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Abstract We investigated the anti-obesity effect of the

aerial part of Artemisia scoparia Waldst. et Kit. (Composi-

tae). An 80 % aqueous EtOH extract of the aerial part

inhibited triglyceride (TG) accumulation and the nitric oxide

(NO) production activity. A new chromane derivative was

isolated from the aerial part of A. scoparia Waldst. et Kit.

along with 18 known compounds. The structure of the new

chromane, scopariachromane (1), was elucidated by spec-

troscopic analyses. The inhibitory effects of the compounds

on TG accumulation activity were examined. Among these,

cirsiliol (11) inhibited TG accumulation in 3T3-L1 preadi-

pocytes. Jaceosidin (12) inhibited NO production in a mur-

ine macrophage-like cell line (RAW 264.7). These results

indicate that the 80 % aqueous EtOH extract and com-

pounds isolated from the aerial part of A. scoparia Waldst. et

Kit. may improve obesity-related insulin resistance.
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Introduction

Obesity is one of the leading metabolic diseases worldwide

[1] and is closely associated with coronary heart disease,

hypertension, type 2 diabetes mellitus, cancer, respiratory

complications, and osteoarthritis [2]. Obesity is a condition

in which adipocytes accumulate a large amount of fat and

become enlarged. At the cellular level, this condition is

characterized by an increase in the number and size of

adipocytes that differentiate from 3T3-L1 preadipocytes in

the adipose tissue [3]. Recent studies have demonstrated

that the obese adipose tissue is characterized by enhanced

macrophage infiltration [4]. Macrophages produce various

inflammatory proteins such as tumor necrosis factor alpha

(TNF-a), monocyte chemoattractant protein-1 (MCP-1),

and nitric oxide (NO), which are implicated in insulin

resistance and metabolic disorders [5]. NO is a diffusible,

liposoluble, free radical gas produced from L-arginine by a

family of enzymes known as inducible NO synthases

(iNOS) [6]. In a co-culture system of RAW 264.7 macro-

phages and 3T3-L1 adipocytes, marked increases in the

secretion of inflammatory mediators such as TNF-a, MCP-

1, and NO were observed [7]. Triglyceride (TG) is syn-

thesized from glucose and fatty acid that is incorporated by

glucose transporter 4 and fatty acid transporter (CD36) into

3T3-L1 preadipocytes [8, 9]. Cultured 3T3-L1 adipocytes

have many properties similar to those of normal adipo-

cytes. Thus, this cell line is a suitable model system for

obesity-related research [10–12]. Herbal extracts from

plants such as Blumea balsamifera [13], Ginkgo biloba

[14], Wasabia japonica [15], Zizyphus jujuba [16], Morus

alba var. multicaulis [17], and Albizia julibrissin Durazz

[18] have been shown to possess anti-obesity effects. Thus,

we aimed to screen for crude drugs and natural products

with inhibitory effects on TG accumulation in adipocytes

and NO production in activated macrophages.

Artemisia scoparia Waldst. et Kit. belongs to the family

Compositae and is native to Japan, Korea, and Mongolia.

The aerial part of this plant is used in traditional medicine

as an antiphlogistic, as a diuretic, for the treatment of

hepatitis and urticaria, and as an antimold agent. Phyto-

chemical investigations of the aerial part of A. scoparia

Waldst. et Kit. resulted in the isolation of flavonoids,

coumarins, and essential oils [19].
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In the present study, we found that an 80 % aqueous

EtOH extract of A. scoparia Waldst. et Kit. inhibited TG

accumulation [22.5 % (30 lg/mL)] in 3T3-L1 adipocytes

and NO production [24.3 % (30 lg/mL)] by RAW 264.7,

which were activated by lipopolysaccharide (LPS) and

recombinant mouse interferon gamma (IFN-c).

Therefore, we analyzed A. scoparia Waldst. et Kit. to

identify the active compounds in the extract. Through

bioactivity-guided fractionation, we identified a new

chromane derivative, scopariachromane (1), and 18 known

compounds from the aerial part of A. scoparia Waldst. et

Kit. Herein, we describe the structural elucidation and

biological evaluation of these compounds.

