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Abstract We consider a population subdivided into two demes connected by migra-
tion in which selection acts in opposite direction. We explore the effects of recombina-
tion and migration on the maintenance of multilocus polymorphism, on local adapta-
tion, and on differentiation by employing a deterministic model with genic selection on
two linked diallelic loci (i.e., no dominance or epistasis). For the following cases, we
characterize explicitly the possible equilibrium configurations: weak, strong, highly
asymmetric, and super-symmetric migration, no or weak recombination, and indepen-
dent or strongly recombining loci. For independent loci (linkage equilibrium) and for
completely linked loci, we derive the possible bifurcation patterns as functions of the
total migration rate, assuming all other parameters are fixed but arbitrary. For these
and other cases, we determine analytically the maximum migration rate below which
a stable fully polymorphic equilibrium exists. In this case, differentiation and local
adaptation are maintained. Their degree is quantified by a new multilocus version of
FST and by the migration load, respectively. In addition, we investigate the invasion
conditions of locally beneficial mutants and show that linkage to a locus that is already
in migration-selection balance facilitates invasion. Hence, loci of much smaller effect
can invade than predicted by one-locus theory if linkage is sufficiently tight. We study
how this minimum amount of linkage admitting invasion depends on the migration
pattern. This suggests the emergence of clusters of locally beneficial mutations, which
may form ‘genomic islands of divergence’. Finally, the influence of linkage and two-
way migration on the effective migration rate at a linked neutral locus is explored.
Numerical work complements our analytical results.
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1 Introduction

Migration in a geographically structured population may have opposing effects on
the genetic composition of that population and, hence, on its evolutionary potential.
On the one hand, gene flow caused by migration may be so strong that it not only
limits but hinders local adaptation by swamping the whole population with a genotype
that has high fitness in only one or a few demes. On the other hand, if migration is
sufficiently weak, gene flow may replenish local populations with genetic variation
and contribute to future adaptation. In this case, locally adapted genotypes may coexist
in the population and maintain high levels of genetic variation as well as differentiation
between subpopulations. For reviews of the corresponding, well developed one-locus
theory, see Karlin (1982), Lenormand (2002), and Nagylaki and Lou (2008).

If selection acts on more than one locus, additional questions arise immediately.
For instance, what are the consequences of the genetic architecture, such as linkage
between loci, relative magnitude of locus effects, or epistasis, on the degree of local
adaptation and of differentiation achieved for a given amount of gene flow? What are
the consequences for genetic variation at linked neutral sites? What genetic archi-
tectures can be expected to evolve under various forms of spatially heterogeneous
selection?

For selection acting on multiple loci, the available theory is much less well devel-
oped than for a single locus. One of the main reasons is that the interaction of migration
and selection, even if the latter is nonepistatic, leads to linkage disequilibrium (LD)
between loci (Li and Nei 1974; Christiansen and Feldman 1975; Slatkin 1975; Barton
1983). LD causes substantial, often insurmountable, complications in the analysis of
multilocus models. Therefore, many multilocus studies are primarily numerical and
focus on quite specific situations or problems. For instance, Spichtig and Kawecki
(2004) investigated numerically the influence of the number of loci and of epistasis on
the degree of polymorphism if selection acts antagonistically in two demes. Yeaman
and Whitlock (2011) showed that concentrated genetic architecture, i.e., clusters of
linked, locally beneficial alleles, evolve if stabilizing selection acts on a trait such that
the fitness optima in two demes differ.

Linkage disequilibrium is also essential for the evolution of recombination. The
evolution of recombination in heterogeneous environments has been studied by a
number of authors (e.g., Charlesworth and Charlesworth 1979; Pylkov et al. 1998;
Lenormand and Otto 2000), and the results depend strongly on the kind of variability
of selection across environments, the magnitude of migration, and the sign and strength
of epistasis.

Recent years have seen some advances in developing general theory for multilocus
migration-selection models. The focus of this work was on the properties of the evolu-
tionary dynamics and the conditions for the maintenance of multilocus polymorphism
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Consequences of gene flow for local adaptation and differentiation 1137

in limiting or special cases, such as weak or strong migration (Bürger 2009a,b), or in
the Levene model (Nagylaki 2009; Bürger 2009c, 2010; Barton 2010; Chasnov 2012).
This progress was facilitated by the fact that in each case, LD is weak or absent.

Using a continent-island-model framework, Bürger and Akerman (2011) and Bank
et al. (2012) analyzed the effects of gene flow on local adaptation, differentiation, the
emergence of Dobzhansky-Muller incompatibilities, and the maintenance of polymor-
phism at two linked diallelic loci. They obtained analytical characterizations of the
possible equilibrium configurations and bifurcation patterns for wide ranges of para-
meter combinations. In these models, typically high LD is maintained. In particular,
explicit formulas were derived for the maximum migration rate below which a fully
polymorphic equilibrium can be maintained, as well as for the minimum migration
rate above which the island is swamped by the continental haplotype.

Here, we explore the robustness of some of these results by admitting arbitrary
(forward and backward) migration between two demes. This generalization leads to
substantial mathematical complications, but also to new biological insight. Because
our focus is on the consequences of gene flow for local adaptation and differentiation,
we assume divergent selection among the demes, i.e., alleles A1 and B1 are favored in
deme 1, and A2 and B2 are favored in deme 2. The loci may recombine at an arbitrary
rate. By ignoring epistasis and dominance, we assume genic selection. Mutation and
random drift are neglected. Because we assume evolution in continuous time, our
model also describes selection on haploids.

The model is set up in Sect. 2. In Sect. 3, we derive the equilibrium and stabil-
ity structure for several important special cases. These include weak, strong, highly
asymmetric, and super-symmetric migration, no or weak recombination, independent
or strongly recombining loci, and absence of genotype-environment interaction. In
Sect. 4, we study the dependence of the equilibrium and stability patterns on the total
migration rate while keeping the ratio of migration rates, the recombination rate, and
the selection coefficients constant (but arbitrary). In particular, we derive the possi-
ble bifurcation patterns for the cases of independent loci (linkage equilibrium) and for
completely linked loci. With the help of perturbation theory, we obtain the equilibrium
and stability configurations for weak or strong migration, highly asymmetric migra-
tion, and weak or strong recombination. For these cases, we determine the maximum
migration rate below which a stable, fully polymorphic equilibrium is maintained, and
the minimum migration rate above which the population is monomorphic. Numerical
work complements our analytical results.

The next four sections are devoted to applications of the theory developed in Sects. 3
and 4. In Sects. 5 and 6, we use the migration load and a new, genuine multilocus,
fixation index (FST), respectively, to quantify the dependence of local adaptation and
of differentiation on various parameters, especially, on the migration and the recom-
bination rate. In Sect. 7, we investigate the invasion conditions for a mutant of small
effect (A1) that is beneficial in one deme but disadvantageous in the other deme. We
assume that the mutant is linked to a polymorphic locus which is in selection-migration
balance. We show that linkage between the loci facilitates invasion. Therefore, in such
a scenario, clusters of locally adapted alleles are expected to emerge (cf. Yeaman and
Whitlock 2011; Bürger and Akerman 2011). In Sect. 8, we study the strength of bar-
riers to gene flow at neutral sites linked to the selected loci by deriving an explicit
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approximation for the effective migration rate at a linked neutral site. Our results are
summarized and discussed in Sect. 9. Several purely technical proofs are relegated to
the Appendix.

2 The model

We consider a sexually reproducing population of monoecious, diploid individuals that
is subdivided into two demes connected by genotype-independent migration. Within
each deme, there is random mating. We assume that two diallelic loci are under genic
selection, i.e., there is no dominance or epistasis, and different alleles are favored in
different demes. We assume soft selection, i.e., population regulation occurs within
each deme. We ignore random genetic drift and mutation and employ a deterministic
continuous-time model to describe evolution. A continuous-time model is obtained
from the corresponding discrete-time model in the limit of weak evolutionary forces
(here, selection, recombination, and migration).

We denote the rate at which individuals in deme 1 (deme 2) are replaced by immi-
grants from the other deme by m1 ≥ 0 (m2 ≥ 0). Then m = m1 + m2 is the total
migration rate. The recombination rate between the two loci is designated by ρ ≥ 0.

Alleles at locus A are denoted by A1 and A2, at locus B by B1 and B2. We posit
that A1 and B1 are favored in deme 1, whereas A2 and B2 are favored in deme 2. In
deme k (k = 1, 2), we assign the Malthusian parameters 1

2αk and − 1
2αk to A1 and A2,

and 1
2βk and − 1

2βk to B1 and B2. Because we assume absence of dominance and of
epistasis, the resulting fitness matrix for the genotypes reads

⎛
⎝

B1 B1 B1 B2 B2 B2

A1 A1 αk + βk αk αk − βk

A1 A2 βk 0 −βk

A2 A2 −αk + βk −αk −αk − βk

⎞
⎠. (2.1)

By relabeling alleles, we can assume without loss of generality α1 > 0 > α2 and
β1 > 0 > β2. Hence, A1 B1 and A2 B2 may be called the locally adapted haplotypes
in deme 1 and deme 2, respectively. By relabeling loci, we can assume β1 ≥ α1. We
define

θ = α1β2 − α2β1. (2.2)

By exchanging demes, i.e., by the transformation α̃k = −αk∗ and β̃k = −βk∗ (where
k∗ denotes the deme �= k), or by exchanging loci, i.e., by the transformation α̃k = βk

and β̃k = αk , we can further assume θ ≥ 0 without loss of generality, cf. Appendix A.1.
The fitness matrix (2.1) is also obtained if the two loci contribute additively to

a quantitative trait that is under linear directional selection in each deme (Bürger
2009c). Then θ = 0 if the genotypic values are deme independent, i.e., if there is no
genotype-environment interaction on the trait level.

Because in the case θ = 0 degenerate features can occur, it will be treated sepa-
rately (Sects. 3.9 and 3.10). Therefore, unless stated otherwise, we always impose the
following assumptions on our parameters:
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Consequences of gene flow for local adaptation and differentiation 1139

α1 > 0 > α2 and β1 > 0 > β2, (2.3a)

and

β1 > α1, (2.3b)

and

θ > 0. (2.3c)

From (2.3a) and (2.3c), we infer

β2 < α2 ⇒ α1 < β1. (2.4)

Therefore, locus A is under weaker selection than locus B in both demes, i.e., |αk | ≤
|βk | for k = 1, 2, if and only if β2 < α2 holds.

The population can be described by the gamete frequencies in each of the demes.
We denote the frequencies of the four possible gametes A1 B1, A1 B2, A2 B1, and
A2 B2 in deme k by x1,k , x2,k , x3,k , and x4,k . Then the state space is S4 × S4, where
S4 = {(x1, x2, x3, x4) : xi ≥ 0 and

∑4
i=1 xi = 1} is the simplex.

The following differential equations for the evolution of gamete frequencies in
deme k can be derived straightforwardly:

ẋi,k = d

dt
xi,k = xi,k(wi,k − w̄k) − ηiρDk + mk(xi,k∗ − xi,k). (2.5)

Here the marginal fitness wi,k of gamete i and the mean fitness w̄k in deme k are
calculated from (2.1), η1 = η4 = −η2 = −η3 = 1, and Dk = x1,k x4,k − x2,k x3,k

is the linkage-disequilibrium (LD) measure. We note that Dk > 0 corresponds to an
excess of the locally adapted haplotypes in deme k. The equations (2.5) also describe
the dynamics of a haploid population if in deme k we assign the fitnesses αk , −αk , βk ,
−βk to the alleles A1, A2, B1, B2, respectively.

Instead of gamete frequencies it is often more convenient to work with allele fre-
quencies and the LD measures Dk . We write pk = x1,k + x2,k and qk = x1,k + x3,k

for the frequencies of A1 and B1 in deme k. Then the gamete frequencies xi,k are
calculated from the pk , qk , and Dk by

x1,k = pkqk + Dk, x2,k = pk(1 − qk) − Dk, (2.6a)

x3,k = (1 − pk)qk − Dk, x4,k = (1 − pk)(1 − qk) + Dk . (2.6b)

The constraints xi,k ≥ 0 and
∑4

i=1 xi,k = 1 for i = 1, 2, 3, 4, and k = 1, 2
transform into 0 ≤ pk, qk ≤ 1 and − min {pkqk, (1 − pk)(1 − qk)} ≤ Dk ≤
min {pk(1 − qk), (1 − pk)qk}. It follows that pk , qk , and Dk evolve according to
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ṗk = αk pk(1 − pk) + βk Dk + mk(pk∗ − pk), (2.7a)

q̇k = βkqk(1 − qk) + αk Dk + mk(qk∗ − qk), (2.7b)

Ḋk = [αk(1 − 2pk) + βk(1 − 2qk) − ρ] Dk

+mk [(Dk∗ − Dk) + (pk∗ − pk)(qk∗ − qk)] . (2.7c)

We emphasize that, because we are treating a continuous-time model, the parameters
ρ, mk , αk , and βk are rates (of recombination, migration, growth), whence they can
be arbitrarily large. Their magnitude is determined by the time scale. By rescaling
time, for instance to units of ρ or m, the number of independent parameters could be
reduced by one without changing the equilibrium properties.

