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Genetic algorithm (GA) is designed to search the optimal solution viaweeding out theworse gene strings based on a fitness function.
GA had demonstrated effectiveness in solving the problems of unsupervised image classification, one of the optimization problems
in a large domain. Many indices or hybrid algorithms as a fitness function in a GA classifier are built to improve the classification
accuracy. This paper proposes a new index, DBFCMI, by integrating two common indices, DBI and FCMI, in a GA classifier to
improve the accuracy and robustness of classification. For the purpose of testing and verifying DBFCMI, well-known indices such
as DBI, FCMI, and PASI are employed as well for comparison. A SPOT-5 satellite image in a partial watershed of Shihmen reservoir
is adopted as the examinedmaterial for landuse classification. As a result, DBFCMI acquires higher overall accuracy and robustness
than the rest indices in unsupervised classification.

1. Introduction

Novel techniques of image classification, including super-
vised and unsupervised classifications, have been developed
and widely applied to the problems of pattern recognition.
Supervised classification requires prior knowledge for the
training of the classification model. Taking satellite image
classification, for example, the prior knowledge, means the
average and standard deviation of spectrum of each landuse.
Such a prior knowledge has been taken as criteria and then
the examined image is classified to the distinct object of
interest referring to the criteria [1–5].

On the contrast, unsupervised classification can be imple-
mented automatically by analyst-defined clustering criteria
as the basis for classification rather than the training data
set collected beforehand. Unsupervised classification groups
a set of test data in such a way that the data within a
class (cluster) are more similar in some identities to one
another than in other groups. Unsupervised classification
starts with a specific number of classes either arbitrarily
in accordance with the research objectives or based on the
analyst’s expertise and then interprets all pixels within a data

set into a correspondent class pixel by pixel. In accordance
with such amerit, unsupervised classification ismore suitable
for the interpretation of environment with fragmentary land
cover for areas or the image detection without prior statistics
of the training data from the study field [6]. However,
due to lacking of the ground truth, the accuracy of unsu-
pervised classification is inferior to supervised classifica-
tion [7]. Therefore, the accuracy improvement of unsuper-
vised classification remains a critical issue needing a great
effort.

Inspired by the nature evolution process, GA has been
extensively and successfully applied to many practical prob-
lems, such as urban landscape change analysis [8], urban
sprawl detection [9], multicomponent image segmentation
[10], and image edge detection [11]. Therefore, how to apply
GA to get better results has become a remarkable and
practical topic during the past decade. GA can efficiently
improve the results analyzed based upon heuristic methods
away from the local solutions and then get the optimal
results especially in image analysis and interpretation and
artificial intelligence [12–14]. With this superiority, many GA
researches were undertaken and developed.
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Bandyopadhyay and Maulik [15] integrated Davies-
Bouldin index, Dunn’s index, Fuzzy C-means index, and C-
index into GA as fitness functions for clustering analysis.
Bandyopadhyay and Maulik [16] also integrated K-means
into clustering GA for unsupervised clustering to improve
the defect of K-means needing the initial cluster numbers a
prior and getting better results. Yang andWu [17] established
partition separation index and verified its superiority by com-
paring it with other five noted clustering indices: partition
coefficient index, partition entropy index, Fukuyama and
Sugeno validity function, Xie and Beni validity function, and
Davies and Bouldin validity function.

Accordingly, GA operations can start the evaluation by
individuals (so-called GA strings or chromosomes) of popu-
lation (initial generation) being substituted over a specified
number of generations which are consisted of the strings
from one initial individual that swapped some segments
between two strings (so-called crossover), so as to find the
optimal fitness piece by piece [18]. Particularly, instead of
searching the optimal solution from a few assigned points
within the searching space of the training data, GAs can
initialize a group of the solution sets selected randomly and
automatically from the solution space [18]. This research
developed a new index by including the merits of DBI and
FCMI, so-called DBFCMI, to promote the accuracy of GAs.
Normally,DBI considers both the distribution of inner cluster
and between clusters with membership usually defined as
classical crisp logic. However, while the interaction of pixels
within an image is considered, the crispmembership function
of classical logic seems unsuitable for the relationship of these
pixels. Instead, FCMI based on fuzzy C-means (FCM) that is
extended from a method known as hard C-means is adopted
in a crisp classifying application, developed by Bezdek [19],
and is an extremely powerful classification method for fuzzy
data. However, FCMI considers only the dispersion of inner
cluster without the dispersion between clusters; therefore, the
clustering efficiency could cause the beneath clustering or the
excessive clustering.