Results and discussion

The aerial parts of A. scoparia Waldst. et Kit. were

extracted with 80 % aqueous EtOH. The 80 % aqueous

EtOH extract was suspended in H2O and partitioned with

n-hexane, CHCl3, EtOAc, and n-BuOH, successively. The

CHCl3 and EtOAc layers showed inhibitory effects on TG

accumulation [41.9 and 10.4 %, respectively (30 lg/mL)]

and NO production [55.4 and 33.1 %, respectively (10 lg/

mL)]. Bioassay-directed fractionation led to the isolation of

a new chromane derivative, named scopariachromane,

together with 18 known compounds (2–19) (Fig. 1).

Scopariachromane (1) was isolated as an amorphous

colorless powder, and its molecular formula was deter-

mined as C15H18O5 by HR-EI-MS, with seven degrees of

unsaturation. The UV spectrum of 1 showed absorption at

295 and 232 nm, and its IR spectrum showed the charac-

teristic absorption bands of hydroxyl groups (3420 cm-1), a

conjugated carbonyl group (1694 cm-1), and conjugated

double bonds (1633 and 1609 cm-1). The 1H NMR chem-

ical shifts of 1 (Table 1) indicated the presence of a 1,2,4-

trisubstituted aromatic ring at dH 7.74 (1H, d, J = 1.8 Hz,

H-5), dH 7.47 (1H, dd, J = 8.7, 1.8 Hz, H-7), and dH 6.76

(1H, d, J = 8.7 Hz, H-8); a trans-olefin at dH 7.60 (1H, d,

J = 15.9 Hz, H-10) and dH 6.36 (1H, d, J = 15.9 Hz, H-20);
a methoxy proton at dH 3.72 (3H, s, OCH3-30); and two

methyl at dH 1.45 (3H, s, H-2a) and dH 1.22 (3H, s, H-2b).

Analysis of the 13C NMR (Table 1) and DEPT spectra

revealed the presence of one carbonyl group, one methoxy

group, two methyls, seven methines, and five quaternary

carbons. All protonated carbons were assigned by HMQC

analysis. Furthermore, the 1H–1H COSY (Fig. 2) spectrum

indicated connectivity between methine protons at dH 4.55

(H-4) and dH 3.56 (H-3), H-10 and H-20, respectively.

HMBC analysis of 1 (Fig. 2) showed long-range correla-

tions between H-4 and dC 79.8 (C-2) and dC 75.9 (C-3); H-3

and C-2, dC 27.1 (C-2a) and dC 19.7 (C-2b); H-2b and C-2,

and C-3; and H-2a and C-2, and C-3, which indicated the

presence of a prenyl-type unit. Furthermore, H-5 and dC

Fig. 1 Structures of

compounds isolated from

Artemisia scoparia Waldst. et

Kit
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126.1 (C-10) and dC 69.1 (C-4); H-4 and dC 129.2 (C-5) and

C-10; and H-3 and C-10 indicated that the prenyl-type unit

was located on C-4. The degree of unsaturation at seven

also indicated that the prenyl-type unit participated in a

cyclic structure. The NOESY spectrum of 1 (Fig. 3) showed

correlations between H-2a and H-3, and H-2b and H-4.

These results suggested a quasi-trans axial. The coupling

constant between H-3 and H-4 (J = 8.7 Hz) indicated that

these protons were trans diaxial. This analysis and a com-

parison with published data indicated that 1 was a

(3R*,4S*)-3,4-dihydroxy-2,2-dimethyl-chroman derivative

[20]. In addition, HMBC correlations between H-5 and

C-10; H-20 and dC 167.2 (C-30); H-20 and dC 127.1 (C-6); and

dH 3.72 (OCH3-30) and C-30 were observed. Thus, the rel-

ative structure of 1 was determined to be scopariachromane.