3 Equilibria and their stability

We distinguish three types of equilibria: (i) monomorphic equilibria (ME), (ii) single-
locus polymorphisms (SLPs), and (iii) full (two-locus) polymorphisms (FPs). The first
two types are boundary equilibria, whereas FPs are internal equilibria (except when
ρ = 0). The stability properties of the ME and the coordinates and conditions for
admissibility of the SLPs can be derived explicitly. However, the stability conditions
for the SLPs and the conditions for existence or stability of FPs could be derived
only for a number of limiting cases. These include strong recombination, weak or no
recombination, weak, strong, or highly asymmetric migration.

3.1 Existence of boundary equilibria

The four ME, corresponding to fixation of one of the gametes, exist always. Their
coordinates are as follows:

M1 (A1 B1 fixed) : p̂k = 1, q̂k = 1, D̂k = 0 for k = 1, 2,

M2 (A1 B2 fixed) : p̂k = 1, q̂k = 0, D̂k = 0 for k = 1, 2,

M3 (A2 B1 fixed) : p̂k = 0, q̂k = 1, D̂k = 0 for k = 1, 2,

M4 (A2 B2 fixed) : p̂k = 0, q̂k = 0, D̂k = 0 for k = 1, 2,

where a ˆ signifies an equilibrium. There are up to four SLPs, one in each marginal
one-locus system. We denote the SLPs where B1 or B2 is fixed by PA,1 or PA,2,
respectively, and the SLPs where A1 or A2 is fixed by PB,1 or PB,2. Their coordinates
and the conditions for their admissibility can be calculated explicitly (Eyland 1971).
We define

σk = mk

αk
and τk = mk

βk
. (3.1)

By (2.3a), we have

σ1 > 0 > σ2 and τ1 > 0 > τ2 . (3.2)
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Consequences of gene flow for local adaptation and differentiation 1141

In addition, it is easy to show that the assumptions (2.3) imply:

σ1 + σ2 ≥ 0 ⇒ τ1 + τ2 < σ1 + σ2, (3.3a)

σ1 + σ2 < 0 ⇒ τ1 + τ2 < 0. (3.3b)

If locus B is fixed (for B1 or B2), the equilibrium allele frequencies at locus A are

p̂A
1 = 1

2

(
1 − 2σ1 + √

1 − 4σ1σ2

)
, p̂A

2 = 1

2

(
1 − 2σ2 − √

1 − 4σ1σ2

)
. (3.4)

If locus A is fixed, the equilibrium allele frequencies at locus B are given by

q̂B
1 = 1

2

(
1 − 2τ1 + √

1 − 4τ1τ2

)
, q̂B

2 = 1

2

(
1 − 2τ2 − √

1 − 4τ1τ2

)
. (3.5)

Thus, the four SLPs have the following coordinates:

PA,1 : p̂1 = p̂A
1 , p̂2 = p̂A

2 , q̂1 = q̂2 = 1, D̂1 = D̂2 = 0, (3.6a)

PA,2 : p̂1 = p̂A
1 , p̂2 = p̂A

2 , q̂1 = q̂2 = 0, D̂1 = D̂2 = 0, (3.6b)

PB,1 : p̂1 = p̂2 = 1, q̂1 = q̂B
1 , q̂2 = q̂B

2 , D̂1 = D̂2 = 0, (3.6c)

PB,2 : p̂1 = p̂2 = 0, q̂1 = q̂B
1 , q̂2 = q̂B

2 , D̂1 = D̂2 = 0, (3.6d)

The equilibria PA,1 and PA,2 are admissible if and only if

|σ1 + σ2| < 1, (3.7)

and the equilibria PB,1 and PB,2 are admissible if and only if

|τ1 + τ2| < 1. (3.8)

The SLPs leave the state space through one of their ‘neighboring’ ME if |σ1 + σ2|
or |τ1 + τ2| increases above 1. In particular, we find

σ1 + σ2 ↓ −1 ⇐⇒ PA,1 → M1 and PA,2 → M2, (3.9a)

σ1 + σ2 ↑ 1 ⇐⇒ PA,1 → M3 and PA,2 → M4, (3.9b)

τ1 + τ2 ↓ −1 ⇐⇒ PB,1 → M1 and PB,2 → M3, (3.9c)

τ1 + τ2 ↑ 1 ⇐⇒ PB,1 → M2 and PB,2 → M4. (3.9d)

Throughout, we use ↓ to indicated convergence from above and ↑ to indicate conver-
gence from below. Figure 1 illustrates the location of the possible equilibria.

The SLPs are asymptotically stable within their marginal one-locus system if and
only if they are admissible. Then they are also globally asymptotically stable within
their marginal system (Eyland 1971). (We use globally stable in the sense that at least
all trajectories from the interior of the designated set converge to the equilibrium.) The
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Fig. 1 Location of equilibria. In
terms of gamete frequencies, the
state space is S4 × S4, where
each S4 corresponds to one
deme. This figure shows
(schematically) the location in
S4 of all boundary equilibria and
of the stable internal equilibrium
F. F converges to F∞ if ρ → ∞
and to F0 if ρ → 0. The LE
manifold is indicated by
hatching

reader may notice that (3.7) and (3.8) are precisely the conditions for maintaining a
protected polymorphism at locus A and B, respectively.

3.2 Stability of monomorphic equilibria

At each monomorphic equilibrium, the characteristic polynomial factors into three
quadratic polynomials. Two of them determine stability with respect to the marginal
one-locus systems, whereas the third determines stability with respect to the interior of
the state space. The stability properties of the monomorphic equilibria are as follows.
The proof is given in Appendix A.2.

Proposition 3.1 M1 is asymptotically stable if

σ1 + σ2 < −1 and τ1 + τ2 < −1 (3.10)

and one of the following conditions hold:

ρ ≥ min{−α2,−β2} (3.11a)

or

ρ < min{−α2,−β2} and m2 > − (α1 + β1 + ρ + m1)(α2 + β2 + ρ)

α1 + β1 + ρ
. (3.11b)

M2 is always unstable.
M3 is asymptotically stable if

σ1 + σ2 > 1 and τ1 + τ2 < −1. (3.12)
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M4 is asymptotically stable if

σ1 + σ2 > 1 and τ1 + τ2 > 1 (3.13)

and one of the following conditions hold:

ρ ≥ α1 (3.14a)

or

ρ < α1 and m2 >
(α1 + β1 − ρ − m1)(α2 + β2 − ρ)

α1 + β1 − ρ
. (3.14b)

If one of the inequalities in (3.10), (3.12), or (3.13), or one of the inequalities for
m2 in (3.11b) or (3.14b) is reversed, the respective equilibrium is unstable.

If we assumed θ < 0, then M3 would always be unstable and M2 would be stable
if σ1 + σ2 < −1 and τ1 + τ2 > 1.

The above result shows that each of M1, M3, or M4 can be stable, but never simul-
taneously. For sufficiently loose linkage, the stability of a ME is determined solely by
its stability within the two marginal one-locus systems in which it occurs. Stability of
M3 is independent of the recombination rate. For given migration rates, the equilibria
M1 and M4 may be stable for high recombination rates but unstable for low ones. For
a low total migration rate (m1 + m2), no ME is stable. For a sufficiently high total
migration rate, there is a globally asymptotically stable ME (Sect. 4.5).

3.3 Stability of single-locus polymorphisms

As already mentioned, a single-locus polymorphism is globally attracting within its
marginal one-locus system whenever it is admissible. Although the coordinates of the
SLPs are given explicitly, the conditions for stability within the full, six-dimensional
system on S4 × S4 are uninformative because the four eigenvalues that determine
stability transversal to the marginal one-locus system are solutions of a complicated
quartic equation.

In the following we treat several limiting cases in which the conditions for stability
of the SLPs and for existence and stability of FPs can be obtained explicitly.

3.4 Weak migration

The equilibrium and stability structure for weak migration can be deduced from
the model with no migration by perturbation theory. In the absence of migration
(m1 = m2 = 0), the two subpopulations evolve independently. Because selection is
nonepistatic and there is no dominance, in each deme the fittest haplotype becomes
eventually fixed. In fact, mean fitness is nondecreasing (Ewens 1969). Our assump-
tions about fitness, i.e., (2.1) and (2.3a), imply that in deme 1 the equilibrium with
p̂1 = q̂1 = 1 and D̂1 = 0 is globally attracting, and in deme 2 the equilibrium with
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p̂2 = q̂2 = 0 and D̂2 = 0 is globally attracting. Therefore, in the combined sys-
tem, i.e., on S4 × S4, but still with m1 = m2 = 0, the (unique) globally attracting
equilibrium is given by

p̂1 = q̂1 = 1, p̂2 = q̂2 = 0, D̂1 = D̂2 = 0 . (3.15)

All other equilibria are on the boundary and unstable.
Because, generically, all equilibria in the system without migration are hyperbolic

and it is a gradient system (Shahshahani 1979; Bürger 2000, p. 42), Theorem 5.4 in
Bürger (2009a) applies and shows that the perturbation F of the equilibrium (3.15) is
globally asymptotically stable for sufficiently small migration rates m1 and m2. Bound-
ary equilibria remain unstable for sufficiently small migration rates. It is straightfor-
ward to calculate the coordinates of the perturbed equilibrium to leading order in m1
and m2. They are given by

p̂1 =1− m1

α1

α1+ρ

α1+β1+ρ
, q̂1 =1− m1

β1

β1+ρ

α1+β1 + ρ
, D̂1 = m1

α1 + β1 + ρ
, (3.16a)

p̂2 = m2

−α2

ρ − α2

ρ − α2 − β2
, q̂2 = m2

−β2

ρ − β2

ρ − α2 − β2
, D̂2 = m2

ρ − α2 − β2
. (3.16b)

Therefore, we conclude

Proposition 3.2 For sufficiently weak migration, there is a unique, globally attracting,
fully polymorphic equilibrium F. To leading order in m1 and m2, its coordinates are
given by (3.16).

Proposition 3.2 remains valid if the assumptions (2.3b) and (2.3c) are dropped.
Apart from the obvious fact that migration reduces differences between subpopula-
tions, the above approximations show that the lower the recombination rate, the smaller
is this reduction. Thus, for given (small) migration rates, differentiation between
subpopulations is always enhanced by reduced recombination. Linkage disequilib-
ria within subpopulations are always positive.

3.5 Linkage equilibrium

If recombination is so strong relative to selection and migration that linkage equilib-
rium (LE) can be assumed, i.e., if 1

ρ
maxk=1,2{|αk |, |βk |, mk} → 0, the dynamics (2.7)

simplifies to

ṗ1 = α1 p1(1 − p1) + m1(p2 − p1) , (3.17a)

ṗ2 = α2 p2(1 − p2) + m2(p1 − p2) , (3.17b)

q̇1 = β1q1(1 − q1) + m1(q2 − q1) , (3.17c)

q̇2 = β2q2(1 − q2) + m2(q1 − q2) , (3.17d)

which is defined on [0, 1]4.
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In (3.17), the differential equations for the two loci are decoupled, i.e., (3.17a) and
(3.17b) as well as (3.17c) and (3.17d) form closed systems. Thus, the dynamics of the
full system is a Cartesian product of the two one-locus dynamics. Therefore, in addition
to the ME and to the SLPs determined above, the following internal equilibrium,
denoted by F∞, may exist

p̂∞
1 = p̂A

1 , p̂∞
2 = p̂A

2 , q̂∞
1 = q̂B

1 , q̂∞
2 = q̂B

2 , (3.18)

where the p̂A
k and q̂B

k are given by (3.4) and (3.5), respectively. No other internal
equilibrium can exist. This equilibrium is admissible if and only if (3.7) and (3.8) are
satisfied, i.e., if and only if all four SLPs are admissible.

