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Chronic low back pain (cLBP) has a tremendous personal and socio-
economic impact, yet the underlying pathology remains a mystery in
the majority of cases. An objective measure of this condition, that
augments self-report of pain, could have profound implications for
diagnostic characterization and therapeutic development. Contem-
porary research indicates that cLBP is associated with abnormal
brain structure and function. Multivariate analyses have shown
potential to detect a number of neurological diseases based on
structural neuroimaging. Therefore, we aimed to empirically evalu-
ate such an approach in the detection of cLBP, with a goal to also
explore the relevant neuroanatomy. We extracted brain gray matter
(GM) density from magnetic resonance imaging scans of 47 patients
with cLBP and 47 healthy controls. cLBP was classified with an
accuracy of 76% by support vector machine analysis. Primary
drivers of the classification included areas of the somatosensory,
motor, and prefrontal cortices—all areas implicated in the pain
experience. Differences in areas of the temporal lobe, including bor-
dering the amygdala, medial orbital gyrus, cerebellum, and visual
cortex, were also useful for the classification. Our findings suggest
that cLBP is characterized by a pattern of GM changes that can
have discriminative power and reflect relevant pathological brain
morphology.
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Introduction

An estimated 100 million Americans suffer from chronic pain,
and chronic low back pain (cLBP) in particular is the most
common cause for activity limitation in people <45 years (An-
dersson 1999; IOM 2011). The prevalence of cLBP has risen
significantly, from 3.9% in 1992 to 10.2% in 2006, and is
associated with an annual economic burden of $100–200
billion dollars (Freburger et al. 2009; IOM 2011). Further re-
search is needed to improve diagnosis and treatment of this
impactful condition, particularly given that the underlying
pathology is often unclear.

The majority of cLBP cases (85–90%) are characterized as
nonspecific, indicating that a specific pathology cannot be
identified (van Tulder et al. 1997; Koes et al. 2006). In these
cases, there is little or no evidence that identifying skeletal
pathology improves outcomes (van den Bosch et al. 2004;
Chou et al. 2007; Cohen et al. 2008). In fact, many individuals
with cLBP show no abnormalities in spinal imaging, and
there is evidence that abnormalities are equally common in
those who have cLBP as in those who do not (Rubinstein and
van Tulder 2008). Importantly, there is growing evidence that
changes in brain structure and function are central to chronic

pain disorders (Borsook et al. 2010). Whereas the acute pain
system in the central nervous system has been well mapped to
include regions such as the thalamus, somatosensory cortices,
and the insula; chronic pain appears much more complex
(Apkarian et al. 2005). The past literature has shown that
chronic pain diseases such as cLBP, chronic regional pain syn-
drome, irritable bowel syndrome, fibromyalgia, and chronic
migraine may arise due to dysfunction of central pain inhibi-
tory or modulatory systems (Apkarian 1995; Ingvar 1999;
Gracely et al. 2002; Giesecke et al. 2004; Davis et al. 2008;
May 2008; Borsook et al. 2010; Seminowicz et al. 2010; Wood
2010; Younger et al. 2010). These changes, some detected by
structural magnetic resonance imaging (MRI), may help
further our understanding of the disease and the subsequent
management of patients with cLBP.

Previous anatomical MRI research investigating cLBP has
produced inconsistent findings. While one study reported that
cLBP is associated with decreased gray matter (GM) density in
the thalamus and dorsolateral prefrontal cortex (DLPFC; Ap-
karian et al. 2004), another reported that cLBP is associated
with decreased GM density in the brainstem and somatosen-
sory cortex and increased GM density in the basal ganglia and
thalamus (Schmidt-Wilcke et al. 2006). These differences are
difficult to interpret, but may be due to variables including
methodology and clinical features of the population samples.
For instance, the differing types of cLBP or medication state
may lead to different brain changes (see Discussion). Given
the inconsistency that is present in the few studies to date, it
remains unclear which brain regions, if any, are characterized
by pathological morphology in patients with cLBP.