The known isolated compounds were readily identified

by comparison of physical and spectral data with published

values. These compounds included three p-coumaric acid

derivatives, drupanin (2) [21], methyl 3-[40-hydroxypre-

nyl]coumarate (3) [22], and methyl 1-(30,40-dihydroxy-

phenyl)propenoate (4) [23]; five flavanes, sakuranetin (5)

[24], naringenin (6) [25], blumeatin (7) [26], 30,5,50,7-tet-

rahydroxyflavanone (8) [26], and eriodictyol (9) [27]; four

flavones, cirsilineol (10) [28], cirsiliol (11) [28], jaceosidin

(12) [29], and 5,7,20,40-tetrahydroxy-6,50-dimethoxyflavone

(13) [30]; two flavonols, axillarin (14) [31] and hyperin

(15) [32]; a flavanonol, 7-methoxytaxifolin (16) [33]; a

coumarin, scopoletin (17) [34]; a benzoic acid derivative,

vanillic acid (18) [35]; and a chromone derivative, 6-de-

methoxycapillarisin (19) [36]. Compounds 2, 3, 5–9, 13,

14–16, and 18 were isolated for the first time from the

aerial part of A. scoparia Waldst. et Kit.

The isolated compounds were evaluated for their inhibi-

tory effects against intracellular TG accumulation in 3T3-L1

cells. To determine their nontoxic concentrations, 3T3-L1

cells were treated with various concentrations (3–100 lM)

of 1–19, and the cell viability was measured by 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

(MTT) assay. None of the compounds were cytotoxic at

concentrations up to 30 lM. Thus, we used a concentration

of at most 30 lM. TG measurements were corrected for the

amount of DNA. Quercetin, which has been reported to have

inhibitory effects on TG accumulation, was used as a posi-

tive control [37]. Treatment with 7, 10, 11, and 16 (30 lM)

inhibited TG accumulation (Table 2). In particular, 11

potently inhibited intracellular TG accumulation. Compared

with 10, 11 showed a stronger inhibitory effect on TG

accumulation. These results suggest that the presence of a

hydroxy group at C-30 could be important. We also examined

the effects of 7, 10, 11, and 16 on the uptake of [1-3H]-2-

deoxy-D-glucose (Table 3). TG is synthesized from glucose

and fatty acid that are incorporated by glucose transporter 4

and fatty acid transporter CD36 [8, 38]. These compounds

inhibited glucose uptake for TG synthesis in 3T3-L1 adi-

pocytes. In addition, we have examined the inhibitory effects

of 1–19 on NO production in RAW 264.7 cells. As shown in

Table 4, compounds 1–14, 16, 17, and 19 showed inhibitory

activity. These compounds did not have cytotoxic effects

(10–30 lM). In the assay, aminoguanidine (IC50 17.5 lM),

which has been reported to have inhibitory effects on NO

production in LPS-activated RAW 264.7 macrophages via

the downregulation of iNOS, was used as a positive control

[39]. Compounds 4, 5, 7–11, 12–14, 16, and 17 showed

strong or moderate inhibitory effects on NO production

compared with aminoguanidine (Table 4). Of the 19

Fig. 2 Key COSY and HMBC correlations for 1

Fig. 3 Key NOE correlations for 1

Table 1 1H (300 MHz) and13C NMR (75 MHz) data for compound

1 (acetone-d6 with TMS as the internal standard)

Position 1

dC dH

2 79.8

2a 27.1 1.45 (3H, s)

2b 19.7 1.22 (3H, s)

3 75.9 3.56 (1H, d, J = 8.7)

4 69.1 4.55 (1H, d, J = 8.7)

5 129.2 7.74 (1H, d, J = 1.8)

6 127.1

7 129.0 7.47 (1H, d, J = 8.7, 1.8)

8 117.7 6.76 (1H, d, J = 8.7)

9 154.9

10 126.1

10 144.8 7.60 (1H, d, J = 15.9)

20 115.4 6.36 (1H, d, J = 15.9)

30 167.2

OCH3 54.4 3.72 (3H, s)

Chemical shifts are given in ppm; coupling constants J (in paren-

theses) are given in Hz
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compounds tested, compound 12 exhibited the highest

inhibitory activity against NO production (IC50 5.9 lM).

In brief, the results presented here showed that an 80 %

aqueous EtOH extract of the aerial part of A. scoparia

Waldst. et Kit. and the isolated compounds may be used to

reduce obesity, which is a serious health problem in

industrialized countries, by inhibiting NO production by

activated macrophages, and intracellular TG accumulation

and glucose uptake in mature adipocytes.

Experimental

General experimental procedure

Optical rotation (OR) was measured in MeOH using a

JASCO P-1020 polarimeter. The UV spectra were obtained

in MeOH using a JASCO V-550 spectrophotometer, and

the IR spectra were recorded using a JASCO IR A-2

spectrophotometer. The NMR spectra were recorded using

a JEOL ECX-500 spectrometer (1H NMR, 500 MHz; 13C

NMR, 125 MHz), with TMS as an internal standard. Mass

spectra were obtained using a JEOL GCmate spectrometer.

