurable central nervous system toxicity at any of the doses tested [63]. Dendrimers and
iron oxide nanoparticles have also been delivered to brain tumors via CED [128, 225].
While local administration shows the effectiveness in treating brain tumors, the highly
invasive nature of this method is still a major concern.

8.3 Cell-mediated delivery
Stem cells have been found to cross the BBB and have attracted significant attention
because of their ability to target brain tumors [226–228]. Mesenchymal stem cells (MSCs)
and neural stem cells (NSCs) exhibit tumor-tropic migration toward glioma cells in vitro and
in vivo and may serve as a novel method for targeted delivery of nanoparticles to brain
tumor cells [226, 229–234]. Versatile image enhancing nanoparticles and therapeutic
nanoparticles can be loaded into these cellular carriers for better targeting effect.

Li et al. demonstrated that MSCs with bound silica nanorattle-doxorubicin nanoparticles
could migrate towards U251 glioma cells both in vitro and in vivo. Increased apoptosis was
observed after intratumoral injection of silica nanorattle-doxorubicin loaded MSCs when
compared to injections of free doxorubicin [235]. Roger et al. demonstrated that marrow-
isolated adult multilineage inducible cells loaded with lipid nanocapsules containing
ferrociphenol could induce cytotoxicity in U87MG glioma cells [236]. This system was able
to slow down tumor growth rate in vivo as well. Recently, Cheng et al. demonstrated the use
of an FDA-approved NSC cell line to carry silica nanoparticle-doxorubicin conjugates
(MSN-Dox) possessing pH-mediated drug release capabilities [237]. In vivo, MSN-Dox
loaded-NSCs maintained their glioma-homing ability and could deliver doxorubicin
conjugates to tumor cells. Both intratumoral and contralateral injections of the MSN-Dox
loaded-NSCs were sufficient to achieve significant enhanced therapeutic efficacy compared
to using MSN-Dox alone. Results thus far combining stem cells and therapeutic
nanoparticles for the treatment of brain cancer are mainly based on local administration
methods. Due to their ability to cross the BBB, systemic administration of these stem cell
offers promise but warrants further investigation. It has been shown that murine NSCs
injected into the systemic circulation via the tail vein of nude mice bearing CNS-1
glioblastoma reach the tumor burden within four days [226]. Furthermore, these
administered NSCs did not appear in normal brain tissue. Although systemically delivered
NSCs reach the brain tumor, the percentage of stem cells that localize in the brain tumor is
currently undetermined [226]. It has been hypothesized that tropic cytokines released from
the tumor site may bind to receptors on stem cells to trigger their migration. Of the various
signaling proteins that have been suggested to regulate NSC migration, vascular endothelial
growth factor that is highly expressed in gliomas is one of the leading candidates [238–240].
A more detailed understanding of the mechanism behind stem cell migration may provide us
with the information necessary to increase their migratory efficiency and therefore increase
the number of systemically delivered cells that reach a brain tumor.
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Another prominent way in which cellular carriers and nanoparticles have been combined is
for in vivo cellular tracking after administration. Magnetic iron oxide nanoparticles for
example have been used to track the migration of stem cells towards tumors [233, 241, 242].
Wu et al. demonstrated the ability to track the course of migrating MSCs after intracranial
injections. These cells were monitored over 14 days and distributed to the tumor border in a
specific-manner [233]. Thus, such a system in combination with MR imaging may offer a
more efficient way of delineating the boundaries of the tumor. Also, tracking the destination
and distribution of stem cells will be important as the fate of these cells is of concern for
clinical applications.

Although these cell carriers may have the ability to actively deliver the nanoparticles, the
role of this innovative combination for brain tumors needs to be further investigated.
Nanoparticle loading capacity, targeting efficiency, tumorgenecity originating from the stem
cells, controlled nanoparticle release, and clearance are all concerns surrounding the use of
this strategy.