To extend upon previous research, this study investigated
GM density in unmedicated patients with non-neuropathic
cLBP and in matched healthy controls. Although previous
studies have used voxel-based morphometry (VBM) to investi-
gate individual brain regions, this study used a novel multi-
variate machine learning approach. Machine learning
algorithms such as support vector machines (SVM) have been
recently adopted in the field of structural and functional neu-
roimaging to characterize and classify. At least 3 such studies
have employed this technique, to noninvasively identify Hun-
tington’s disease with 83% accuracy (Kloppel et al. 2009), Alz-
heimer’s disease with up to 89.3% accuracy (Vemuri et al.
2008), and acute painful stimuli with 81% accuracy (Brown
et al. 2011). In the present study, we adopted SVMs to detect
distributed brain features that may better to characterize cLBP.

Our over-riding goals in this study were: 1) to accurately
classify patients with cLBP from healthy individuals on the
basis of structural changes in the brain and 2) to investigate
pathological changes distributed across multiple brain
regions. To accomplish these goals, we used SVM analysis to
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identify a whole-brain pattern of GM density that best dis-
tinguishes cLBP patients from controls. To compare these
results with classical analysis methods, a separate whole-brain
VBM analysis was also conducted to investigate GM changes
in individual brain regions.

Materials and Methods

Participants
Structural MRI scan data were acquired from 94 participants: 47 with
cLBP and 47 healthy controls who were individually gender and age
matched within 2 years. Participants with cLBP were included if they
had axial low back pain, without radicular symptoms, that had per-
sisted for greater than 6 months. Participants with a current or pre-
vious history of a major psychiatric disorder, including depression
and anxiety, were excluded. No participants were taking prescription
pain medications at the time of study, however, up to 4 g acetamino-
phen per day, low-dose aspirin, and occasional acetaminophen and
ibuprofen use were allowed. In addition, patients reporting substance
abuse within the past 6 months of enrollment were excluded. All data
were collected from volunteers who had provided written, informed
consent with procedures approved by the Stanford University Insti-
tutional Review Board.

Image Acquisition
High-resolution T1-weighted structural images of the brain were con-
ducted on 2 General Electric 3-T scanners at Stanford University using
a 3-dimensional inversion recovery fast spoiled gradient-recalled (3D
IR-FSPGR) pulse sequence. Imaging parameters were: time
repetition = 8.18 s, time echo = 1.71 ms, 124 slices, 1.5-mm slice thick-
ness, 0.86 × 0.86 mm or less in-plane resolution.

Preprocessing
Preprocessing was performed using SPM8 (http://www.fil.ion.ucl.ac.
uk/spm/) in MATLAB (MathWorks, Natick, MA). Images were seg-
mented into GM tissue classes, bias corrected, and normalized to the
Montreal Neurological Institute (MNI) template using nonlinear trans-
formations based on SPM8’s Unified Segmentation scheme (Ashbur-
ner and Friston 2000). A signal was preserved throughout the
normalization procedure, and GM density was acquired using sup-
plied tissue probability priors. A mask generated from the average of
all images was used to remove non-GM voxels. All images were
spatially smoothed with an 8-mm full width at half maximum Gaus-
sian kernel. Total GM volume was also calculated for each subject.

SVM Analysis

Principal Component Transformation
Since each of the 94 MRI scans was originally described by hundreds
of thousands of voxels, many possible models can separate the data,
resulting in high variance and poor generalizability. Thus, feature
reduction was a necessary step before the classification.

Principal component analysis (PCA) is a multivariate analysis tech-
nique that finds orthogonal vectors to best explain variance in data,
allowing the representation of the data in a reduced, principal com-
ponent (PC) space (Howley et al. 2006). This allows better model esti-
mation with minimal loss of generalizability, and since the original
data can be reobtained from the PC’s, PCA is a loss-less transform-
ation. PCA was performed on the training data and all primary PCs
(eigenvectors), with nonzero eigenvalues were used to transform the
test set into PC space before classification, ensuring that the test set
did not play a role in identifying PCs.

Classification
A support vector machine is a supervised learning algorithm used
successfully in many classification problems. It is supervised in that a
training step is required to generate the model before testing on novel

examples. During the training step, the SVM attempts to separate the
data represented in a high dimensional space by drawing an optimal
separating hyperplane (decision boundary) that maximizes the
margin between the 2 groups. Readers are encouraged to refer to
other sources for more in-depth review of SVMs (Burges 1998; Cristia-
nini and Shawe-Taylor 2000; Pereira et al. 2009).