Silica gel 60 N (Kanto Chemical Corp.), YMC GEL ODS-

A (YMC Co. Ltd.), and Sephadex LH-20 (GE Healthcare)

were used for column chromatography (CC). TLC was

performed using TLC plates (thickness 0.25 mm, F254;

Merck), and compounds were visualized by spraying with

5 % (v/v) H2SO4 in EtOH and vanillin reagent. HPLC was

performed using a JASCO PU-1580 apparatus equipped

with a JASCO UV-1575 detector and a Shodex OR-2 OR

detector. Cosmosil 5C18-MS-II (10 9 250 mm i. d. and

4.6 9 250 mm i. d.; Nacalai Tesque), Cosmosil Cholester

(10 9 250 mm i. d.; Nacalai Tesque), and Cosmosil p nap

(10 9 250 mm i. d.; Nacalai tesque) were used for pre-

parative purposes.

Plant materials

The aerial part of A. scoparia Waldst. et Kit. was collected

from Inner Mongolia during 2003. An authentic specimen

of this plant was deposited in the Laboratory of Pharma-

cognosy, School of Pharmacy, Nihon University, Japan

(NK-03040).

Extraction and isolation

The aerial part of Artemisia scoparia Waldst. et Kit. (5 kg)

was extracted 3 times with 80 % aqueous EtOH. Evapo-

ration of the solvent under reduced pressure from the

combined extract afforded the EtOH extract (265 g). The

extract was suspended in H2O (1:1, v/v) and partitioned

with n-hexane (4 9 1:1, v/v), CHCl3 (4 9 1:1, v/v),

EtOAc (4 9 1:1, v/v), and n-BuOH (4 9 1:1, v/v),

Table 2 Effects of compounds 1–19 on TG accumulation in cultured

3T3-L1 adipocytes

Inhibition (%) Inhibition (%)

1 5.9 ± 3.0 11 77.0 ± 0.9**

2 7.1 ± 3.2 12 20.1 ± 14.3

3 -1.5 ± 5.0 13 4.0 ± 3.0

4 5.7 ± 7.1 14 19.1 ± 0.9

5 13.2 ± 3.6 15 -10.6 ± 4.2

6 2.6 ± 11.0 16 49.8 ± 9.6*

7 38.9 ± 3.1* 17 18.5 ± 1.3

8 -2.4 ± 4.0 18 -37.8 ± 6.1

9 -10.5 ± 3.0 19 -8.8 ± 3.6

10 37.2 ± 3.7* Quercetin 38.4 ± 3.4

Cells were treated with compounds 1–19 (30 lM) on days 0 and 3.

On day 8, the intracellular TG content of the cells was measured

Results are expressed as mean ± SE of 3 individual experiments

*p \ 0.05, **p \ 0.01 vs. control (Student’s t test)

Table 3 Effect of compounds 7, 10, 11, and 16 on glucose uptake in

3T3-L1 cells

Inhibition (%) Inhibition (%)

7 44.4 ± 3.2* 16 19.8 ± 3.2

10 67.4 ± 1.3** Quercetin 20.3 ± 1.7

11 63.1 ± 0.2**

After cell differentiation, the medium was replaced with serum-free

DMEM for 2 h, and the cells were washed and incubated in KRH

buffer containing insulin (200 nM) for 10 min. After exposure to

insulin, they were treated with samples in KRH buffer for 15 min.

After incubation, [1-3H]-2-deoxy-D-glucose (0.25 lCi/mL) was

added, and incubation was continued for 10 min. The cells were

solubilized in 0.1 % SDS. The incorporated radioactivity was mea-

sured by liquid scintillation counting

Results are expressed as the mean ± SE of 3 individual experiments

*p \ 0.05, **p \ 0.01 vs. control (Student’s t test)

Table 4 Inhibitory effects of the isolated compounds 1–19 on NO

production stimulated by LPS and IFN-c in RAW 264.7 cells

IC50 (lM) IC50 (lM)