Because in the one-locus model the FP is globally asymptotically stable (hence, it
attracts all trajectories from the interior of the state space) whenever it is admissible
(Eyland 1971; Hadeler and Glas 1983, Theorem 2; Nagylaki and Lou 2008, Section
4.3.2), and because the full dynamics is the Cartesian product of the one-locus dynam-
ics, the fully polymorphic equilibrium F∞ is globally asymptotically stable whenever
it is admissible. Similarly, we conclude that a boundary equilibrium is globally asymp-
totically stable whenever it is asymptotically stable in the full system. These results
in combination with those in Sects. 3.1 and 3.2 yield the following proposition.

Proposition 3.3 Assume (3.17). Then a globally asymptotically stable equilibrium
exists always. This equilibrium is internal, hence equals F∞ (3.18), if and only if
(3.7) and (3.8) hold. It is a SLP if one of (3.7) or (3.8) is violated, and a ME if both
(3.7) and (3.8) are violated.

If, by variation of parameters, the internal equilibrium leaves (or enters) the state
space, generically, it does so through one of the SLPs. The precise conditions are:

F∞ → PA,1 ⇐⇒ τ1 + τ2 ↓ −1 and |σ1 + σ2| < 1, (3.19a)

F∞ → PA,2 does not occur, (3.19b)

F∞ → PB,1 ⇐⇒ σ1 + σ2 ↓ −1 and |τ1 + τ2| < 1, (3.19c)

F∞ → PB,2 ⇐⇒ σ1 + σ2 ↑ 1 and |τ1 + τ2| < 1. (3.19d)

When, upon leaving the state space, F∞ collides with a boundary equilibrium (SLP
or ME), the respective boundary equilibrium becomes globally asymptotically stable.

We note that F∞ → PA,2 does not occur because it requires τ1 + τ2 ↑ 1 and
|σ1 + σ2| < 1, which is impossible by (3.3). We leave the simple determination of the
conditions for bifurcations of F∞ with one of the ME to the interested reader.

Proposition 3.3 can be extended straightforwardly to an arbitrary number of loci
because the dynamics at each locus is independent of that at the other loci. This
decoupling of loci occurs because there is no epistasis.

3.6 Strong recombination: quasi-linkage equilibrium

If recombination is strong, a regular perturbation analysis of the internal equilibrium
F∞ of (3.17) can be performed. The allele frequencies and linkage disequilibria can
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be calculated to order 1/ρ. Formally, we set

mk = μk/ρ (k = 1, 2), (3.20)

keep σk and τk constant, and let ρ → ∞. Then, we obtain

p̂1 = p̂∞
1 + σ1

ρ

σ2(β1 − β2) + β1
√

1 − 4σ1σ2√
1 − 4σ1σ2

(
q̂∞

1 − q̂∞
2

) + O(ρ−2) , (3.21a)

q̂1 = q̂∞
1 + τ1

ρ

τ2(α1 − α2) + α1
√

1 − 4τ1τ2√
1 − 4τ1τ2

(
p̂∞

1 − p̂∞
2

) + O(ρ−2) , (3.21b)

D̂1 = m1

ρ

(
p̂∞

1 − p̂∞
2

) (
q̂∞

1 − q̂∞
2

) + O(ρ−2) , (3.21c)

and analogous formulas hold for the second deme. Because LD is of order 1/ρ, this
approximation may be called the quasi-linkage equilibrium approximation of the fully
polymorphic equilibrium (Kimura 1965; Turelli and Barton 1990; Nagylaki et al.
1999). We note that LD is positive in both demes and increases with increasing dif-
ferentiation between the demes, increasing migration, or decreasing recombination.

Proposition 5.1 in Bürger (2009a) shows that in every small neighborhood of an
equilibrium of the model with LE (3.17), there is one equilibrium of the perturbed
system, and it has the same stability properties as the unperturbed equilibrium. Because
of the simple structure of (3.17), a stronger result can be obtained. In an isolated one-
locus system on [0, 1]2 (e.g., (3.17a) and (3.17b)), every trajectory from the interior
converges to the unique asymptotically stable equilibrium (Sect. 3.5), and the chain-
recurrent points (Conley 1978) are the equilibria. Therefore, the same holds for the LE
dynamics (3.17), and the regular global perturbation result of Nagylaki et al. (1999)
(the proof of their Theorem 2.3) applies for large ρ. Hence the dynamical behavior
with strong recombination is qualitatively the same as that under LE. We conclude
that for sufficiently strong recombination every asymptotically stable equilibrium is
globally asymptotically stable.

3.7 No recombination

Let recombination be absent, i.e., ρ = 0. Then, effectively, we have a one-locus model
in which the four alleles correspond to the four gametes A1 B1, A1 B2, A2 B1, A2 B2.
In deme k, they have the selection coefficients 1

2 (αk +βk), 1
2 (αk −βk), 1

2 (−αk +βk),
− 1

2 (αk + βk), respectively. According to Theorem 2.4 of Nagylaki and Lou (2001),
generically, no more than two gametes can be present at an equilibrium. We will prove
a stronger result and characterize all possible equilibria and their local stability.

Because ρ = 0, there may be a polymorphic equilibrium at which only the gametes
A1 B1 and A2 B2 are present. We call it F0 and set

κk = mk

αk + βk
(k = 1, 2) . (3.22)
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Then one-locus theory (Sect. 3.1) informs us that F0 is admissible if and only if

|κ1 + κ2| < 1. (3.23)

Its coordinates are given by

p̂0
1 = q̂0

1 = 1

2

(
1 − 2κ1 + √

1 − 4κ1κ2

)
, (3.24a)

p̂0
2 = q̂0

2 = 1

2

(
1 − 2κ2 − √

1 − 4κ1κ2

)
, (3.24b)

D̂0
k = p̂k(1 − p̂k) (k = 1, 2) , (3.24c)

where p̂0
k = q̂0

k = x̂0
1,k , x̂0

2,k = x̂0
3,k = 0, and x̂0

4,k = 1 − x̂0
1,k (k = 1, 2). Within the

subsystem in which only the gametes A1 B1 and A2 B2 are present, F0 is asymptotically
stable whenever it is admissible. One-locus theory implies that

κ1 + κ2 ↓ −1 ⇐⇒ F0 → M1, (3.25a)

κ1 + κ2 ↑ 1 ⇐⇒ F0 → M4. (3.25b)

A simple application of Corollary 3.9 of Nagylaki and Lou (2007) shows that the
gamete A1 B2 will always be lost (to apply their result, recall assumptions (2.3) and
use γ22 = γ23 = 0, α1

α1+β1
< γ21 < α2

α2+β2
, γ24 = 1 − γ21). This strengthens the

result in Sect. 3.2 that M2 is always unstable. Thus, we are left with the analysis of
the tri-gametic system consisting of A1 B1, A2 B1, and A2 B2. (If θ < 0, then gamete
A2 B1 is lost.)

In Appendix A.3 it is proved that F0 is the only equilibrium at which both loci are
polymorphic except when

m1m2 = m̃ (3.26)

holds, where

m̃ = −α1α2β1β2(α1 + β1)(α2 + β2)/θ
2. (3.27)

If (3.26) holds, then there is a line of internal equilibria connecting F0 with PA,1 or
PB,2 (or M3); see Appendix A.3.

We find that F0 is asymptotically stable if

m1m2 < m̃, (3.28)

and unstable if the inequality is reversed (Appendix A.4). For sufficiently small migra-
tion rates, Proposition 3.2 implies that F0 = F and F0 is globally asymptotically stable.
If the inequality in (3.28) is reversed, F0 may or may not be admissible.

Of course, if F0 is asymptotically stable, then the equilibria M1 and M4 are unstable;
cf. (3.25). The following argument shows that M3 cannot be simultaneously stable with
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F0. We rewrite (3.28) as

κ1κ2 > −α1α2β1β2

θ2 = − σ1σ2τ1τ2

(σ1τ2 − σ2τ1)2 . (3.29)

Because

κ−1
k = σ−1

k + τ−1
k , (3.30)

(3.29) becomes

(σ1τ2 − σ2τ1)
2 + (σ1 + τ1)(σ2 + τ2) < 0 . (3.31)

Since M3 is asymptotically stable if (3.12) holds and because, as is easy to show,
(3.12) and (3.31) are incompatible, the assertion follows. It can also be shown from
(3.12) and (3.31) that M3 cannot become stable when F0 loses its stability except in
the degenerate case when σ1 + σ2 = 1 and τ1 + τ2 = −1.

In our tri-gametic system, PA,1 and PB,2 are the only possible SLPs. They may
exist simultaneously with F0 if (3.28) holds, i.e., if F0 is stable, but not otherwise
(Appendix A.5). If (3.28) holds, both are unstable (if admissible). PA,1 or PB,2 have
an eigenvalue 0 if and only if (3.26) holds or if they leave or enter the state space
through a ME. In Appendix A.5 it is shown that PA,1 is asymptotically stable if and
only if

τ1 + τ2 < −1 and |σ1 + σ2| < 1 and m1m2 > m̃, (3.32)

and PB,2 is asymptotically stable if and only if

1 < σ1 + σ2 and |τ1 + τ2| < 1 and m1m2 > m̃. (3.33)

Hence, if m1m2 increases above m̃, the SLP that is admissible becomes asymptotically
stable. Upon collision of the stable SLP with one of the adjacent ME, the corresponding
ME becomes stable and remains so for all higher migration rates. We summarize these
findings as follows:

Proposition 3.4 Except in the degenerate case when (3.26) holds, only equilibria
with at most two gametes present exist. If (3.23) is satisfied, the equilibrium F0 given
by (3.24) is admissible. If, in addition, (3.28) is fulfilled, then F0 is asymptotically
stable. For sufficiently small migration rates, it is globally asymptotically stable. If F0
is unstable or not admissible, then one of the ME (M1, M3, M4) or one of the SLPs
(PA,1, PB,2) is asymptotically stable. If (3.26) holds, then there is a line of equilibria
with three gametes present.

The proposition shows that, except for the nongeneric case when (3.26) holds,
there is always precisely one stable equilibrium point. Numerical results support the
conjecture that the stable equilibrium is globally asymptotically stable. Bifurcation
patterns as functions of m are derived in Sect. 4.8.
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In addition to F0, there exists a second FP on the edge connecting M2 and M3.
Although its coordinates can be calculated easily, it is not of interest here as it is unsta-
ble for every choice of selection and migration parameters. This unstable equilibrium
leaves the state space under small perturbations, i.e., if ρ > 0.

3.8 Highly asymmetric migration

All special cases treated above suggest that there always exists a globally asymptot-
ically stable equilibrium. This, however, is generally not true as was demonstrated
by the analysis of the two-locus continent-island (CI) model in Bürger and Akerman
(2011). There, all possible bifurcation patterns were derived and it was shown that the
fully polymorphic equilibrium can be simultaneously stable with a boundary equilib-
rium. For highly asymmetric migration rates, the equilibrium and stability structure
can be obtained by a perturbation analysis of this CI model.

Therefore, we first summarize the most relevant features of the analysis in Bürger
and Akerman (2011). Because in that analysis the haplotype A2 B2 is fixed on the
continent (here, deme 2) and there is no back migration (m2 = 0), it is sufficient to
treat the dynamics on the island (here, deme 1) where immigration of A2 B2 occurs at
rate m1. Thus, the state space is S4.

It was shown that up to two internal (fully polymorphic) equilibria, denoted by E+
and E−, may exist. Only one (E+) can be stable. Two SLPs, EA and EB, may exist.
At EA, locus A is polymorphic and allele B2 is fixed; at EB, locus B is polymorphic
and allele A2 is fixed. EA (EB) is admissible if and only if m1 < α1 (m1 < β1). EA
is always unstable. Finally, there always exists the monomorphic equilibrium EC at
which the haplotype A2 B2 is fixed on the island. The equilibrium coordinates of all
equilibria were obtained explicitly. In addition, it was proved (see also Bank et al.
2012, Supporting Information, Theorem S.4) that precisely the following two types
of bifurcation patterns can occur:

Type 1 There exists a critical migration rate m• > 0 such that:

• If 0 < m1 < m•, a unique internal equilibrium, E+, exists. It is asymptotically
stable and, presumably, globally asymptotically stable.

• At m1 = m•, E+ leaves the state space through a boundary equilibrium (EB or
EC) by an exchange-of-stability bifurcation.

• If m1 > m•, a boundary equilibrium (EB or EC) is asymptotically stable and,
presumably, globally stable.