A linear SVM was used, and the regularization parameter (C) was
selected with a standard grid search. The analysis was performed in
MATLAB with in-house implementations and LIBSVM (Chang and Lin
2011).

Leave-Pair-Out Cross-Validation
The validation of a predictive model involves training on a labeled
(known) dataset and testing on an unlabeled (unknown) set. When
data are scarce, cross-validation can provide a good estimate for the
generalizability of a classifier (Kohavi 1995). The dataset was ran-
domly divided into pairs of 1 patient and 1 control, and a
leave-pair-out cross-validation (LPOCV) technique was applied where
the model is trained on all but one pair and subsequently tested on
the remaining pair (Airola et al. 2011). This ensures that each training
set has an equal class representation. This procedure was performed
until each pair has been left out. During each model training stage,
PCA was performed on the training set (resulting in N−1 = 91 com-
ponents), and the data in PC space were entered into a linear SVM.
The test pair in the PC space was then classified. Performance was
assessed on the basis of accuracy, sensitivity, specificity, positive pre-
dictive value, and negative predictive value. Since the training data
are randomly divided into pairs, slightly different models may form
depending on this division. Thus, LPOCV was run 100 times, and the
results were averaged to give final performance measures.

Significance Assessment
The significance of performance measurements and discriminative
regions were tested using an empirical Monte Carlo permutation test
as described by Mourao-Miranda et al. (2005). One thousand iter-
ations of LPOCV were run as described above. In each iteration, class
labels were randomly permuted and the entire cross-validation pro-
cedure performed. The number of times where a performance
measure from this permutation test is greater than or equal to the ob-
served performance, divided by 1000, represents a P-value. In
addition, each iteration provides a data point in a null distribution of
weights. These weights, after transformation to brain space, were
used to determine the significance of the regions found to be discri-
minative. Regions significant to P < 0.001 and the false discovery rate
(FDR) P < 0.05 for performance and weight measurements, respect-
ively, were reported at a cluster size of 10 voxels.

VBM Analysis
A univariate whole-brain VBM analysis was also performed using pre-
processed data generated above. T-tests were performed on the voxel
level to detect regional differences (minimum cluster size = 10 voxels,
P = 0.001 uncorrected for multiple comparisons).

Results

Subject Data
The healthy control group consisted of 47 volunteers (25
males and 22 females) with a mean age of 37.7 years (standard
deviation [SD] = 7.8, range 19–60 years old). The cLBP group
consisted of 47 participants (25 males and 22 females) with a
mean age of 37.3 years (SD = 12.2, range 19–60 years old; Sup-
plementary Fig. 1). The mean pain duration for patients with
cLBP was 8.55 years (SD = 7.81). Depression inventories
(Beck Depression Inventory or Hospital Anxiety and
Depression Scale) were collected for the 47 participants with
cLBP, and 42 reported normal to mild levels. Forty-two
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patients reported bilateral pain and 5 reported primarily later-
alized pain in the lumbar region. No significant group differ-
ences were found between total GM volume (cLBP = 754.7
mL, SD 94.7, controls = 750.0 mL, SD 76.5; P = 0.79).

Classifier Performance
A true positive (TP) indicates correct classification as cLBP,
whereas a false positive (FP) indicates incorrect classification
as cLBP. True and false negatives (TN/FN) indicate correct
and incorrect classifications of the absence of cLBP, respect-
ively. Accuracy represents the number of correct classifi-
cations divided by the total number of patients (i.e.,
[TP + TN]/[TP + FP + TN + FN]). Sensitivity and specificity rep-
resent the percentage of cLBP and non-cLBP patients correctly
classified, respectively (i.e., TP/[TP + FN] and TN/[TN + FP]).
Positive and negative predictive values represent the prob-
ability of a cLBP and non-cLBP prediction being correct,
respectively (i.e., TP/[TP + FP] and TN/[TN + FN]).