9. Regulatory issues surrounding nanoparticle translation to clinic
Complex nanoparticle formulations have shown great promise in vitro and in animal models
of glioma but the scale of production for these applications are relatively small compared to
the size of the production necessary for a clinical trial. Manufacturing nanoparticles on a
large scale for clinical trials poses additional challenges that include: 1) efficient and reliable
production of the desired nanoparticles and 2) governmental regulations.

First, “scaling-up” of nanomedicines requires a detailed understanding of each component of
the system in order to generate a manufacturing protocol that is reproducible and includes
checkpoints for the analysis and characterization of products at different stages of the
synthesis. Two preparation techniques are often considered: “top-down” and “bottom-up”.
Top-down preparation utilizes larger pieces of material to generate the desired
nanostructures while bottom-up preparation produces large complex structures through self-
assembly of single-molecule components or polymerization of monomers [243]. Regardless
of the preparation technique, it is important to select formulation processes (i.e. crosslinking,
emulsification, sonication, etc.) and conditions (reaction time, temperature, pH, pressure,
etc.) during the early stages of production that can be consistently reproduced on a larger
scale and yield a consistent product that has the same structure and properties as the
nanoparticles synthesized in the laboratory [244]. Furthermore, if it is required that the
nanoparticles are sterile during administration, an appropriate sterilization technique must be
selected because nanoparticles are susceptible to damage from gamma irradiation and
autoclaving [245–247]. Moreover, in order to regulate the nanoparticles during synthesis,
quick and reliable in-process analytic characterization is required to ensure that the
manufacturing process does not alter the composition as well as compromise the quality and
stability of the final product. Such techniques may include transmission electron
microscopy, light scattering, analytic ultracentrifugation, electrophoresis, spectroscopy, and
X-ray diffraction [244].

Second, because of the inherent complexity of nanoparticle systems, government regulation
is often unclear and difficult to navigate. Today, there is no specific regulation for
nanomedicines and therefore the FDA uses an adapted version of the current framework of
regulatory standards. The FDA also recognizes that the unique properties of nanoparticles
such as their size, robust physiochemical properties, and classification as a combination
product make nanoparticles functionally different from their bulk counterparts. Due to this,
the FDA agrees that specific regulatory guidelines for nanomedicines are warranted. To
address this issue, the FDA established a Nanotechnology Task Force to create a detailed
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regulatory pathway for the production of safe, novel, and beneficial nanomedicines [248].
Since its conception in 2006, the FDA’s Nanotechnology Task Force has published several
draft guidelines. Despite the progress, no official guidelines currently exist and there is a
need for the FDA and other regulatory agencies to develop comprehensive guidelines in
order to clarify and expedite the production of nanomedicines.

10. Future challenges and perspectives
The ultimate goal of multifunctional nanoparticles for brain tumors is to enhance patient
survival and improve their quality of life. As discussed in this review, there are a number of
nanomaterials with unique properties that can serve as imaging probes or therapeutic agents
for brain tumors. Theranostic nanoparticles will open even more opportunities to create
innovative nanomedicines for brain tumors. Despite the tremendous efforts thus far, only a
few nanoparticle systems have been approved for clinic trials, illustrating that many
obstacles still need to be overcome in order to translate such nanoparticles from the bench to
the bedside.

One of major challenges is the development of an effective nanoparticle system that can
overcome the BBB and allow for specific yet widespread targeting of brain cancer cells.
However, the heterogeneity of malignant brain tumors and the physiological barriers
surrounding the central nervous system make this an arduous task. Exclusively targeting
overexpressed proteins and receptors on brain cancer cells remains challenging since normal
cells may also express these cancer cell-associated targets to some degree. Nanoparticles
incorporating multivalent targeting moieties hold the most promise for achieving optimal
targeting after systemic administration. Alternatively, local delivery approaches such as
CED can be applied for all nanoparticle systems to bypass the BBB and improve the
distribution within a brain tumor. Moreover, recent advances in cellular based delivery offer
a novel strategy for targeting brain tumors.