In this research, the new index was verified for its feasibil-
ity and stability via various initial sets (i.e., different lengths
of chromosome and numbers of populations), selectionways,
and crossover ways.

2. Methodology

2.1. GAOperator. GA, based onmimicking the natural strate-
gies of evolution, can preserve the fittest which is one of the
useful optimization techniques. A genetic string, so-called an
individual, is encoded of a particular solution to a problem.
And the solution must be able to express characteristics of
the sample space. Before an operation of GA, a number
of individuals are produced for the population of initial
generation. Each genetic string is usually encoded by the
types of binary, integer, or real number. After the operations
of crossover and mutation, the possible solutions within
the solution space are obtained and calculated their fitness
according to a fitness function. Repeating the operations of
evolution and preserving the fittest by selection, the possible

solutions could be evaluated generation by generation until
the optimal solution is derived.

2.1.1. GA Operating Steps. A genetic string is the foundation
for establishing a genetic algorithm and could describe a
possible solution to a problem. It is made of units what can
represent the characters of the problem. An individual is a
bit string of arbitrary units. Basically, the meaningful string
length must consist of at least two and upper genes [6, 17]. In
this research, the string length is set in 8 and encoded with
the integer number because of the radiometric resolution
of SPOT-5 image and then each unit of the gene string is
comprised of 4 units because of the 4 bands of the image.The
member of a generation, so-called population, also influences
clustering accuracy. Besides, referring to Coley [20], Liu et
al. [21], and Sivanandam and Deepa [22], the member of a
generation, so-called population, 30 through 90, is adopted
in this research.

Once the initial generation is randomly selected from
the universal set, some strings, even number usually, with
superior fitness are partially selected into the crossover
pool. Afterwards, new members of population based on the
operations of crossover and mutation were generated for the
next generation [22, 23]. Roulette wheel selection and rank
selection are the two common selection techniques that were
adopted in this research.

Two typical parameters, including crossover probability
(𝑃
𝑐
) and crossover way, must be determined. The crossover

probabilities of 0.4 through 0.9 are usually suggested [20], so
𝑃
𝑐
of 0.8 was adopted in this research. Besides, the most com-

mon popular crossover ways, such as single-point crossover,
multipoint crossover, and uniform crossover, were adopted.
In addition, three other crossover forms, including three-
parent crossover, ordered crossover, and shuffle crossover,
were also tested.

The purpose of mutation is to prevent GA from being
trapped into local optimal solutions. A low mutation proba-
bility, typically between 0.001 and 0.01, is given because a high
mutation probability would change GA to random search.
Sivanandam and Deepa [22] proposed that an appropriate
mutation probability should be determined according to the
reciprocal of string length.That is, supposing the length of the
genetic string consists of 8 genes, the mutation probability is
given as 1/8. Flippingmutation has been widely applied to the
enlarging solution spaces [22] so to be employed in this paper.

2.1.2. Fitness Function. In each generation, the priority of the
genetic strings is ranked according to the fitness values calcu-
lated based on a fitness function.Through either maximizing
orminimizing the fitness values generation by generation, the
genetic string with the global optimum could be found to be
the terminal clustering result.

Currently, many indices, such as K-means index (KMI),
separation index (SI), partition separation index (PASI),
Davies-Bouldin index (DBI), and fuzzy C-means index
(FCMI), have been presented to be the fitness functions of
GA. Among the previous indices, DBI considers the inner
differences within a cluster as well as the differences among
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Figure 1: The dissimilarity between classic set and fuzzy set.

the clusters so that the better clustering results could be
acquired. However, rather than considering the influence
between the other clusters, the specified pixel DBI considers
only the influence between the specified pixel and the cluster
it belonged to. FCM basically integrated fuzzy membership
function with C-means clustering and then further integrat-
ing into GA as a fitness function, so-called FCMI, can be a
complementary to DBI. Therefore, in this paper, DBFCMI,
integrated FCMI with DBI, is built to attempt to obtain the
better clustering accuracy.