Type 2 There exist critical migration rates m◦ and m• satisfying m• > m◦ > 0 such
that:

• If 0 < m1 < m◦, there is a unique internal equilibrium (E+). It is asymptotically
stable and, presumably, globally stable.

• At m1 = m◦, an unstable equilibrium (E−) enters the state space by an exchange-
of-stability bifurcation with a boundary equilibrium (EB or EC).

• If m◦ < m1 < m•, there are two internal equilibria, one asymptotically stable
(E+), the other unstable (E−), and one of the boundary equilibria (EB or EC) is
asymptotically stable.
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• At m1 = m•, the two internal equilibria merge and annihilate each other by a
saddle-node bifurcation.

• If m1 > m•, a boundary equilibrium (EB or EC) is asymptotically stable and,
presumably, globally stable.

For sufficiently large migration rates (m > m•• ≥ m•), EC is globally asymptoti-
cally stable in both cases. Bifurcation patterns of Type 2 occur only if the recombination
rate is intermediate, i.e., if ρ is about as large as α1.

By imbedding the CI model into the two-deme dynamics, (2.5) or (2.7), perturbation
theory can be applied to obtain analogous results for highly asymmetric migration,
i.e., for sufficiently small m2/m1 (Karlin and McGregor 1972). This is so because all
equilibria in the CI model are hyperbolic except when collisions between equilibria
occur (Bürger and Akerman 2011). Since the coordinates of the internal equilibria E+
and E− were derived, the perturbed equilibrium frequencies can be obtained. Because
they are too complicated to be informative, we do not present them. The perturbation
of E+, denoted by F, is asymptotically stable. As E− is internal, it cannot be lost by
a small perturbation. Also the boundary equilibria and their stability properties are
preserved under small perturbations. In particular, EC gives rise to M4, and the SLPs
EA and EB give rise to PA,2 and PB,2, respectively,

If recombination is intermediate, (at least) under highly asymmetric two-way migra-
tion, one stable and one unstable FP can coexist. In this case the stable FP, F, is simul-
taneously stable with either M4 or PB,2. Although there is precisely one (perturbed)
equilibrium in a small neighborhood of every equilibrium of the CI model, we can not
exclude that other internal equilibria or limit sets are generated by perturbation.

3.9 The case θ = 0

The analyses in the previous sections are based on the assumptions (2.3), in particular,
on θ > 0. However, many of the results obtained above remain valid if θ = 0. Here,
we point out the necessary adjustments.

Without loss of generality, we can assume

|αk | ≤ |βk | for k = 1, 2 (3.34)

in addition to θ = 0 and (2.3a). Then we observe that

σ1+σ2 = β2

α2
(τ1+τ2)≥τ1+τ2 and κ1+κ2 = β2

α2+β2
(τ1+τ2) < τ1+τ2. (3.35)

Therefore, either

0 < κ1 + κ2 < τ1 + τ2 ≤ σ1 + σ2 (3.36a)

or

0 > κ1 + κ2 > τ1 + τ2 ≥ σ1 + σ2 (3.36b)
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or

κ1 + κ2 = τ1 + τ2 = σ1 + σ2 = 0 (3.36c)

applies, where equality in (3.36a) and (3.36b) holds if αk = βk (k = 1, 2). In addition,

κ1 + κ2 = 0 ⇐⇒ τ1 + τ2 = 0 ⇐⇒ σ1 + σ2 = 0. (3.37)

With these preliminaries, we can treat the changes required in the above propositions
if θ = 0.

From (3.36) we infer that in Proposition 3.1 not only M2 but also M3 is always
unstable. In addition, if 0 > τ1 + τ2 ≥ σ1 + σ2, then M1 is asymptotically stable for
sufficiently strong migration, whereas M4 is stable for sufficiently strong migration if
0 < τ1 + τ2 ≤ σ1 + σ2 holds.

As already noted, Proposition 3.2 remains valid independently of the value of θ .
In Proposition 3.3, the only SLPs through which the internal equilibrium F∞ can

leave the state space are PB,1 and PB,2; see (3.19c) and (3.19d). The reason is that,
except when σ1+σ2 = 0 (and (3.37) applies), PA,1 and PA,2 are only admissible if PB,1
and PB,2 are. Thus, the locus under weaker selection always becomes monomorphic
at lower rates of gene flow than the locus under stronger selection.

If ρ = 0 (Proposition 3.4), F0 is asymptotically stable whenever it is admissi-
ble because m̃ → ∞ as θ → 0; see (3.28). In addition, (3.36) implies that F0
persists stronger gene flow than the SLPs, which are always unstable; see (3.32)
and (3.33).

In the highly symmetric case of (3.36c), SLPs cannot be lost. Thus, F∞ is always
admissible and globally stable, cf. Proposition 3.3. If ρ = 0, (3.37) implies that F0
exists always (and is stable). In the next section we show that in this highly symmetric
case the FP is always admissible for arbitrary recombination rates.

3.10 The super-symmetric case

In many, especially ecological, applications highly symmetric migration-selection
models are studied. Frequently made assumptions are that the migration rates between
the demes are identical (m1 = m2), selection in deme 2 mirrors that in deme 1
(αk = −αk∗ ), and the loci are equivalent (αk = βk). Thus, θ = 0 and (3.36c) holds,
which we assume now.

Conditions (3.7) and (3.8) imply that all four SLPs are admissible. Hence, all
monomorphisms are unstable. In addition, it can be proved that all SLPs are unstable
(Appendix A.6). If migration is weak, a globally asymptotically stable, fully polymor-
phic equilibrium (F) exists (Proposition 3.2).

Because every boundary equilibrium is hyperbolic for every parameter choice, the
index theorem of Hofbauer (1990) can be applied. Since none of the boundary equi-
libria is saturated, it follows that an internal equilibrium with index 1 exists. For small
migration rates, this is F because it is unique. Since the boundary equilibria are always
hyperbolic, no internal equilibrium can leave the state space through the boundary.
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However, we cannot exclude that the internal equilibrium undergoes a pitchfork or
a Hopf bifurcation. Numerical results support the conjecture that the internal equi-
librium is unique and globally attracting, independently of the strength of migration.
This is a very special feature of this super-symmetric case; cf. Proposition 4.3.

3.11 General case

Because a satisfactory analysis for general parameter choices seems out of reach, we
performed extensive numerical work to determine the possible equilibrium structures.
In no case did we find more complicated equilibrium structures than indicated above,
i.e., apparently there are never more than two internal equilibria. If there is one internal
equilibrium, it appears to be globally asymptotically stable. If there are two internal
equilibria, then one is unstable and the other is simultaneously stable with one boundary
equilibrium (as in the CI model). Apparently, two internal equilibria occur only for
sufficiently asymmetric migration rates and only if the recombination rate is of similar
magnitude as the selection coefficients.

A glance at the dynamical equations (2.7) reveals that an internal equilibrium can
be in LE only if p1 = p2 or q1 = q2. From (3.18), (3.4) and (3.5), we find that this
can occur only if |σ1 + σ2| = 1 or |τ1 + τ2| = 1, i.e., for a boundary equilibrium.
Thus, internal equilibria always exhibit LD.

For low migration rates as well as for high recombination rates, there is a unique,
fully polymorphic equilibrium which is globally asymptotically stable and exhibits
positive LD (Sects. 3.4 or 3.6). We denote the (presumably unique) asymptotically
stable, fully polymorphic equilibrium by F. If migration is weak, or recombination is
weak, or recombination is strong, we have proved that F is unique. Useful approxima-
tions are available for weak migration or strong recombination; see (3.16) or (3.21).
Finally, for sufficiently high migration rates one of the monomorphic equilibria is
globally asymptotically stable.

4 Bifurcation patterns and maintenance of polymorphism

Here we study how genetic variation and polymorphism depend on the strength and
pattern of migration. In particular, we are interested in determining how the maximum
migration rate that permits genetic polymorphism depends on the other parameters.
For this end, we explore properties of our model, such as the possible bifurcation
patterns, as functions of the total migration rate m. We do this by assuming that α1,
α2, β1, β2, ρ, and the migration ratio

φ = m1

m
, (4.1)

where m > 0 and 0 ≤ φ ≤ 1, are constant. The values φ = 0 and φ = 1 correspond
to one-way migration, as in the CI model. If φ = 1

2 , migration between the demes
is symmetric, an assumption made in many studies of migration-selection models.
Fixing φ and treating m as the only migration parameter corresponds to the migration
scheme introduced by Deakin (1966).
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4.1 Important quantities

We define several important quantities that will be needed to describe our results and
summarize the relevant relations between them. Let

φA = α1

α1 − α2
, (4.2a)

φB = β1

β1 − β2
, (4.2b)

φF0 = α1 + β1

α1 + β1 − (α2 + β2)
, (4.2c)

φ̃AB = α1β1(α2 − β2)

α1β1(α2 − β2) − α2β2(α1 − β1)
, (4.2d)

φAB = α1β1(α2 + β2)

α1β1(α2 + β2) − α2β2(α1 + β1)
, (4.2e)

φM1 = α1(β2 + ρ)(α1 + β1 + ρ)

α1(β2 + ρ)(α1 + β1 + ρ) − α2(β1 + ρ)(α2 + β2 + ρ)
, (4.2f)

φ̃M1 = β1(α2 + ρ)(α1 + β1 + ρ)

β1(α2 + ρ)(α1 + β1 + ρ) − β2(α1 + ρ)(α2 + β2 + ρ)
, (4.2g)

φM4 = β1(α2 − ρ)(α1 + β1 − ρ)

β1(α2 − ρ)(α1 + β1 − ρ) − β2(α1 − ρ)(α2 + β2 − ρ)
, (4.2h)

φ̃M4 = α1(β2 − ρ)(α1 + β1 − ρ)

α1(β2 − ρ)(α1 + β1 − ρ) − α2(β1 − ρ)(α2 + β2 − ρ)
, (4.2i)

φAF0 = α1(α1 + β1)(2α2 + β2)

α1(α1 + β1)(2α2 + β2) − α2(α2 + β2)(2α1 + β1)
, (4.2j)

φBF0 = β1(α1 + β1)(α2 + 2β2)

β1(α1 + β1)(α2 + 2β2) − β2(α2 + β2)(α1 + 2β1)
, (4.2k)

and

mA = α1α2

α1 − φ(α1 − α2)
, (4.3a)

mB = β1β2

β1 − φ(β1 − β2)
, (4.3b)

mF0 = (α1 + β1)(α2 + β2)

α1 + β1 − φ(α1 + β1 − α2 − β2)
, (4.3c)

mM1 = −(α1 + β1 + ρ)(α2 + β2 + ρ)

α1 + β1 + ρ − φ(α1 + β1 − α2 − β2)
, (4.3d)

mM4 = (α1 + β1 − ρ)(α2 + β2 − ρ)

α1 + β1 − ρ − φ(α1 + β1 − α2 − β2)
, (4.3e)

m∗ = 1

θ

√
−α1α2β1β2(α1 + β1)(α2 + β2)

φ(1 − φ)
. (4.3f)
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We set mA = ∞, mB = ∞, and mF0 = ∞ if φ = φA, φ = φB, and φ = φF0 ,
respectively. Similarly, we set m∗ = ∞ if θ = 0, φ = 0, or φ = 1.

The quantities mA, mB, and mF0 yield the bounds for the intervals of total migration
rates m in which the SLPs at A, B, and the polymorphic equilibrium F0, respectively,
are admissible:

− 1 < σ1 + σ2 < 1 ⇐⇒ −1 <
m

mA
< 1, (4.4a)

−1 < τ1 + τ2 < 1 ⇐⇒ −1 <
m

mB
< 1, (4.4b)

−1 < κ1 + κ2 < 1 ⇐⇒ −1 <
m

mF0
< 1. (4.4c)

Here, the left and the right inequalities correspond, and we have

mA > 0 ⇐⇒ φ > φA, (4.5a)

mB > 0 ⇐⇒ φ > φB, (4.5b)

mF0 > 0 ⇐⇒ φ > φF0 . (4.5c)

From (2.3), we obtain

mA �= 0, mB �= 0, mF0 �= 0, m∗ > 0, (4.6)

α2 ≤ mA ≤ α1, β2 ≤ mB ≤ β1, α2 + β2 ≤ mF0 ≤ α1 + β1. (4.7)

The quantities mM1 and mM4 occur in the stability conditions of the monomorphic
equilibria M1 and M4 (Proposition 4.1), and m∗ determines the range of stability of
F0; see (4.56). They satisfy

−(α1+β1+ρ) ≤ mM1 ≤ −(α2 + β2 + ρ), α2 + β2 − ρ ≤ mM4 ≤ α1 + β1 − ρ.