A second challenge associated with drug-carrying nanoparticles in brain tumor therapy is
controlled drug release. Only after a nanoparticle-based delivery system reaches the tumor
site should its therapeutic payload be released. Nanoparticles using non-covalent delivery
strategies can preserve active drugs but often suffer from non-specific diffusion during
transportation. Enzyme degradable or stimulus-sensitive chemical linkers should be
considered to enhance the overall efficacy of the nanoparticle delivery system. Magnetic
field, X-ray, light, and heat are promising external triggers which can control drug release in
a spatial and temporal manner.

Safety is another concern nanoparticles face. While the unique chemical and physical
properties of nanomaterials make them attractive for therapy and diagnosis, potential
neurotoxicity and systemic toxicity are concerns related to implementing these particles in
actual patients. Current clinical examples using nanoparticles for brain tumors are carried
out on patients with recurrent high-grade glioma or patients with brain metastases, both
diseases having very poor prognoses. To expand the application of nanoparticles to less
aggressive forms of brain cancer is challenging. Although many nanoparticles show low
acute systemic toxicity, the long-term side effects are not yet known. In addition, the
clearance mechanism of nanoparticles after administration is not fully understood, which
makes it unclear as to the long-term consequences of particle accumulation in various
tissues. Toxicological profiles and clearance mechanisms in animal models will be needed in
order to push the field forward. Other issues such as the long-term stability of nanoparticles,
quality control in the synthesis process, and the ability to synthesize these materials on a
large scale are practical problems hampering their clinical application. The future design of
nanoparticles for brain tumors should take the above challenges into consideration.
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Another important direction in the field of nanomedicine will be the development of
particles with multiple imaging functionalities. Designing these nanoparticles will require
focus on materials that show unique magnetic or optical properties. Integrating more than
one imaging probe will further improve the sensitivity for detecting recurrence and tracking
patient responses to treatment. Furthermore, they may also allow for new methods of
imageguided surgery for brain tumor resection. The field of nanomedicine is also moving
towards developing theranostic nanoparticles that combine therapeutic and diagnostic
applications. Such systems will be extremely important since they may help in evaluating
the tumor status directly in conjunction with therapy. Iron oxide nanoparticle and gold
nanoparticles, possessing light- or magnetic field-mediated properties, are distinguished
nanomaterials serving as intrinsic theranostic platforms.

Clinical implementation of nanoparticles for patients with brain tumors is still in its infancy.
Developing successful systems requires knowledge in a multitude of areas including
nanoparticle engineering, medicine, cancer biology, and pharmacokinetics. As our
knowledge in these fields expands in the coming years, it will facilitate the creation of
innovative and effective nanomaterials for curing patients with brain tumors.
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Figure 1.
Transportation mechanisms of multifunctional nanoparticles into the brain tumor. (A)
Transport of multifunctional nanoparticles across the BBB: 1) receptor-mediated
transcytosis, 2) receptor-mediated endocytosis, 3) adsorptive-mediated transcytosis of
nanoparticles with cationized ligands. (B) Mechanisms of transportation across the disrupted
BBB and selective targeting of brain tumor cells: 1) passive targeting via the EPR effect, 2)
adsorptive-mediated endocytosis or 3) receptor-mediated endocytosis. Both mechanisms
offer a targeted delivery to brain cancer cells, sparing the normal tissue. NP: nanoparticle.
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Figure 2.
Triple-modality MRI-Photoacoustic-Raman nanoparticles (MPRs). MPRs were injected
intravenously into mice bearing an orthotopic brain tumor (top). The proposed clinical use is
diagramed at the bottom of the illustration. Detectability of MPRs by MRI allowed for
preoperative detection and surgical planning. Photoacoustic imaging, with its relatively high
resolution and deep tissue penetration, was then able to guide bulk tumor resection
intraoperatively. Raman imaging, with its high sensitivity and spatial resolution, can then be
used to remove any residual microscopic tumor burden. The resected specimen can
subsequently be examined using a Raman probe ex vivo to verify clear tumor margins.
Reproduced with permission from Ref 168.
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Figure 3.
Schematic structure of different nanocarriers (liposomes, polymeric nanoparticles including
nanospheres and nanocapsules, dendrimers, and micelles) for drug delivery to the brain
tumor. Reproduced with permission from Ref 192.
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