1 73.7 11 18.0

2 46.4 12 5.9

3 41.2 13 13.0

4 21.1 14 23.1

5 25.1 15 [100

6 55.2 16 13.7

7 20.6 17 21.1

8 25.7 18 [100

9 27.3 19 38.2

10 13.1 Aminoguanidine 17.5
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successively. The amounts extracted were 0.543, 4.43,

30.0, and 56.6 g, respectively, and the residual aqueous

extract yielded 135.1 g of material. The CHCl3 extract was

subjected to silica gel CC, [n-hexane/EtOAc (100:0 ?
0:100, v/v)] to yield Fr. C-1–C-16. Fr. C-5 (409 mg) was

purified by reversed-phase HPLC with H2O/MeOH (70:30,

v/v) to yield 5 (93.6 mg). 7 (44 mg) was crystallized from

Fr. C-7 (559 mg) using MeOH. Fr. C-8 (213 mg) was

purified by reversed-phase HPLC with H2O/MeOH (43:57,

v/v) to yield 2 (2.5 mg).

Fr. C-9 (624 mg) was subjected to ODS CC [H2O/MeOH

(90:10 ? 0:100, v/v)] to yield Fr. C-9-1–C-9-5. Fr. C-9-2

(416 mg) was purified by reversed-phase HPLC with H2O/

MeOH (65:35, v/v) to yield 3 (96 mg), and 12 (9.0 mg). Fr.

C-10 was purified by reversed-phase HPLC with H2O/

MeOH (35:65, v/v) to yield 1 (7.6 mg), 10 (4.0 mg), and 17

(8.6 mg). The EtOAc extract was subjected to silica gel CC

[CHCl3/MeOH (100:0 ? 0:100, v/v)] to yield Fr. E-1–E-5.

Fr. E-2 (2463 mg) was subjected to ODS CC [H2O/MeOH

(90:10 ? 0:100, v/v)] to yield Fr. E-2-1–E-2-6. Fr. E-2-1

(329.1 mg) was subjected to Sephadex LH-20 CC [H2O–

MeOH (50:50, v/v)] to yield Fr. E-2-1-1–E-2-1-3. Fr. 2-1-2

(28.9 mg) was purified by reversed-phase HPLC with H2O/

MeOH (50:50, v/v) to yield 18 (7.7 mg). Fr. E-2-3 (845 mg)

was purified by reversed-phase HPLC with H2O/CH3CN

(60:40, v/v) to yield 4 (96 mg), 6 (29.3 mg), 8 (15.8 mg), 11

(40.7 mg), 13 (12.3 mg), 16 (39.7 mg), and 19 (12.9 mg).

Fr. E-3 (2781 mg) was subjected to ODS CC [H2O/MeOH

(90:10 ? 0:100, v/v)] to yield Fr. E-3-1–E-3-5. Fr. E-3-3

(518 mg) was purified by reversed-phase HPLC with H2O/

CH3CN (60:40, v/v) to yield 9 (98.1 mg). Fr. E-3-4

(701 mg) was subjected to Sephadex LH-20 CC [H2O/

MeOH (20:80, v/v)] to yield Fr. E-3-4-1–E-3-4-12. Fr. E-3-

4-7 (26.8 mg) was purified by reversed-phase HPLC with

H2O/CH3CN (60:40, v/v) to yield 14 (3.8 mg). Fr. E-5

(9206.2 mg) was subjected to ODS CC [H2O/MeOH

(90:10 ? 0:100, v/v)] to yield Fr. E-5-1–E-5-7. Fr. E-5-4

(1557 mg) was purified by reversed-phase HPLC with H2O/

CH3CN (10:90, v/v) to yield Fr. E-5-4-1–E-5-4-3. 15

(47.7 mg) was crystallized from Fr. E-5-4-2 (370.9 mg)

using MeOH.

Scopariachromane (1): amorphous colorless powder.

½a�25
D –40.3� (c = 1.0, MeOH). UV kmax (MeOH) nm (log e):

215 (4.00), 232 (3.99), 295 (4.03). IR (KBr) mmax cm-1:

3420 (OH), 1694 (conj. C=O), 1633 (conj. C=C). EI-MS

m/z: 232 [M]?. HR-EI-MS m/z: 278.1153 (calcd for

C15H18O5, 278.1154). The 1H and 13C NMR spectral data

for 1 are presented in Table 1.