Dunn [24] developed the fuzzy C-means (FCM) which
had been successfully improved and applied to the clustering
analysis by Bezdek [19]. The membership function of the
fuzzy C-means is used to scale the weights of a data to
the clustering centers into a continuous interval [0, 1] rather
than the classical set with the crisp binary units 0 and 1
(see Figure 1). In Figure 1, the 𝐶 values express the clustering
centers and the 𝑥 = {𝑥

1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
} denotes an analyzed

image. The subscript n means the number of the pixels of an
image.

Unlike DBI, FCMI considers the influence between each
pixel and all cluster centers. That is, the distance between a
pixel and the pixels in the same cluster will be considerably
less than the distance between a pixel and the pixels in
different clusters. Of course the reciprocal influence of the
former one is considered larger than the latter one. Also
the membership grade is considered based on the same
distance measurement. The objective function of FCMI is
shown as (1), and the optimal cluster centers can be found
by minimizing (1).The center of the 𝑗th cluster is determined
by (2). Equation (3) is the membership function of 𝑥

𝑖
being

assigned to the 𝑗th cluster. As for DBI, it can be obtained by
the derivation of (5) [3, 15, 19]. The optimal cluster centers
could be derived by maximizing DBI.

In order to demonstrate the performance of DBFCMI,
this research referred to the literature of Yang and Wu [17]
to apply several indices on a certain man-made data which
display the different shapes of distribution.The experimental

result indicates that the three indices, including Davies-
Bouldin index (DBI), partition separation index (PASI), and
fuzzy C-means index (FCMI), have the better performances.
Therefore, this research introduced the above three indices
and DBFCMI into GA for the unsupervised clustering analy-
sis.

DBFCMI is mainly based on DBI. Furthermore, it evalu-
ates distance between a pixel and the cluster centers based on
fuzzy membership rather than the distance between the pixel
and the cluster center which the pixel belonged to (see (7)).
The membership function was evaluated via (8).

(a) Fuzzy C-means index (FCMI)
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(c) Partition separation index (PASI)
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(d) Davies-Bouldin and fuzzy C-means index (DBFCMI)
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Table 1: Spectral centers of landuse.

Landuse
Band

Spectral center
B1 (NIR) B2 (G) B3 (R) B4 (SWIR)

Vegetation 134.5 99.5 72.0 66.9
Water 58.8 52.4 55.9 57.1
Forest 112.1 98.3 57.3 58.4
Bare land 128.9 93.9 72.9 65.9
Structure 133.2 88.1 90.5 77.3
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.

(8)

2.1.3. Termination Criteria. There are two termination cri-
teria for the GA operation, including the convergence of
optimal solution searching or the specified number of gener-
ations that have evolved. Even though the latter termination
criterion is adopted by most researchers [3, 10, 12, 21], it
is too time-consuming for mega data, such as GA image
classification. In this research, therefore, the convergence of
optimal solution searching is set as the termination criterion
for the GA operation.

2.2. Introduction of Study Site and SPOT-5. The study site is a
hillside within the watershed of Shihmen reservoir located in
Northern Taiwan (see Figure 2). The reservoir supplies water
to 28 districts of Northern Taiwan, including 3.4 million
people. The Shihmen reservoir serves a number of purposes,
including irrigation, hydroelectric power, water supply, flood
prevention, and sightseeing. Thus, the watershed and water
monitoring of Shihmen reservoir become a very important
job [25]. The economic activity of humanity in the watershed
of Shihmen reservoir is an important factor that could
influence the water quality. The landuse classification using
remote sensing data can offer the administrator an efficient
and real-time monitoring of the natural change and agricul-
tural activities [26–28]. Landuse classification can offer the
administrator an efficient and real-time monitoring for the
economic activities of humanity. A SPOT-5 satellite image,
which was photographed on August 19, 2006, was acquired
as the experimental material. SPOT-5 satellite image has a
panchromaticmode (0.48m–0.71m)with a spatial resolution
of 5m and a multispectral mode (0.50m–0.59m in green,
0.61m–0.68m in red, 0.78m–0.89m in near IR, and 1.58m–
1.75m in short wave IR) with a spatial resolution of 10m.
The size of the subset satellite image is 181 × 171 pixels (a
total of 30,951 pixels). The ground truth data was produced
from an aerial photography taken on August 14, 2006. The
landuse patterns include vegetation, water, forest, bare land,
and structure, whose spectral centers and standard deviations
are listed in Tables 1 and 2.
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Figure 2: (a) Location of the Shihmen reservoir; (b) location of the study site; (c) the subset satellite image of the study site; (d) subset aerial
photograph with the same studied range; (e) distributions of ground truth.