(4.8)

We note that mA, mB, mF0 , and mM4 assume their minima if φ = 0 and their
maxima if φ = 1, whereas mM1 assumes its minimum or maximum at φ = 1 or
φ = 0, respectively. m∗ is a convex function of φ, and symmetric around its minimum
φ = 1/2.
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The definitions of (several of) the quantities φX are motivated by the following
relations:

mA = mB ⇐⇒ φ = φ̃AB and mA < 0, (4.9a)

mA = −mB ⇐⇒ φ = φAB and mA > 0, (4.9b)

mM1 = −mA ⇐⇒ φ = φM1 and mA < 0, (4.9c)

mM1 = −mB ⇐⇒ φ = φ̃M1 and mB < 0, (4.9d)

mM4 = mA ⇐⇒ φ = φ̃M4 and mA > 0, (4.9e)

mM4 = mB ⇐⇒ φ = φM4 and mB > 0, (4.9f)

mF0 = −mB ⇐⇒ φ = φBF0 and mB < 0, (4.9g)

−mF0 = mA ⇐⇒ φ = φAF0 and mA > 0, (4.9h)

where we have

mF0 = mM4 = −mM1 ⇐⇒ ρ = 0. (4.10)

The following relations apply to m∗:

mA = −mB = m∗ ⇐⇒ φ = φAB, (4.11a)

mA = mF0 = m∗ ⇐⇒ φ = φM4 , (4.11b)

−mB = −mF0 = m∗ ⇐⇒ φ = φM1 , (4.11c)

where we derived (4.11b) and (4.11c) from (4.9c) and (4.9f) using (4.10).
In the following, we summarize the most important inequalities between the

quantities φX:

0 < φA < φAF0 < φAB < φBF0 < φB < 1, (4.12)

β2 < α2 ⇐⇒ 0 < φ̃AB < φA, (4.13)

φAF0 < φF0 < φBF0 . (4.14)

They can be derived straightforwardly from their definitions and our general assump-
tion (2.3). Finally, if ρ = 0 and θ̃ = α1α2 − β1β2, the following relations hold:

0 < φM1 < φA < φAF0 < φF0 ≤ φAB < φBF0 < φB < φM4 < 1 ⇐⇒ θ̃ ≤ 0,

(4.15a)

0 < φM1 < φA < φAF0 < φAB < φF0 < φBF0 < φB < φM4 < 1 ⇐⇒ θ̃ > 0,

(4.15b)

and

φ̃AB < φM1 if β2 < α2. (4.15c)
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Additional relations that are needed only in the proofs may be found in Appendix
A.7.

4.2 Admissibility of SLPs

We begin by expressing the conditions for admissibility of the SLPs in terms of the
total migration rate m and the migration ratio φ. Since, by (3.7), (3.8), and (4.4), every
SLP is admissible if m is sufficiently small and leaves the state space at a uniquely
defined critical migration rate, it is sufficient to determine this critical rate and the
monomorphism through which it leaves the state space. Using (4.3a), (4.3b), (4.5),
and (4.4), we infer from (3.9) that

φ < φA and m ↑ −mA ⇐⇒ PA,1 → M1 and PA,2 → M2, (4.16a)

φ > φA and m ↑ mA ⇐⇒ PA,1 → M3 and PA,2 → M4, (4.16b)

φ < φB and m ↑ −mB ⇐⇒ PB,1 → M1 and PB,2 → M3, (4.16c)

φ > φB and m ↑ mB ⇐⇒ PB,1 → M2 and PB,2 → M4. (4.16d)

In particular, no SLP is admissible if

m > max{|mA|, |mB|}. (4.17)

We observe that locus A is polymorphic and locus B is monomorphic if and only if

|mB| < m < |mA|. (4.18)

If β2 < α2, we infer from (10.18c) and (10.18d) that (4.18) holds if and only if

φ̃AB < φ < φAB. (4.19)

Therefore, (2.4) implies that if locus A is under weaker selection than locus B in
both demes (|βk | > |αk |), then there is a range of values φ and m such that locus
A is polymorphic whereas B is monomorphic. This is in contrast to the CI model or
highly asymmetric migration rates or θ = 0, where it is always the locus under weaker
selection that first loses its polymorphism while m increases. This is a pure one-locus
result and a consequence of the classical condition for a protected polymorphism,
e.g., (3.7). With two-way migration, a locus with alleles of small and similar (absolute)
effects in the demes (α1 ≈ −α2) may be maintained polymorphic for higher migration
rates than a locus with alleles of large and very different (absolute) effects.

4.3 Stability of monomorphic equilibria

Here, we reformulate the stability conditions of the ME derived in Sect. 3.2 in terms
of m and φ.
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Proposition 4.1 M1 is asymptotically stable if

φ < φA and m > max{−mA,−mB, mM1}. (4.20)

M2 is always unstable.
M3 is asymptotically stable if

φA < φ < φB and m > max{mA,−mB}. (4.21)

M4 is asymptotically stable if

φ > φB and m > max{mA, mB, mM4}. (4.22)

If in these conditions one inequality is reversed, the corresponding equilibrium is
unstable.

Proof We prove only that the statement about M1 is equivalent to that in Proposition
3.1. The others follow analogously or are immediate.

From Proposition 3.1 and (4.3a), (4.3b), (4.3d), and (4.4), we infer immediately
that M1 is asymptotically stable if and only if

1 <
m

−mA
and 1 <

m

−mB
(4.23)

and

m > mM1 . (4.24)

The possible inequalities between −mA, −mB, and mM1 are given in (10.32) and
(10.33). By (4.5a), (4.5b), and (4.12), it follows that (4.23) is feasible if and only if
φ < φA. Thus if φ ≥ φA, M1 is unstable. Therefore, (4.23) and (4.24) are equivalent
to (4.20). ��
Remark 4.2 (i) We have max{−mA,−mB, mM1} = mM1 in (4.20) if and only if

φ < min{φM1, φ̃M1} and ρ < −α2 and β2 < α2, or (4.25a)

φ < φM1 and ρ < −β2 and β2 ≥ α2. (4.25b)

(ii) We have max{mA, mB, mM4} = mM4 in (4.22) if and only if

φ > φM4 and ρ < α1. (4.26)

(iii) An internal equilibrium in LD can leave or enter the state space through M1 or
M4 only if m = mM1 or m = mM4 , respectively. If (4.25) or (4.26) holds, then
M1 or M4, respectively, become asymptotically stable by the bifurcation.
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Proof of Remark 4.2 If β2 ≥ α2, statement (i) is an immediate consequence of
(10.32a) and (10.32b) because φ < φA implies 0 < min{−mA,−mB}. If β2 < α2,
then (10.32a), (10.32b), and (10.32c) show that max{−mA,−mB, mM1} = mM1 if
(a) ρ < ρM1 (10.23) and φ̃AB < φ < φM1 or (b) ρ < ρM1 and φ ≤ φ̃AB or (c)
ρM1 < ρ < −α2 and φ < φ̃M1 , where ρM1 < −α2 by (10.26a). Invoking (10.31), we
can combine conditions (a), (b), and (c) to obtain (4.25a).

Statement (ii) follows directly from (10.18f) and (10.35a).
Statement (iii) follows by observing that only internal equilibria in LD will depend

on ρ, the factor t3 (10.4) in the characteristic polynomial at M1 is the only one that
depends on ρ, and t3 gives rise to an eigenvalue zero if and only if m = mM1 . An
analogous argument holds for M4. ��

The asymmetry between (4.25) and (4.26) results from the fact that α1 < β1 is
assumed, whereas β2 < α2 or β2 ≥ α2 is possible. The reader may recall the comments
made below Proposition 3.1. In addition, we note that if the fitness parameters and ρ

and φ are fixed, a stable ME remains stable if m is increased. This is not necessarily
so if m and φ are varied simultaneously. For related phenomena in the one-locus case,
see Karlin (1982) and Nagylaki (2012). In Sect. 4.5, we will prove global convergence
to one of the asymptotically stable ME if m is sufficiently large.

4.4 Weak migration

We recall from Proposition 3.2 that for sufficiently weak migration, there is a fully
polymorphic equilibrium, it is globally asymptotically stable, and exhibits positive
LD in both demes.

4.5 Strong migration

Proposition 4.3 For sufficiently large m, one of the monomorphic equilibria M1,
M3, or M4 is globally attracting. This equilibrium is M1, M3, or M4 if φ < φA,
φA < φ < φB, or φB < φ, respectively.

Proof The proof is based on the perturbation results about the strong-migration
limit in Section 4.2 of Bürger (2009a). The strong-migration limit is obtained if
maxk=1,2{|αk |, |βk |, ρ}/m → 0. In this limit, the demes become homogeneous and
the system of differential equations (2.7) converges to a system, where in each deme

ṗ = αp(1 − p) + βD, (4.27a)

q̇ = βq(1 − q) + αD, (4.27b)

Ḋ = [α(1 − 2p) + β(1 − 2q) − ρ] D (4.27c)

holds with p1 = p2 = p, q1 = q2 = q, D1 = D2 = D. Here,

α = (1 − φ)α1 + φα2 and β = (1 − φ)β1 + φβ2 (4.28)

123



Consequences of gene flow for local adaptation and differentiation 1159

are the spatially averaged selection coefficients and averaging is performed with
respect to the Perron-Frobenius eigenvector (1 − φ, φ) of the migration matrix (see
Section 4.2 in Bürger 2009a for a much more general treatment starting with a multi-
locus model in discrete time). Therefore, Proposition 4.10 in Bürger (2009a) applies
and, provided m is sufficiently large, all trajectories of (2.7) converge to a manifold
on which the allele frequencies and the linkage disequilibria in both demes are nearly
identical. In addition, in the neighborhood of each hyperbolic equilibrium of (4.27)
there is exactly one equilibrium of (2.7), and it has the same stability.

In the present case, the conclusion of Proposition 4.10 in Bürger (2009a) can be con-
siderably strengthened. Because the system (4.27) describes evolution in an ordinary
two-locus model under genic selection, the ME representing the gamete of highest
fitness is globally asymptotically stable. In fact, (4.27) is also a generalized gradient
system for which Lemma 2.2 of Nagylaki et al. (1999) holds. Therefore, the analog of
statement (c) in Theorem 4.3 of Bürger (2009a) applies and yields global convergence
to the unique stable equilibrium.

Finally, it is an easy exercise to show that, in the strong-migration limit, i.e., with
fitnesses averaged according to (4.28), gamete A1 B1, A2 B1, or A2 B2 has highest fitness
if φ < φA, φA < φ < φB, or φ > φB, respectively. Since there is no dominance, the
corresponding ME is the unique stable equilibrium. ��

4.6 Linkage equilibrium

We shall establish all possible equilibrium configurations and their dependence on
the parameters under LE. In Fig. 2, the equilibrium configurations are displayed as
schematic bifurcation diagrams with the total migration rate m as the bifurcation
parameter. In Theorem 4.4, we assign to each diagram its pertinent parameter combi-
nations.