Nitrite assay

The cells were seeded at 1.2 9 106 cells/mL onto 96-well

flat-bottom plates (Sumitomo Bakelite) and incubated at

37 �C for 2 h. The test sample was then added to the cul-

ture simultaneously with Escherichia coli LPS (100 ng/

mL) and recombinant mouse IFN-c (0.33 ng/mL), and the

cells were incubated at 37 �C, usually for 16 h. After

incubation, the cells were chilled on ice. The culture

supernatant (100 lL) was placed in wells in duplicate

96-well flat-bottom plates. A standard solution of NaNO2

was also placed in other wells on the same plates. To

quantify nitrite, 50 lL Griess reagent, 1 % sulfanilamide in

5 % H3PO4, and 0.1 % N-(1-naphthyl)ethylenediamide

dihydrochloride were added to each well. After 10 min, the

reaction products were colorimetrically quantified at

550 nm with subtraction of the background absorbance at

630 nm, using a model 3550 microplate reader (BIO-

RAD).

TG assay

3T3-L1 preadipocytes (American Type Culture Collection)

were plated in 24-well plates and maintained in DMEM

supplemented with 10 % (v/v) fetal calf serum (FCS) and

1 % (v/v) penicillin–streptomycin at 37 �C in a humidified

5 % CO2 incubator. To induce differentiation, 3-day

postconfluent 3T3-L1 preadipocytes (day 0) were stimu-

lated by adipogenic agents (500 lM 3-isobutyl-1-methyl-

xanthine, 1 lM dexamethasone, and 10 lg/mL insulin)

that were added to DMEM with 10 % (v/v) fetal bovine

serum (FBS) culture medium. After 3 days, the medium

was replaced with DMEM containing 10 % (v/v) FBS and

5 lg/mL insulin, and it was subsequently replaced every

3 days. The cells were harvested 8 days after the initiation

of differentiation. The cells were washed with PBS (-),

scraped on ice in 500 lL of sonication buffer (25 mM Tris

buffer and 1 mM EDTA; pH 7.5), and sonicated to

homogenize the cell suspension. The total TG content of

the cells was determined using the LabAssayTM triglycer-

ide kit (Wako Pure Chemical Industries, Ltd., Osaka,

Japan). The DNA concentration was determined using the

DNA quantity kit (Primary Cell Co., Ltd., Sapporo, Japan).

The TG concentration per microgram of DNA in 3T3-L1

cells was expressed as the ratio (%) relative to the control

value. The test sample dissolved in DMSO was added.

Glucose uptake assay

3T3-L1 adipocytes were harvested 8 days after the initia-

tion of differentiation. After the differentiation, the med-

ium was replaced with serum-free DMEM for 2 h, and the

cells were then washed and incubated in KRH buffer

(25 mM HEPES, 120 mM NaCl, 5 mM KCl, 1.2 mM

KH2PO4, 1 mM CaCl2, 1 mM MgSO4; pH 7.4) containing

insulin (200 nM) for 10 min at 37 �C. After exposure to

insulin, the cells were washed and treated with samples in

418 J Nat Med (2014) 68:414–420
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KRH buffer for 15 min. After incubation, [1-3H]-2-deoxy-

D-glucose (0.25 lCi/mL) was added, and incubation was

continued for 10 min. The cells were washed twice with

ice-cold KRH buffer and then solubilized with 0.1 % SDS.

The incorporated radioactivity was measured by liquid

scintillation counting. Nonspecific uptake was determined

in the presence of 20 lM cytochalasin B and was sub-

tracted from the total value. The test sample dissolved in

DMSO was added.

Cell viability assay

Cell viability was assessed using MTT. The 3T3-L1 cells

(1.0 9 105 cells/mL) were seeded in 96-well plates and

incubated for 24 h at 5 % CO2 and 37 �C and then treated

with samples. After 24 h of incubation, 20 lL of MTT

solution (1 mg/mL) was added to the cell culture, and the

cells were further incubated at 37 �C and 5 % CO2 for 4 h.

After removing the medium, the MTT formazan crystals

were dissolved in DMSO, following which the absorbance

in individual wells was determined at 570 nm using a

microplate reader and the background absorbance

(655 nm) was subtracted. The test sample dissolved in

DMSO was added.
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