Table 2: Standard deviations of the spectrum.

Landuse
Band

Standard deviation Overall
standard deviation

Threshold
(2𝜎)B1 B2 B3 B4

Vegetation 27.2 22.1 7.2 4.0 27.2 22.1
Water 13.5 12.8 11.5 6.6 13.5 12.8
Forest 13.4 11.2 7.4 4.2 13.4 11.2
Bare land 17.7 14.4 12.4 5.5 17.7 14.4
Structure 27.3 16.6 32.3 22.1 27.3 16.6

Most indices whenever are integrated into GA might
probably cause the excessive classifying.Therefore, expect the
5 categories of landuse in accordance with the surface; the

other categories determined here by GA are all defined as the
6th landuse, so-called others.

3. The Results

3.1. The Results Varying with Populations. We implemented
different GA operations settings in order to verify the
stable optimum of DBFCMI. In this research, the different
populations consisting of 30, 60, 75, and 90 string numbers
coupled with the given GA parameters, including maximal
string length of 8 genes [29], roulette wheel selection, two-
point crossover [24, 30], crossover probability of 0.8, and
mutation probability of 0.003 [24, 31], were tested. Tables 3
and 4 show the overall accuracy and K-HAT values derived
from the stability analysis varying with the different fitness
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Table 3: Overall accuracy of each index varying with populations.

Population
Index

Overall accuracy (%)
DBI FCMI PASI DBFCMI Average

30 71.6 73.2 64.9 75.5 71.3
60 74.7 69.3 68.6 72.9 71.4
75 70.3 73.7 70.8 72.1 71.7
90 73.8 65.7 70.7 73.9 71.0
Standard
deviation 2.0 3.7 2.8 1.4 —

∗String length: 8, selection way: roulette wheel selection, crossover rate: 0.8,
crossover way: two-point crossover, and mutation rate: 0.003.

Table 4: K-HAT of each index varying with populations.

Population
Index
K-HAT

DBI FCMI PASI DBFCMI Average
30 0.36 0.34 0.24 0.48 0.34
60 0.35 0.24 0.07 0.33 0.25
75 0.37 0.31 0.29 0.39 0.34
90 0.32 0.21 0.16 0.36 0.26
Standard
deviation 0.02 0.06 0.10 0.04 —

∗String length: 8, selection way: roulette wheel selection, crossover rate: 0.8,
crossover way: two-point crossover, and mutation rate: 0.003.

indices. In the tables, DBFCMI can mostly lead to the better
overall accuracy and K-HAT than the other indices, while the
population is 60. In Tables 5 and 6, the best overall accuracy
of 75.5% and the best K-HAT of 0.48 were derived, while the
population is assigned to 30 based on DBFCMI.

The image classification results corresponding to overall
accuracy and K-HAT values in Tables 3 and 4 are shown
in Figure 3. Figure 3 shows that there were only 3 classes
detected based on the best overall accuracy and K-HAT of
75.4% and 0.48%. It is remarkable that DBI mostly can get
the number of classifications as many as the ground truth.
However, the pixels would mostly be assigned in incorrect
classes especially in vegetation. Unlike DBFCMI, although
the numbers of classifications are mostly under the number
of real landuses, nevertheless, the distribution of each landuse
is more corresponding to the ground truth. In Figure 3, it
is remarkable that DBFCMI can distinguish structure from
the other landuses more accurately and the distribution of
structure is more corresponding to ground truth than the
other associated models.

3.2. The Results Varying with Selection Ways. Optimal solu-
tion by elite selection in GA operations includes many ways.
Two of them are adopted widely, that is, roulette wheel
selection and rank selection. Thus, the two selection ways
applied to the four indices were evaluated based on overall
accuracy and K-HAT as well. The testing results presented in
Tables 5 and 6 demonstrate that the DBFCMI can get higher

Table 5: Overall accuracy of each index varyingwith selectionways.