In order to have only one bifurcation diagram covering cases that can be obtained
from each other by simple symmetry considerations but are structurally equivalent
otherwise, we use the sub- and superscripts X and Y in the labels of Fig. 2. For an
efficient presentation of the results, we define

PX = PB,1, PY = PA,1, Mi = M1, mX = −mB, mY = −mA, (L1)

PX = PA,1, PY = PB,1, Mi = M1, mX = −mA, mY = −mB, (L2)

PX = PA,1, PY = PB,2, Mi = M3, mX = mA, mY = −mB, (L3)

PX = PB,2, PY = PA,1, Mi = M3, mX = −mB, mY = mA, (L4)

PX = PB,2, PY = PA,2, Mi = M4, mX = mB, mY = mA. (L5)
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Fig. 2 Bifurcation diagrams for
LE. Diagrams (a)–(c) display
the equilibrium configurations
listed in Theorem 4.4. Each line
indicates one admissible
equilibrium as a function of the
total migration rate m. Only
equilibria are shown that can be
stable or are involved in a
bifurcation with an equilibrium
that can be stable. Lines are
drawn such that intersections
occur if and only if the
corresponding equilibria collide.
Solid lines represent
asymptotically stable equilibria,
dashed lines unstable equilibria.
The meaning of the superscripts
X and Y is given in (L1)–(L5)

(a)

(b)

(c)

Theorem 4.4 Assume LE, i.e., (3.17). Figure 2 shows all possible bifurcation dia-
grams that involve bifurcations with equilibria that can be stable for some m given
the other parameters.
A. Diagram (a) in Fig. 2 occurs generically. It occurs if and only if one of the following
cases applies:

φ < φ̃AB and β2 < α2 and (L1) (4.29)

or

φ̃AB < φ < φA and β2 < α2 and (L2) (4.30)
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or

φ < φA and α2 ≤ β2 and (L2) (4.31)

or

φA < φ < φAB and (L3) (4.32)

or

φAB < φ < φB and (L4) (4.33)

or

φB < φ and (L5). (4.34)

B. The following two diagrams occur only if the parameters satisfy particular relations.
Diagram (b) in Fig. 2 applies if one of the following two cases holds:

φ = φ̃AB and β2 < α2 and (L1) (4.35)

or

φ = φAB and (L4). (4.36)

Diagram (c) in Fig. 2 applies if one of the following two cases holds:

φ = φA and PX = PA,1 and mY = −mB (4.37)

or

φ = φB and PX = PB,2 and mY = mA. (4.38)

C. Figure 3 shows the order in which the bifurcation diagrams of Fig. 2 arise if φ is
increased from 0 to 1.

Proof We prove parts A and B simultaneously, essentially by rewriting the conditions
in Proposition 3.3 on admissibility and stability of the equilibria in terms of m, mA,
and mB (4.3).
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Fig. 3 Order in which the bifurcation diagrams of Fig. 2 occur as φ increases from 0 to 1

From (3.19) and (4.4), we infer easily:

F∞ → PA,1 ⇐⇒ m ↑ −mB and 0 < −mB < |mA|, (4.39a)

F∞ → PA,2 does not occur, (4.39b)

F∞ → PB,1 ⇐⇒ m ↑ −mA and 0 < −mA < −mB, (4.39c)

F∞ → PB,2 ⇐⇒ m ↑ mA and 0 < mA < |mB|, (4.39d)

F∞ → M1 ⇐⇒ m ↑ −mA = −mB and 0 < −mA = −mB, (4.39e)

F∞ → M3 ⇐⇒ m ↑ mA = −mB and 0 < mA = −mB, (4.39f)

F∞ → M2 or F∞ → M4 do not occur. (4.39g)

Invoking the relations (10.18), we can rewrite conditions (4.39a), (4.39c)–(4.39f) in
the form

F∞ → PA,1 ⇐⇒ m ↑−mB and either

φ < φAB if α2 ≤β2 or φ̃AB < φ < φAB if β2 <α2,

(4.40a)

F∞ → PB,1 ⇐⇒ m ↑ −mA and β2 < α2 and φ < φ̃AB, (4.40b)

F∞ → PB,2 ⇐⇒ m ↑ mA and φ > φAB, (4.40c)

F∞ → M1 ⇐⇒ m ↑ −mA =−mB and β2 < α2 and φ = φ̃AB, (4.40d)

F∞ → M3 ⇐⇒ m ↑ mA =−mB and φ = φAB. (4.40e)

We conclude immediately that (4.40b) applies in case (4.29) (Part A), (4.40d) in case
(4.35) (Part B), and (4.40e) in case (4.36) (Part B). From (4.12) and (4.13) we conclude
that (4.40a) applies in the following cases: (4.30)–(4.32) (Part A), or (4.37) (Part B).
Analogously we conclude that (4.40c) applies in the following cases: (4.33), (4.34)
(Part A), or (4.38) (Part B).

From Proposition 3.3 and (4.16) we obtain:

PA,1 is globally asymptotically stable ⇐⇒ −mB < m < |mA|, (4.41a)

PB,1 is globally asymptotically stable ⇐⇒ −mA < m < −mB, (4.41b)

PB,2 is globally asymptotically stable ⇐⇒ mA < m < |mB|. (4.41c)

As m → max{|mA|, |mB|}, the stable SLP leaves the state space according to (4.16),
which gives precisely the cases corresponding to diagrams (a) and (c). If φ = φA
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(mA = ∞), PA,1 is always admissible, cf. (4.37). If φ = φB (mB = ∞), PB,2 is
always admissible, cf. (4.38).

A ME is globally asymptotically stable and only if

m ≥ max{|mA|, |mB|}. (4.42)

By Proposition 4.1 and Remark 4.2 this equilibrium is M1 if φ < φA (cases (4.29)-
(4.31), (4.35)), or M3 if φA < φ < φB (cases (4.32), (4.33), (4.36)), or M4 if φB < φ

(4.34). ��
The bifurcations of equilibria that cannot be stable can be derived easily from Sects.

4.2 and 4.3 and the above theorem by noting that these are boundary equilibria and
corresponding pairs of SLPs are admissible for the same parameters; see (3.7) and
(3.8). Inclusion of these bifurcations would require the introduction of subcases.

Corollary 4.5 Under the assumption of LE, the maximum migration rate, below which
a stable two-locus polymorphism exists, is given by

m∞
max = min{|mA|, |mB|}. (4.43)

The corollary is a simple consequence of Proposition 3.3 and (4.40).

4.7 Strong recombination: quasi-linkage equilibrium

We recall from Sect. 3.6 that for sufficiently strong recombination, global convergence
to the unique stable equilibrium occurs. From the coordinates (3.21) of the perturbed
internal equilibrium, which is in quasi-linkage equilibrium, approximations could be
derived for the critical migration rates at which the internal equilibrium collides with
a boundary equilibrium and leaves the state space. It is not difficult to check with
Mathematica that for large ρ, F collides with PB,2 if m = mρ

max(PB,2) + O(ρ−2),
where

mρ
max(PB,2) = mA − (mA)3

ρ

[
β1

α1
φ − β2

α2
(1 − φ)

]

×
[

φ

β1
− 1 − φ

β2
−

√
(mA)−2 − 4φ(1 − φ)

β1β2

]
. (4.44)

We note that mρ
max(PB,2) > 0 if and only if φ > φAB, as is expected from (4.40c).

Closer examination of (4.44) reveals that both mρ
max(PB,2) > mA and mρ

max(PB,2) <

mA may hold.
Thus, the fully polymorphic equilibrium may be maintained for higher or lower

migration rates than in the case of LE. This does not conform with the intuitive expec-
tation that for reduced recombination mρ

max(PB,2) > m∞
max should hold because the

locally adapted haplotypes (Ak Bk in deme k) are less frequently broken apart. How-
ever, numerical evaluation of (4.44) shows that mρ

max(PB,2) < m∞
max occurs only
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for about 3% of the admissible parameter combinations and if it holds, mρ
max(PB,2)

is only very slightly less than m∞
max (results not shown). If ρ is about as large as the

largest selection coefficient or smaller, mmax increases with decreasing ρ. Expressions
analogous to (4.44) can be obtained for collisions of F with the other equilibria.

4.8 No recombination

Our aim is to establish all possible equilibrium configurations and their dependence
on the parameters if recombination is absent. In Fig. 4, the equilibrium configurations
are displayed as schematic bifurcation diagrams with the total migration rate m as
the bifurcation parameter. In Theorem 4.6, we assign to each diagram its pertinent
parameter combinations.

In order to have only one bifurcation diagram covering cases that can be obtained
from each other by simple symmetry considerations but are structurally equivalent
otherwise, we use the sub- and superscripts X and Y in the labels of Fig. 4. For an
efficient presentation of the results, we define

PX = PA,1, PY = PB,2, Mi = M1, mX = |mA|, mY = |mB|, (R1)

PX = PB,2, PY = PA,1, Mi = M4, mX = |mB|, mY = |mA|, (R2)

PX = PA,1, PY = PB,2, Mi = M4, mX = |mA|, mY = |mB|, (R3)

PX = PB,2, PY = PA,1, Mi = M1, mX = |mB|, mY = |mA|, (R4)

PX = PA,1, Mi = M1, mX = |mA|, (R1’)

PX = PB,2, Mi = M4, mX = |mB|, (R2’)

PX = PA,1, PY = PB,2, mX = |mA|, mY = |mB|, (R3’)

PX = PB,2, PY = PA,1, mX = |mB|, mY = |mA|. (R4’)

Theorem 4.6 Let ρ = 0. Figure 4 shows all possible bifurcation diagrams that involve
bifurcations with equilibria that can be stable for some m given the other parameters.
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(a)

(c)

(e)

(g)

(i)

(b)

(d)

(f)

(h)

(j)

Fig. 4 Bifurcation diagrams for ρ = 0. Diagrams (a)–(j) represent all equilibrium and stability config-
urations listed in Theorem 4.6. Each diagram displays the possible equilibria as a function of the total
migration rate m. Each line indicates one admissible equilibrium, drawn if and only if it is admissible. Only
equilibria are shown that can be stable or are involved in a bifurcation with an equilibrium that can be stable.
Lines are drawn such that intersections occur if and only if the corresponding equilibria collide. Solid lines
represent asymptotically stable equilibria, dashed lines unstable equilibria
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A. The following diagrams occur for an open set of parameters:

1. Diagram (a) in Fig. 4 applies if one of the following two cases holds:

0 ≤ φ < φM1 and (R1′) (4.45a)

or

φM4 < φ ≤ 1 and (R2′). (4.45b)

2. Diagram (c) in Fig. 4 applies if one of the following two cases holds:

φM1 < φ < φA and (R1′) (4.46a)

or

φB < φ < φM4 and (R2′). (4.46b)

3. Diagram (e) in Fig. 4 applies if one of the following two cases holds:

φA < φ < φAF0 and (R4) (4.47a)

or

φBF0 < φ < φB and (R3). (4.47b)

4. Diagram (g) in Fig. 4 applies if one of the following four cases holds:

φAF0 < φ < min{φF0 , φAB} and (R4) (4.48a)

or

φF0 < φ < φAB and (R2) (4.48b)

or

φAB < φ < φF0 and (R1) (4.48c)

or

max{φF0 , φAB} < φ < φBF0 and (R3). (4.48d)

B. The following diagrams are degenerate, i.e., occur only if the parameters satisfy
particular relations.

123



Consequences of gene flow for local adaptation and differentiation 1167

5. Diagram (b) in Fig. 4 applies if one of the following two cases holds:

φ = φM1 and (R1′) (4.49a)

or

φ = φM4 and (R2′). (4.49b)

6. Diagram (d) in Fig. 4 applies if one of the following two cases holds:

φ = φA and (R1′) (4.50a)

or

φ = φB and (R2′). (4.50b)

7. Diagram (f) in Fig. 4 applies if one of the following two cases holds:

φ = φAF0 and (R2) (4.51a)

or

φ = φBF0 and (R1). (4.51b)

8. Diagram (h) in Fig. 4 applies if

φ = φF0 = φAB. (4.52)

9. Diagram (i) in Fig. 4 applies if one of the following two cases holds:

φ = φF0 > φAB and (R3′). (4.53a)

or

φ = φF0 < φAB and (R4′) (4.53b)

10. Diagram (j) in Fig. 4 applies if one of the following two cases holds:

φ = φAB < φF0 and Mi = M1 (4.54a)

or

φ = φAB > φF0 and Mi = M4. (4.54b)

C. Figure 5 shows the order in which the bifurcation diagrams of Fig. 4 arise if φ

is increased from 0 to 1.
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Fig. 5 Order in which the bifurcation diagrams of Fig. 4 occur as φ increases from 0 to 1, where θ̃ =
α1α2 − β1β2

Proof We prove parts A and B simultaneously and derive the statements about admis-
sibility and stability of the equilibria by rewriting the conditions in Sect. 3.7 in terms
of m, mA, mB, mF0 , and m∗ (4.3). These critical migration rates satisfy the relations
given in (4.9), (4.11), (10.19) and (10.37).

We start by treating the bifurcations and stability of F0. Using (4.5c) and (4.4c),
we infer from (3.25):

F0 → M1 ⇐⇒ m ↑ −mF0 and φ < φF0 , (4.55a)

F0 → M4 ⇐⇒ m ↑ mF0 and φ > φF0 . (4.55b)

From (4.15) we conclude that (4.55a) applies precisely in the following cases: (4.45a),
(4.46a), (4.47a), (4.48a), (4.48c) (Part A), or (4.49a), (4.50a), (4.51a), (4.54b) (Part B).
Similarly, (4.55b) applies in precisely the following cases: (4.45b), (4.46b), (4.47b),
(4.48b), (4.48d) (Part A) or (4.49b), (4.50b), (4.51b), (4.54b) (Part B). F0 is admissible
for every m > 0 if and only if φ = φF0 , which corresponds to the remaining three
cases (4.52) and (4.53b), (4.53a).