The SVM classifier obtained an average accuracy of 76%.
Sensitivity and specificity were 76% and 75%, respectively.
Positive and negative predictive values were 75% and 76%,
respectively (Table 1). All values are significant to P < 0.001 as
determined by a permutation test. A receiver operating
characteristic (ROC) curve shows that the classifier performs
better than random chance, with an area under curve of 0.91
(Fig. 1). This graph provides another visualization of the per-
formance of the classifier. Whereas a random classifier results
in one FP for every TP, the SVM classifier provides greater in-
creases in the TP rate with less of an increase in the FP rate.

SVM Regions
Discriminative regions were identified at P < 0.05 significance
level (FDR corrected; Table 2). Decreased GM density adjacent

Table 1
Prediction results

Measurement Result (%)

Accuracy 76
Sensitivity 76
Specificity 75
PPV 75
NPV 76

Sensitivity = TP/(TP + FN), specificity = TN/(TN + FP), positive predictive value (PPV) = TP/
(TP + FP), negative predictive value (NPV) = TN/(TN + FN), where TP = true positive (cLBP
group), FP = false positive, TN = true negative, FN = false negative. All values significant to
P< 0.001.

Figure 1. ROC curve. ROC curve comparing cLBP SVM classifier with a random
classifier. Area under curve for the SVM classifier is 0.82.

Table 2
Discriminative regions predictive of cLBP

MNI Anatomy Direction

A 36, 4, −34 Right borderline amygdala Decrease
B −18, 20 −16 Left medial orbital gyrus Decrease
C 20, −98, −4 Right cuneus (V2) Decrease
D 52, −50, −34 Right cerebellum Increase
E −44, −52, −14 Left fusiform gyrus Increase
F −58, −64, −8 Left middle temporal gyrus Increase
G 66, −38, −8 Right middle temporal gyrus Increase
H −46, −24, 12 Left secondary somatosensory cortex (S2) Increase
I −56, −54, 10 Left superior temporal gyrus Increase
J 22, −56, 12 Right calcarine sulcus (V1) Increase
K 36, 48, 18 Right DLPFC Increase
L −46, −24, 32 Left postcentral gyrus (S1) Increase
M −56, −12, 36 Left precentral gyrus (M1) Increase

Note: discriminative regions significant to P< 0.05, FDR corrected for multiple comparisons;
minimum cluster size = 10 voxels.

Figure 2. Predictive regions. Blue indicates regions where more GM density helped
to predict membership in the cLBP group. Red indicates regions where less GM
density helped to predict membership into the cLBP group. Region coordinates and
anatomy are given in Table 2.

Figure 3. Significant GM changes in cLBP. Significant changes in the cLBP cohort
versus healthy controls through VBM analysis. Blue indicates increased GM density
and red indicates decreased GM density (P< 0.001 uncorrected for multiple
comparisons, minimum cluster size = 10 voxels).
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to the right amygdala, in the left medial orbital gyrus and in
the right cuneus (secondary visual cortex; V2), coupled with
increased GM density in the right cerebellum, regions of the
temporal lobe, the left primary and secondary somatosensory
cortices (S1 and S2), the left primary motor cortex (M1), the
right calcarine sulcus (primary visual cortex; V1), and the right
DLPFC were most helpful in the prediction of cLBP (Fig. 2).

VBM Regions
A whole-brain VBM analysis did not reveal any areas in which
GM density was significantly different between the 2 groups
at the threshold of P < 0.05, FDR corrected. At the threshold
of P < 0.001 uncorrected, we observed increased GM in left S1
and M1, in addition to decreased GM in the right middle occi-
pital lobe (Fig. 3).

Discussion

In this study, we have compared patterns of GM density
between participants with cLBP and matched healthy con-
trols. We used SVM analyses of MRI brain scans to show that
healthy controls and patients with cLBP exhibit different dis-
tributed patterns of GM density throughout the brain, despite
having similar total GM volume. Moreover, we demonstrate
that brain structure may assist in the diagnosis of cLBP. Along
with a univariate VBM analysis, we found a set of distributed
key regions that characterize cLBP, supporting the hypothesis
of a complex pattern of abnormal brain morphology com-
pared with few localized changes. The specific brain regions
exhibiting GM differences include those believed to be in-
volved in the pain experience, in addition to novel areas that
may be associated with chronic pain. This work is an early
step toward the diagnostic use of anatomical brain structure
in cLBP.