Selection way
Index

Overall accuracy (%)
DBI FCMI PASI DBFCMI Average

Roulette wheel
selection 71.6 73.2 64.9 75.5 71.3

Rank selection 68.3 47.7 69.1 75.1 65.0
Standard
deviation 2.3 18.0 3.0 0.3 —

∗String length: 8, population: 30, crossover rate: 0.8, crossover way: two-
point crossover, and mutation rate: 0.003.

Table 6: K-HAT of each index varying with selection ways.

Selection way
Index
K-HAT

DBI FCMI PASI DBFCMI Average
Roulette wheel
Selection 0.36 0.34 0.24 0.48 0.34

Rank selection 0.19 0.06 0.10 0.39 0.19
Standard
deviation 0.12 0.20 0.10 0.02 —

∗String length: 8, population: 30, crossover rate: 0.8, crossover way: two-
point crossover, mutation rate: 0.003.

values in both selection ways and roulette wheel selection
outperforms rank selection for most indices except PASI.

Figure 4 shows the classified results varying with selec-
tion ways related to different indices. Comparing the same
six classes between DBI (see Figure 3; population size is equal
to 60) and DBFCMI, DBFCMI can distinguish more pixels of
bare land than DBI properly and thus can get higher values of
both overall accuracy and K-HAT. The results are used once
again to verify the accuracy and stability of DBFCMI.

3.3. The Results Varying with Crossover Ways. In the way of
crossover approaches, including single-point crossover (P1),
two-point crossover (P2), multipoint crossover (P3), three-
parent crossover (P4), ordered crossover (P5), and shuffle
crossover (P6), related to the different indices, they were also
tested in this research (see Tables 7 and 8) for the accuracy
and stability analysis. Obviously, the better overall accuracy
and K-HAT values could be derived from DBFCMI than the
other indices as well as the advanced GA operations.

Figure 5 is the classified images related to Tables 7 and
8. Among these results from the indices varying with the
different crossover ways, DBFCMI still can get the higher
values of overall accuracy and K-HAT in substance except a
K-HAT value of FCMIwith themultipoint crossover way (see
Table 8). Also, DBFCMI presents its power of distinguishing
structure from the other landuses again although the classes
are mostly beneath the number of ground truth. Besides,
according to Figures 5 and 6, it is presented that while DBI
is integrated with the single-point crossover way (P1) and
two-point crossover way (P2), the results will have the higher
potential in excessive classifying than the other indices.
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4. Results Analysis

Figure 6 shows the spectral centrals of the optimal solutions
based on the four indices varying with different GA oper-
ations versus ground truth. In the figure, the difference of
spectral centers between the optimal solutions and ground
truth can be observed evidently. Among the five landuses,
bare land cannot be determined by all of the four indices
with their optimal models. Even though bare land can be
distinguished from the other landuses with some of the GA
operations, the distribution of it principally disagrees with

ground truth. On the contrary, among the optimal solutions,
the centers of forest can be determined much closer to
the ground truth in both classified centers and distribution
than the other landuses due to its wide spectrum variation,
and then vegetation, structure, and water are in sequence.
DBFCMI can only determine three kinds of landuse (i.e.,
forest, water, and structure), however the spectral centers of
the three landuses classified by DBFCMI seem to be closer
to the ground truth than the other indices especially in forest
and water. Among the GA classifications with four indices,
FCMI results in the greatest difference between the classified