Condition (3.26), which determines when F0 changes stability, is equivalent to
m = m∗. Therefore, Proposition 3.4 and the definitions of mF0 and m∗ imply that F0
is asymptotically stable if and only if either

0 < m < |mF0 | ≤ m∗ (4.56a)

or

0 < m < m∗ < |mF0 | (4.56b)

holds, where

0 < |mF0 | ≤ m∗ ⇐⇒ φ ≤ φM1 or φ ≥ φM4 , (4.57a)

0 < m∗ < |mF0 | ⇐⇒ φM1 < φ < φM4 . (4.57b)

If (4.56a) applies, according to (4.55), F0 leaves the state space at m = −mF0 or
m = mF0 and exchanges stability with the respective monomorphism. By (4.57a), this
occurs in the cases (4.45) or (4.49) of the theorem.

If (4.56b) applies, F0 loses stability at m = m∗ and, generically, either PA,1 or
PB,2 is asymptotically stable if m > m∗ (see below). F0 remains admissible up to
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m = |mF0 |, when it collides with M1 or M4. By (4.15) and (4.57b), this occurs in the
cases (4.46)–(4.48), (4.50), (4.51), (4.53), and (4.54).

Finally, if φ = φAB (cases (4.52) and (4.54) in the theorem), M3 becomes stable.
This follows from the statement below (3.31) together with (4.11a).

Next, we treat the bifurcations of the SLPs. The SLPs are admissible in intervals
of the form 0 < m < |mA| or 0 < m < |mB| and leave the state space upon collision
with a ME (Sect. 4.2). From (3.32) we conclude by simple calculations that PA,1 is
asymptotically stable if and only if

m∗ < m < |mA| and φM1 < φ < φAB, (4.58)

as is the case in (4.46a), (4.47a), (4.48a) (if min{φF0 , φAB} = φAB), and (4.48b), as
well as in (4.50a), (4.51a), and (4.53b).

From (3.33), we conclude that PB,2 is asymptotically stable if and only if

m∗ < m < |mB| and φAB < φ < φM4 , (4.59)

as is the case in (4.46b), (4.47b), (4.48c), and (4.48d) (if max{φF0 , φAB} = φAB), as
well as in (4.50b), (4.51b), and (4.53a).

It remains to study the stability of the ME. For ρ = 0, we infer from Sect. 4.1 and
Proposition 4.1:

M1 is asymptotically stable ⇐⇒
{

m >−mF0 and φ<φM1 , or

m >−mA and φM1 ≤ φ<φA,
(4.60a)

M3 is asymptotically stable ⇐⇒ m >max{|mA|, |mB|} and φA <φ<φB, (4.60b)

M4 is asymptotically stable ⇐⇒
{

m >mB and φB <φ ≤ φM1, or

m >mF0 and φM4 <φ.
(4.60c)

In conjunction with the above results on F0 and the SLPs, this shows that, except in
the degenerate cases (4.49), (4.50), (4.52), and (4.54), a ME becomes stable through
a transcritical bifurcation with either F0, PA,1, or PB,2. In particular, M1 becomes
asymptotically stable for large m if (4.45a), (4.46a), or (4.49a) applies, M3 becomes
asymptotically stable if one of (4.47), (4.48), (4.51), (4.52), (4.53), or (4.54) applies,
and M4 becomes asymptotically stable if (4.45b), (4.46b), or (4.49b) applies. Ifφ = φA

or φ = φB (4.50), then PA,1 or PB,2, respectively, is admissible and asymptotically
stable for every m, and every ME is unstable. This finishes the proof of parts A and B.

Part C of Theorem 4.6 follows immediately from parts A and B by applying the
relations in (4.15). ��

This theorem demonstrates that, for given selection parameters, the equilibrium
structure, hence also the evolutionary dynamics, depends strongly on the degree φ of
asymmetry of the migration rates. However, it is also important to note (and maybe
counter intuitive) that for symmetric migration (φ = 1/2) any of the ten possible bifur-
cation diagrams may apply, simply by choosing the selection parameters accordingly.
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The bifurcations of equilibria that cannot be stable can be derived easily from Sects.
4.2, 4.3, 3.7, and the above theorem by noting that these are boundary equilibria and
corresponding pairs of SLPs are admissible for the same parameters. Inclusion of these
bifurcations would require the introduction of subcases. In particular, PA,2, PB,1, and
M2 are always unstable because gamete A1 B2 is eventually lost. We observe from
(10.20) and (10.38) that at most one pair of SLPs can be admissible if F0 is either
unstable or not admissible. If this is the case, then one of these SLPs is asymptotically
stable (Fig. 4).

Corollary 4.7 If ρ = 0, the maximum migration rate, below which a stable two-locus
polymorphism exists, is given by

m0
max = min{|mF0 |, m∗}. (4.61)

The corollary follows from the arguments surrounding (4.56) and (4.57).

4.9 Weak recombination

If m �= m∗, a regular perturbation analysis of F0 yields the coordinates of a fully poly-
morphic (internal) equilibrium to leading order in ρ. This equilibrium, F, is asymp-
totically stable (Karlin and McGregor 1972). We denote the first-order approximation
of F by Fρ . Therefore, we have F = Fρ + o(ρ) and Fρ = F0 + O(ρ) as ρ → 0.
Because the coordinates of Fρ are much too complicated to be informative, we refrain
from presenting them.

For sufficiently small ρ, the following properties of Fρ (hence, of F) can be inferred
from Proposition 4.1, Remark 4.2, and Theorem 4.6, Part A.1:

Fρ → M1 ⇐⇒ m ↑ mM1 and φ ≤ φM1 , (4.62a)

Fρ → M4 ⇐⇒ m ↑ mM4 and φM4 ≤ φ. (4.62b)

The above perturbation analysis can not be used to investigate the properties of the
internal equilibrium F for given small positive ρ when m is varied in the proximity of
m∗. Therefore, we performed numerical calculations to study the fate of F when ρ is
small and fixed, and m increases. It suggests the following:

F → PA,1 ⇐⇒ m ↑ m∗
A and φM1 < φ < φAB, (4.63a)

F → M3 ⇐⇒ m ↑ m∗ = mA = −mB and φ = φAB, (4.63b)

F → PB,2 ⇐⇒ m ↑ m∗
B and φAB < φ < φM4 , (4.63c)

where m∗
A and m∗

B are close to m∗. Thus, if ρ is small, F stays close to F0 as m
increases from 0 until a value close to m∗ is reached. Then, within a very short interval
of m, F moves ‘quickly’ along the manifold given by (10.8) and (10.11) to one of the
boundary equilibria (PA,1, PB,2, or M3) on the ‘opposite’ side of the state space, where
it exchanges stability upon collision with the respective equilibrium (at m∗

A, m∗
B, or

m∗). F appears to be asymptotically stable whenever it is admissible.
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If one of the cases in (4.62) applies, then F0 can be maintained for higher migration
rates than F because mM1 and mM4 are decreasing functions in ρ. Numerical inves-
tigations support the conjecture that F0 can be maintained for higher migration rates
than F whenever recombination is weak but positive. Thus, when recombination is
weak, decreasing ρ increases the maximum migration rate below which a stable, fully
polymorphic equilibrium can be maintained.

4.10 Highly asymmetric migration

As already discussed in Sect. 3.8, by introducing weak back migration (i.e., φ close
to 0 or 1) to the CI model, every equilibrium in the CI model gives rise to a unique
equilibrium in a small neighborhood. This (perturbed) equilibrium has the same sta-
bility as the unperturbed. For weak or strong recombination, we can strengthen this
conclusion. Because the CI model with ρ = 0 is a generalized gradient system (Bürger
and Akerman 2011, Section 3.4.4) and the LE dynamics (3.17) has a globally asymp-
totically stable equilibrium (Theorem 4.4), the proof of Theorem 2.3 of Nagylaki et al.
(1999) applies and shows that in both cases the global dynamics remains qualitatively
unchanged under small perturbations. In particular, no new equilibria or limit sets are
generated by a small perturbation.

Therefore, if ρ is sufficiently small and φ is sufficiently close to 0 or 1, we infer
from Section 3.8 and Theorem 2 in Bürger and Akerman (2011) that the following
bifurcation pattern applies (where i = 1 or 4):

• If 0 < m < mMi , a unique internal equilibrium, F, exists. It is globally asymptot-
ically stable.

• At m = mMi , F leaves the state space through the ME Mi by an exchange-of-
stability bifurcation.

• If m > mMi , Mi is globally asymptotically stable.

This pattern is displayed in diagram (a) of Fig. 4, where F0 needs to be substituted by
F. We conjecture that it applies whenever ρ is sufficiently small and either φ < φM1 or
φ > φM4 holds. The bounds φM1 and φM4 follow from Remark 4.2 because φ̃M1 is not
needed if ρ is sufficiently small; see (10.32b). However, the upper bounds for ρ given
in Remark 4.2 are, in general, too large to guarantee the above bifurcation pattern.
This is known from the CI model in which the monomorphic equilibrium (Mi ) may
be simultaneously stable with the internal equilibrium F because an unstable internal
equilibrium enters the state space at m = mMi through Mi . If φ = 1, this may occur
if 1

3 (α1 + β1) < ρ < 3α1 − β1, cf. (4.65b). For φ �= 0 or φ �= 1, we have not been
able to determine the upper bound for ρ below which F indeed leaves the state space
through Mi .

Now we treat large ρ. Proposition 4.1 and Remark 4.2 show that if ρ >

max{−α2,−β2}, then M1 is asymptotically stable if and only if φ < φA and
m > max{−mA,−mB}, and if ρ > α1, then M4 is asymptotically stable if and
only if φ > φB and m > max{mA, mB}.

If, in addition to ρ being sufficiently large, φ is small or large, then Theorem 4.4
implies that the internal equilibrium (F) leaves the state space through PA,1, PB,1,
or PB,2. The respective conditions are small perturbations of those given in (4.40a),
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(4.40b), of (4.40c), respectively. Combining theses conditions with those for the sta-
bility of the ME and observing (4.12) and (4.13), we conclude that the following
bifurcation pattern applies if one of the conditions (a) α2 ≤ β2 and φ < φA, or (b)
β2 < α2 and φ < φ̃AB, or (c) φ > φB holds approximately:

• If 0 < m < m•, a unique internal equilibrium, F, exists. It is asymptotically stable.
• At m = m•, F leaves the state space through a SLP by an exchange-of-stability

bifurcation.
• If m• < m < m••, this SLP is asymptotically stable.
• If m ≥ m••, then a ME is asymptotically stable.

If (a) holds, then m• ≈ −mB and the SLP and the ME are PA,1 and M1, respectively;
if (b) holds, then m• ≈ −mA and the SLP and the ME are PB,1 and M1, respectively;
if (c) holds, then m• ≈ mA and the SLP and the ME are PB,2 and M4, respectively.
Finally, m•• = max{−mA,−mB} in (a) and (b), and m•• = max{mA, mB} in (c).

4.11 Maintenance of polymorphism

As already noted in Sect. 3.11, for general parameters the equilibrium configurations
could not be determined analytically. To explore the potential of spatially hetero-
geneous selection in maintaining genetic variation in the presence of gene flow, we
investigate the maximum total migration rate, mmax, that admits a stable, fully poly-
morphic equilibrium. We have already shown that mmax = m∞

max holds in the LE
approximation (Corollary 4.5), and mmax = m0

max holds if ρ = 0 (Corollary 4.7).
From (10.20) and (10.38) we conclude that

m∞
max ≤ m0

max, (4.64)

where, as is not difficult to show, equality holds if and only if φ = φAB.
For the CI model with φ = 1, Proposition 1 in Bürger and Akerman (2011) yields

mmax =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α1+β1−ρ if 0<ρ ≤min{α1,
1
3 (α1+β1)}, (4.65a)

(α1+β1+ρ)2

8ρ
if 1

3 (α1+β1)<ρ ≤ 3α1−β1, (4.65b)

α1

(
1+ β1−α1

ρ

)
if max{α1, 3α1−β1} < ρ. (4.65c)

In this case, the fully polymorphic equilibrium is globally asymptotically stable if
(4.65a) or (4.65c) apply, but only locally stable if (4.65b) holds and m is close to
mmax. A formula analogous to (4.65), but with −α2 and −β2 instead of α1 and β1,
holds if φ = 0.