Classification and Prediction Results
In support of the hypothesis that cLBP pathology is associated
with a distributed pattern of abnormal brain morphology, the
SVM classifier characterized a pattern of regional GM density
that distinguished cLBP patients from healthy controls with
76% accuracy, through a cross-validation scheme that has
been shown to provide representative measurements of accu-
racy (Kohavi 1995; Airola et al. 2011). This pattern includes
atypical GM density both in areas of the brain typically associ-
ated with acute and chronic pain and in areas less commonly
reported and understood in studies of acute and chronic pain.
These regions are discussed below.

Areas of Altered GM
The most notable findings relate to increased GM in and near
the left S2. SVM analysis identified an increase in GM in S2,
and both SVM and uncorrected VBM analyses identified a
cluster of GM increase in the left M1 and left somatosensory
cortices (S1/S2). While the clusters were not identical between
SVM and VBM, there is a significant overlap even with differ-
ent methodological techniques. These findings in S1 and S2
likely reflect ascending thalamocortical projections and
sensory-discriminative nociceptive processing that are in-
volved in acute pain (Flor et al. 1997; Coghill et al. 1999;
Peyron et al. 2000; Price 2000; Treede et al. 2000; Hofbauer
et al. 2001; Apkarian et al. 2005; May 2008).

The association of M1 and pain is well established
(Dettmers et al. 2001; Maihofner et al. 2007; Kim et al. 2008;
Wasan et al. 2011). There is substantial evidence that stimu-
lation of the motor cortex leads to reduced pain. A recent
meta-analysis of 33 studies investigating the efficacy of motor
cortex stimulation for chronic pain showed a 72.6% weighted
response rate (95% confidence interval 67.7–77.4) for
reductions in pain versus sham treatment (Lima and Fregni
2008). In addition to M1 findings, we observed an increased
GM in the premotor cortex, although these regions did not
survive cluster correction. As M1 receives strong input from
S1, a GM increase in both may suggest an alteration or dys-
function of proprioception and motor planning resulting from
cLBP. This is supported by recent studies that suggest reor-
ganization of the motor cortex in cLBP patients due to the
region’s involvement in postural control and stability (Bru-
magne, Janssens, Janssens, et al. 2008; Brumagne, Janssens,
Knapen, et al. 2008; Tsao et al. 2008). The changes in the
motor cortex may thus not only be associated with the per-
ception of chronic pain, but also the behavioral changes that
result. Somatotopically, the S1 and M1 regions observed are
more lateral and deeper than expected on the homunculus,
corresponding to the head, neck, and face regions instead of
the lower trunk and extremities. Flor et al. (1997) showed
through magnetoencephalography that cLBP patients had a
medially expanded S1 somatotopic representation of the back
that correlated with chronicity of pain (Flor 2003). Our struc-
tural findings may be a result of similar cortical reorganiz-
ation. However, the left laterality of our somatotopic findings
was not expected, as our patients presented with axial pain.
As the left and right sides of S2 are also deeply intercon-
nected, it was expected that bilateral changes would be ob-
served. The left laterality of S2 may reflect the lateralization of
function, similar to the lateralization of function of the neigh-
boring insula (Craig 2005). These findings as a whole suggest
involvement of a sensory-motor network involved in proprio-
ception that may be altered in those with chronic pain.

Our SVM analysis identified regions previously implicated
in pain, including an area bordering the amygdala and the
right DLPFC. The amygdala, part of the limbic system, plays a
key role in emotion and affective disorders. There is evidence
to suggest parallel processing networks, one involving the so-
matosensory areas in the sensory-discriminative dimension,
and another involving the amygdala in the affective dimen-
sion (Giesecke et al. 2005). It is believed, through circuits to
the brainstem (periaquaductal gray) and spinal cord, that the
amygdala plays a role in descending inhibitory pain control
(Neugebauer et al. 2004). Interestingly, the amygdala may
also play a role in the enhancement of pain responses follow-
ing a stressor (Rhudy and Meagher 2003). Decreased GM near
the amygdala in those with cLBP may reflect alterations of
these pathways.