The Scientific World Journal 9

149.39 

113.27 

74.94 70.54 

150.22 

115.92 

75.97 71.42 

147.22

114.47 

73.69 
69.72 

134.50 

99.54 

71.97 66.92 

0.00
20.00
40.00
60.00
80.00

100.00
120.00
140.00
160.00

B1 B2 B3 B4

B1 B2 B3 B4

Vegetation

43.60 
39.65 

53.73 
55.78 

38.77 

36.85 

52.69 
55.32 

43.63 

39.59 

53.77 
55.79 

51.35 

44.86 

55.25 56.46 
58.80 

52.41 

55.95 57.08 

35.00
37.50
40.00
42.50
45.00
47.50
50.00
52.50
55.00
57.50
60.00

B1 B2 B3 B4

B1 B2 B3 B4

Water

110.55 

95.13 

58.73 
58.84 

93.28 

58.07 

86.53 

67.46 

108.90 
95.31 

57.38 
58.15 

113.08 

97.80 

58.57 58.99 

112.09 

98.31 

57.33 58.37 50.00
60.00
70.00
80.00
90.00

100.00
110.00

Forest

DBI
FCMI
PASI

DBFCMI
Ground truth

152.46 

88.60 
101.60 

81.59 

160.94 

95.67 

115.57 

92.75 

153.65 

91.35 

105.58 

85.63 

157.93 

96.49 
110.68 

89.72 

133.23 

88.06 90.48 
77.33 75.00

85.00
95.00

105.00
115.00
125.00
135.00
145.00
155.00
165.00

Structure

DBI
FCMI
PASI

DBFCMI
Ground truth

Figure 6: Curve comparison of spectral centers between ground truth and landuse classified based on optimal solution of four indices.

Table 7: Overall accuracy value of each model varying with
crossover ways.

Crossover
way

Index
Overall accuracy (%)

DBI FCMI PASI DBFCMI Average
P1 74.3 71.6 72.9 74.6 73.3
P2 71.6 73.2 64.9 75.5 71.3
P3 70.8 72.5 71.5 72.5 71.8
P4 68.8 74.5 68.9 74.7 71.7
P5 70.5 70.2 70.9 75.0 71.6
P6 68.7 64.2 56.0 75.0 73.3
Standard
deviation 1.2 3.0 1.4 0.2 —

∗String length: 8, population: 30, selection way: roulette wheel selection,
crossover rate: 0.8, and mutation rate: 0.003.

centers and ground truth especially in forest for all bands.
It can be observed in Figure 6 that DBFCMI presents its
superiority of conformation in the distribution. On the other
hand, the results of DBI and PASI can get the optimal solution
inferior to DBFCMI; nevertheless, comparing to FCMI, their
classified centers are not only closer to ground truth but also
with a curve as smooth as the ground truth is.

According to the foregoing analysis, it is worth to notice
that rather than classifying the number of landuses accurately

Table 8: K-HAT value of each model varying with crossover ways.

Crossover
way

Index
K-HAT

DBI FCMI PASI DBFCMI Average
P1 0.32 0.31 0.33 0.36 0.33
P2 0.36 0.34 0.24 0.48 0.34
P3 0.26 0.33 0.30 0.32 0.30
P4 0.29 0.35 0.34 0.36 0.34
P5 0.35 0.25 0.26 0.37 0.31
P6 0.23 0.20 0.10 0.39 0.23
Standard
deviation 0.05 0.06 0.09 0.03 —

∗String length: 8, population: 30, selection way: roulette wheel selection,
crossover rate: 0.8, and mutation rate: 0.003.

but inconformity with the distribution, the ability of distribu-
tion determination possesses the crucial influence upon the
optimal solution.

Figures 7 and 8 are the curve comparison of overall
accuracy and K-HAT based on four indices varying with the
different GA operations, respectively. It can be observed the
higher values and stability of overall accuracy and K-HAT are
presented, while DBFCMI is adopted and then DBI, FCMI,
and PASI are in sequence. FCMI and PASI are based on the
fuzzy theory and the curves of their accuracy related to the



10 The Scientific World Journal

71.564

74.672

70.304

73.7673.167
69.33

73.717

65.67964.861
68.571

70.789 70.714

75.45

72.861 72.141
73.919

64
66
68
70
72
74
76

30 60 75 90

Overall accuracy of different populations

71.564
68.29473.167

47.709

64.861
69.095

75.45 75.069

45
50
55
60
65
70
75
80

S1 S2

Overall accuracy of different selection ways

74.287

71.564 70.783 68.825
70.499

68.71871.571

73.167
72.512

74.47

70.177

64.213

72.867

64.861

71.542 68.923
70.867

55.985

74.646 75.45
72.545

74.656 74.991 74.962

55

60

65

70

75

80

P1 P2 P3 P4 P5 P6

Overall accuracy of different crossover ways

DBI
FCMI

PASI
DBFCMI
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Figure 8: Curve comparison of K-HAT based on four indices varying with different GA operation.

different GA operations vibrate violently rather than a curve
as smooth as DBFCMI and DBI. It is remarkable that the
overall accuracy and K-HAT of PASI are inferior to the other
indices mostly in our test.