The DLPFC is a region that has been shown functionally to
be involved in the experience, localization, and modulation of
pain (Coghill et al. 1999; Lorenz et al. 2003). Specifically, the
DLPFC may limit the magnitude of perceived pain through a
"top-down" mechanism by modulating cortical–subcortical
and cortical–cortical pathways, particularly by disrupting
midbrain-medial thalamic connectivity (Lorenz et al. 2003).
The DLPFC may also serve to direct attention away from pain,
as shown by its involvement in working memory and the
placebo analgesia effect (MacDonald et al. 2000; Wager et al.
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2004). The changes observed in the DLPFC may be reflective
of a lack of inhibitory control over nociceptive input.

Changes in several brain regions not previously associated
with pain, such as the visual system, were found with the
SVM analysis. While each of these findings may individually
be difficult to interpret, the totality of these changes may be
understood in the full context of cLBP. An increase in GM in
the right calcarine sulcus (V1) and left fusiform gyrus was ob-
served, as well as a GM decrease in the right cuneus (V2). The
right cuneus has previously been found to activate in
response to acute cold pain, which, accompanied by the cal-
carine sulcus, plays a role in intensity encoding of pain (Fulb-
right et al. 2001; Kong et al. 2010). High-intensity noxious
stimuli evoked significantly greater activity in these regions
when compared with low-intensity stimuli. It is also possible
that cLBP patients may be more dependent on vision for
balance and postural control, which could partially explain
both the visual findings and the disruption in M1/S1 proprio-
ceptive networks (Maribo et al. 2012).

Finally, we noted GM differences within several areas of the
temporal lobe. The increased GM was observed both in the
bilateral middle temporal gyrus and in the left occipitaltempor-
al lobe (Table 2). These regions are potentially associated with
a secondary component of cLBP. Schmidt-Wilcke et al. (2006)
and Schmidt-Wilcke et al. (2007) found GM changes in the left
occipitaltemporal lobe in patients with cLBP and in the right
temporal lobe in those with fibromyalgia. Several of these occi-
pital–temporal regions also overlap with previous findings that
have been associated with unpleasant emotions and may
further represent an affective dimension of pain (Lane et al.
1997). While the function of these areas in relation to pain
remains speculative, these findings support the idea that
chronic pain is associated with a complex, distributed pattern
of changes in the central nervous system. Further work is
necessary to more completely characterize these patients and
to better understand systemic brain changes.

One intriguing question is the implication of the direction-
ality of GM change. In a recent VBM study, healthy individ-
uals had transient increased GM in pain modulatory regions,
including the cingulate and somatosensory cortex, following
repetitive noxious stimuli (Teutsch et al. 2008). It is suggested
that increased GM in these regions, particularly in the somato-
sensory cortex, represents the engagement of a normal anti-
nociceptive system. The GM increases within these areas in
the chronic pain group may be a result of a sustained but
faulty engagement or disruption of this response mechanism.
It may also indicate that chronic pain is no longer dependent
on peripheral afferent input, but is maintained by central
processing.

Past VBM Findings
At least 2 studies have previously investigated GM changes as
a result of cLBP using classical VBM analyses. Apkarian et al.
(2004) showed, through a region-of-interest analysis, de-
creased GM in the right thalamus and bilateral DLPFC.
Schmidt-Wilcke et al. (2006) showed, on a whole-brain level,
decreased GM in the brainstem, somatosensory cortex,
DLPFC, occipital–temporal lobe, and temporal lobe along
with an increase in GM in the basal ganglia and left thalamus
using a statistical threshold of P < 0.001 uncorrected for mul-
tiple comparisons. In our study, increased GM in the DLPFC

helped to drive our SVM accuracy, although the precise local-
ization is inconsistent between all 3 studies. However, in the
present study, no changes in either direction were observed
in the thalamus. The increased GM in the basal ganglia
(putamen) was observed, but did not survive cluster correc-
tion (data not shown). Finally, we also found that cLBP is
associated with the increased GM in the left occipital–tem-
poral lobe, localized near the region reported by Schmidt-
Wilcke. This may reinforce the involvement of vision systems
in cLBP.

The overall lack of consistency in these findings are difficult
to explain and may be due to variability between each study’s
patient population, including differences in the number of
participants, study demographics, neuropathology, and state
of medication. In this study, we investigated a total of 47 par-
ticipants with cLBP, in comparison with 18 and 26 partici-
pants from prior studies (Apkarian et al. 2004;
Schmidt-Wilcke et al. 2006). We also excluded participants
with neuropathic pain from diagnosed radiculopathy, while
the study by Apkarian et al. included those with neuropathic
pain. Finally, it is possible that differences in analgesic use
between studies may explain some of the differences in
results, as brain structure may be affected by prescription an-
algesics (Younger et al. 2011) and prescription analgesic use
was an exclusionary criteria in our study. Further investi-
gation, however, is necessary to demonstrate conclusively the
effects of these potential confounds.

Limitations
An objective pain measurement would have significant ethical,
legal, and medical implications; however, we note that this
study is preliminary, and further work is needed before any
real-world applications can be considered. Our patients were
carefully screened to eliminate confounds from other con-
ditions; however, these patients may not be fully representative
of the broad spectrum of cLBP patients. By testing larger popu-
lations over broader age ranges and including medications, co-
morbid disorders, different subtypes of cLBP, and/or other
types of chronic pain, we can determine the specificity of our
findings and of our classifier to cLBP as well as its ultimate
generalizability. Furthermore, this study is meant to show that
neuroimaging may provide an objective physiological marker
of cLBP that augments self-report. Given the complex combi-
nation of sensory, cognitive, emotional, and motivational
factors that make up the chronic pain experience, it is possible
that no objective marker of pain will ever replace a patient’s
self-report. The authors all strongly discourage inappropriate
and premature extrapolation of these findings to suggest that
patient self-report of pain can be replaced.

The physiological mechanisms that underlie directional
changes in GM density, as measured by MRI, remain unclear.
Current MRI technology does not readily allow for the obser-
vation of cellular- or molecular-level changes that underlie GM
changes. Some of these changes may be attributed to degener-
ation, restructuring, or apoptosis of neuronal or glial cell
populations. As both GM increases and decreases were impor-
tant in identifying pain patients, the structural abnormalities
we identified may also represent neural adaptations to aber-
rant peripheral nociceptive inputs. Moreover, the presence of
GM increases suggests that the neural changes seen in chronic
pain cannot be globally described as neurodegenerative. It is
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also important to note that these are results from the charac-
terization of GM only. The incorporation of other tissue
classes or imaging modalities such as white matter and func-
tional imaging may improve characterization and performance
(Brown et al. 2011).

Although subjects were homogenous with respect to diag-
nosis and medication state, structural differences may result
from physical and psychosocial factors interrelated with pain,
such as reduced physical activity and depression (Gatchel
et al. 1995, 2007; Colcombe et al. 2003; Frodl et al. 2008). A
recent study investigating GM volume changes in patients
with fibromyalgia explained observed differences in the left
anterior insula with depression severity (Hsu et al. 2009). As
our healthy volunteers were excluded for a known history of
any major psychiatric disorder and the majority of the cLBP
group had normal or mild levels of depressive symptoms as
determined by self-report inventories, our results were unli-
kely to be driven by affective disorder. To confirm, a separate,
identical SVM analysis was performed without 5 patients who
self-reported moderate or severe levels depression/anxiety
and their matched controls. The resulting discriminative
regions driving the classification remain unchanged and indi-
cate that the original model is unlikely to be differentiating
between affective disorder (data not shown).

From a machine learning perspective, the performance,
generalizability, and significance of the SVM findings benefit
from a large sample size and better feature selection/
reduction methods. Incorporating more individuals may allow
for improved characterization of the underlying conditions,
and thus better classification. Expanding feature selection to
include other tissue classes, multispectral data, behavioral,
and genomic information may offer better discriminative
information for predicting cLBP (Diatchenko et al. 2005).

Conclusions
Our investigation of cLBP using SVM learning and VBM
suggests that the pathology of cLBP involves changes in GM
that are present throughout a distributed system of pain-
processing and pain-associated areas within the brain. The
significant accuracy of our classifier, in addition to the rel-
evance of discriminative regions identified, represent a prom-
ising advance in both our understanding of brain’s role in
cLBP and our ability to objectively classify the disease. Future
studies should investigate the brain regions identified here to
determine functional significance of the structural pathology
that we have detected. In addition, structural studies should
further investigate these areas for potential use as biomarkers
in diagnosis and the prediction of treatment response.
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