Figure 9 is the standard deviation of overall accuracy and
K-HAT. It presents the comparison curves of four indices
varying with the different GA operations. In the figure,
the smallest difference between the different GA operations
is presented still at the index of DBFCMI in both overall
accuracy and K-HAT. And then DBI, PASI, and FCMI are in

sequence.Although four indices are varyingwith the different
selections, FCMI has the largest difference between the four
indices varying with the other GA operations. This means
that the unstable analyzed results are presented at FCMImore
possible than the other indices.

5. Conclusion

This paper presented a novel fitness index, DBFCMI, in GA
process for the unsupervised classification of SPOT-5 satellite
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image. For comparison, three indices, including Davies-
Bouldin index (DBI), fuzzy C-means index (FCMI), and
partition separation index (PASI), were also adopted in GA
classification. The conclusion is drawn as follows.

(i) Spectra of bare land and vegetation are as similar as
forest in the tested image, so that it is difficult to
discriminate the three landuses from each other with
GA classifier. Therefore, in most conditions the best
associatedmodel ofGAcan only distinguish bare land
and vegetation into forest.

(ii) Overall accuracy and K-HAT are stronger related to
distribution of classified landuse than the number of
classifications. Besides, except distribution, another
critical influence is depending upon the area of
landuse especially the landuse with a large area.
The best overall accuracy of 75.5% and the best K-
HAT of 0.48 were acquired by DBFCMI, with merely
three landuses, including forest, water, and struc-
ture. However, except the distribution of water and
structure which can be determined more identical
than the other indices, the largest region of forest
can be determined appropriately by DBFCMI as well.
Therefore, the influence is not so critical even though
the spectra of bare land and vegetation are too similar
to forest to be distinguished.

(iii) Comparing with the three indices including DBI,
FCMI, and PASI, FCMI and PASI are both based
on fuzzy theory so that all the other cluster centers
will be considered to influence each independent
pixel more or less according to the distance between
the pixel and the centers. On the contrary, DBI
index based on the classic set theory identifies each
pixel in the training data into only one cluster that
reduces computation time but results in moderate
accuracy. Basically, the physical phenomenon of the
spectrum reflection resulted from the neighborhood
objects is inevitable. However, sometimes the ideal
performances of image classification are obtained by
GA coupled with DBI rather than FCMI or PASI.
DBFCMI has possessed both advantages of DBI and
fuzzy theory and all the examination of this research

had been demonstrated that it is effective in the
unsupervised image classification. As a result, the best
overall accuracy of DBFCMI, DBI, FCMI, and PASI is
75.5%, 75.0%, 74.9%, and 74.2% separately. DBFCMI
presents 0.75% increment in the average of the other
indices. Overall accuracy is promoted about 1.01%
in average. On the other hand, the best K-HAT of
DBFCMI, DBI, FCMI, and PASI is 0.48, 0.37, 0.39,
and 0.39 separately. DBFCMI presents 0.1 increments
in the average of the other indices. Accordingly,
DBFCMI can almost promote K-HAT value to 26.13%
in average.

Abbreviations

𝑥
𝑛
: Pixel 𝑛 with grey values 𝑥

𝑛: Total number of pixels
𝐾: Total number of clusters
𝑘
𝑛
: The membership value of 𝑛th pixel (if the pixel

𝑛 belongs to 𝑘, 𝑘
𝑛
= 1; otherwise, 𝑘

𝑛
= 1)

V
𝑘
: The centroid of 𝑘th cluster

𝑀
𝑘
: The number of pixels belonging to the 𝑘th
cluster

𝑆
𝑘
: Standard deviation of the pixels in the 𝑘th

cluster
𝑑
𝑘𝑗,𝑡

: Minkowski distance of order 𝑡 between the 𝑘th
and 𝑗th centroids. (here, number 2 is chosen for
𝑡)

𝑖: The 𝑖th chromosome
𝑚: Total chromosomes of each generation
𝜇
𝑗𝑖
: Membership function of pixel 𝑥

𝑖
belonging to

the 𝑗th cluster
𝑐
𝑗
: Total pixels of 𝑗th cluster

V: The mean of all of the cluster centers.
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