In general, we have no explicit formula for mmax. However, extensive numerical
work, as well as (4.65) and the considerations in Sect. 4.9 suggest that

mmax ≤ m0
max (4.66)
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(a) (b)

(c) (d)

Fig. 6 The maximum amount of gene flow, mmax, admitting an asymptotically stable two-locus polymor-
phism as a function of φ or ρ. In panels a and b, locus B is under stronger selection than locus A in both
demes (α2 = −2α1 = −1, β1 = −β2 = 2, θ = 1). In c and d, different loci are under stronger selection in
the two demes (α1 = −β2 = 0.4, β1 = −α2 = 2, θ = 3.84). Panels a and c show mmax as a function of φ

for complete linkage (m0
max, (4.61)) and under linkage equilibrium (m∞

max, (4.43)). Panels b and d display
mmax for the indicated values of φ as a function of ρ. Here, mmax is obtained by determining numerically
the critical migration rate when the stable internal equilibrium hits the boundary. This is done by computing
when the leading eigenvalue at the boundary equilibrium is zero and by calculating the coordinates of the
fully polymorphic equilibrium in a small neighborhood. In a and b, we have φ̃AB = 1

4 (indicated by the

kink in the dashed line in a), φM1 = 5
17 , φA = 1

3 , φAB = 3
8 , φB = 1

2 , φM4 = 5
8 . In c and d, we have

φM1 = 1
26 , φA = 1

6 , φAB = 1
2 , φB = 5

6 , φM4 = 25
26

holds always. This is illustrated by Fig. 6, which displays the dependence of mmax on
the migration ratio φ (Fig. 6a, c) and on the recombination rate ρ (Fig. 6b, d) for two
selection regimes. In Fig. 6a, b, locus B is under stronger selection in both demes. In
Fig. 6c, d, each locus is under stronger selection in one deme.

In Fig. 6a, c, m∞
max and m0

max are shown as functions of φ. The inequality (4.64) is a
conspicuous feature in both cases. Also the shapes of m∞

max and m0
max are conspicuous.

The following properties are easy to prove: m∞
max is not differentiable at φ = φAB and

φ = φ̃AB, and m0
max is not differentiable at φ = φM1 and φ = φM4 . m∞

max and m0
max

are piecewise convex functions in φ. If φ < φM1 , m0
max increases in φ; if φM4 < φ,

m0
max decreases in φ; if φM1 < φ < φM4 , m0

max assumes its minimum at 1
2 provided

φM1 ≤ 1
2 ≤ φM4 . Therefore, m0

max attains its maximum at φM1 or φM4 . m∞
max increases

if φ < φAB and decreases if φ > φAB. It assumes its maximum at φAB.
Notably, m∞

max = m0
max holds if φ = φAB. Numerical work suggests that indeed

mmax = m∞
max = m0

max holds independently of ρ if φ = φAB. If θ = 0, then φA =
φB = φAB = φF0 and m∞

max = m0
max if φ = φAB. The latter condition is equivalent

to (3.36c). Therefore, the analysis in Sect. 3.10 applies and shows that an internal
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equilibrium, which presumably is globally asymptotically stable, exists always, i.e.,
mmax = m∞

max = m0
max = ∞.

Figure 6b, d illustrates the effect of recombination on mmax for different values of
φ. In all cases investigated, mmax decreased monotonically with increasing ρ. These
findings support the conjecture that (4.66) is always valid. Therefore, m0

max − m∞
max

serves as a useful estimate for the sensitivity of mmax to variation in ρ. We can prove
that m0

max − m∞
max is maximized at φ = φM1 , or at φ = φM4 , or at φ = 0 if β2 < α2.

Although we proved that mmax < m∞
max can occur (Sect. 4.7), all numerical exam-

ples showed that mmax is only very slightly smaller than m∞
max in this case (results not

shown). Therefore, our results suggest that the cases of LE (infinitely strong recom-
bination) and of no recombination ‘essentially’ bracket the range of parameters for
which both loci can be maintained polymorphic.

As Fig. 6a, c shows, the range of values φ for which the equilibrium structure can
be expected to be similar to the CI model, i.e., φ < min{φM1, φ̃AB} or φ > φM4 (Sect.
4.10), can vary considerably.

Finally, we infer from Proposition 4.1 that none of the ME is stable if m <

max{|mA|, |mB|}. Hence, in this case at least one locus is maintained polymorphic. By
contrast, we have shown in Sect. 4.2 that no SLP is admissible if m > max{|mA|, |mB|}.
However, as demonstrated by our results for ρ = 0, an internal equilibrium may be
asymptotically stable if max{|mA|, |mB|} < m < m0

max. These results suggest that no
genetic variability can be maintained if

m > max{|mA|, |mB|, m0
max}. (4.67)

This bound is best possible if ρ = 0. For sufficiently large ρ, the corresponding bound
is max{|mA|, |mB|}.

5 Migration load and local adaptation

Here, we briefly investigate some properties of the migration load of the subpopulations
and of the total population. We use these migration loads as simple measures for
local adaptation (but see Blanquart et al. 2012). Mean fitness in deme k is given by
w̄k = αk(2pk − 1) + βk(2qk − 1), with its maximum at αk + βk . Therefore, the
migration loads in demes 1 and 2, defined as the deviation of w̄k from its maximum,
are given by

L1 = 2(α1(1 − p1) + β1(1 − q1)) and L2 = 2(−α2 p2 − β2q2). (5.1)

Assuming that the subpopulations are of equal size, we define the load of the total
population by L = 1

2 (L1 + L2).
If migration is weak, we can calculate the migration load in each deme at the fully

polymorphic equilibrium F (Proposition 3.2) to leading order in m1 and m2. For deme
1, we obtain

L1 ≈ 2m1
α1 + β1 + 2ρ

α1 + β1 + ρ
, (5.2)
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and an analogous formula holds for deme 2. Obviously, the migration load increases
with increasing migration rates m1 or m2, hence with m, in each of the demes and in
the total population. Simple calculations show that each of the loads also increases
with increasing recombination rate ρ if migration is weak.

In general, however, the load in each deme does not always increase with increasing
m. The reason is that for sufficiently strong migration, generically, first one locus, then
one of the haplotypes becomes fixed (Proposition 4.3). If this is either A1 B1 or A2 B2,
then the load in the corresponding deme will vanish for high migration rates, whereas
that in the other deme will be very high. In such a case, the load of the total population
may also decrease with increasing m. This occurs for large migration rates (not far
below mmax) and it can occur for completely linked loci as well as for loci in LE. In
the CI model, the load always increases with the migration rate (Bürger and Akerman
2011)

Finally, although L is increasing in ρ if migration is weak, this is not necessarily
so if migration is strong. By using a grid of parameter combinations, we showed
numerically that in about 0.34% of more than 106 combinations of α1, α2, β1, β2, m,
and φ, the total load L at the equilibrium F∞ is lower than that at F0 (results not
shown). Again, this occurs for high migration rates, not far below the value m∞

max at
which F∞ leaves the state space. Then a population maintained fully polymorphic
by tight linkage may have a higher total load than a population in which fixation of a
locus or a haplotype is facilitated by high recombination. In all such cases, selection in
one deme was (considerably) stronger than in the other, and in more than 70% of the
cases, a specialist haplotype became fixed at very high migration rates. In summary,
under a wide range of conditions in this model, reduced recombination is favored, but
there are instances where increased recombination is favored (cf. Pylkov et al. 1998;
Lenormand and Otto 2000).

6 FST and differentiation

The most commonly used measure for quantifying differentiation in spatially struc-
tured populations is FST. For diallelic loci, FST can be defined as FST = Var(p)

p̄(1− p̄)
,

where Var(p) is the variance of the allele frequencies in the total population and p̄ is
the allele frequency averaged over the demes. Estimators of multilocus FST are usually
defined as weighted averages of one-locus FST estimators (e.g., Weir and Cockerham
1984; Leviyang and Hamilton 2011). Here, we extend Nagylaki’s (1998) approach
and define a genuine multilocus version of FST that measures the covariance of the
frequencies of (multilocus) haplotypes. We restrict attention to the diallelic two-locus
case, but the extension to multiple multiallelic loci is evident. A general multilocus
theory of fixation indices will be developed elsewhere.

Let ck denote the proportion of the population in deme k, so that
∑

k ck = 1. Then
the frequency of haplotype i in the entire population is x̄i = ∑

k ck xi,k . Because
our subpopulations are randomly mating, the frequency of genotype i j in the entire
population is given by xi x j = ∑

k ck xi,k x j,k . Following eqs. (6a) and (6b) in Nagylaki
(1998), we define FST,i j as a standardized measure of the covariance of the frequencies
of haplotypes i and j :
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x2
i = x̄2

i + FST,i i x̄i (1 − x̄i ), (6.1a)

xi x j = (1 − FST,i j )x̄i x̄ j . (6.1b)

The multilocus, or haplotype, heterozygosity in the entire population can be defined
as

h̄S =
∑

i, j :i �= j

xi x j =
∑

i

(x̄i − x2
i ), (6.2)

where
∑

i runs over all haplotypes. If the entire population were panmictic, its multi-
locus heterozygosity would be

hT =
∑

i

x̄i (1 − x̄i ). (6.3)

Thus, 1 − hT is the probability that two gametes chosen at random from the entire
population are the same haplotype.

Following eq. (32) in Nagylaki (1998), we define FST by

FST = 1

hT

∑
i

x̄i (1 − x̄i )FST,i i . (6.4)

Then FST can be written as

FST = 1 − h̄S

hT
=

∑
i Var(xi )∑

i x̄i (1 − x̄i )
, (6.5)

in direct generalization of the classical formula given above.
We focus on the dependence of the equilibrium value of FST on the migration para-

meters m and φ and on the recombination rate ρ. Because we obtained the coordinates
of the stable, fully polymorphic equilibrium equilibrium F explicitly only in special
or limiting cases, explicit formulas for FST can be derived only in these cases. For
instance, if migration is weak, we obtain from (3.16) that, to leading order in m,

FST = 1 − m

[
φ

c2

α1β1 + (α1 + β1)ρ

α1β1(α1 + β1 + ρ)
− 1 − φ

c1

α2β2 − (α2 + β2)ρ

α2β2(α2 + β2 − ρ)

]
. (6.6)

Here, FST increases with decreasing ρ, and decreases with increasing m. Thus, stronger
linkage leads to increased differentiation if migration is weak.

Figure 7 illustrates for two selection scenarios how FST, evaluated at the stable,
fully polymorphic equilibrium F, depends on the total migration rate m and the recom-
bination rate ρ. In diagrams (a) and (c) of Fig. 7, it is assumed that locus B is under
stronger selection than locus A in both demes. It shows that FST usually declines with
increasing migration rate. However, there are a few instances, where FST increases
if m is slightly below the migration rate at which the fully polymorphic equilibrium

123



Consequences of gene flow for local adaptation and differentiation 1177

(a) (b)

(c) (d)

Fig. 7 FST as a function of the total migration rate m. In panels a and c, locus B is under stronger selection
in both demes (α1 = 1

2 , α2 = −1, β1 = −β2 = 2, θ = 1). In panels b and d, locus A is under stronger
selection than B in deme 2, and locus B is under stronger selection than A in deme 1 (α1 = −β2 = 0.4,
β1 = −α2 = 2, θ = 3.84). Note that in all cases, FST is also monotone decreasing in ρ. For ρ = 0 and
ρ = ∞ (LE), the lines are from numerical evaluation of (6.5) by substitution of the coordinates of F0 (3.24)
or F∞ (3.18). For other values of ρ, the numerically determined coordinates of the internal equilibrium are
used

loses admissibility. In diagrams (a) and (c) of Fig. 7, differentiation between the pop-
ulations experiences the fastest decline for weak migration (relative to the selection
parameters), whereas this is not necessarily so in diagrams (b) and (d). There, FST
may experience its strongest decrease if migration is strong.

Figure 7 also shows that at large migration rates, FST may increase if the recombina-
tion rate increases, i.e., FST is not minimized under linkage equilibrium. However, this
occurs only for large recombination rates, i.e., larger than the largest selection coef-
ficient. This is compatible with the finding in Sect. 4.11 that at high recombination
rates, mmax may (slightly) increase in ρ, and the finding in Sect. 5 that the load L may
decrease with increasing m. We note that this ‘aberrant’ behavior of mmax, L , and FST
does not necessarily occur for the same parameter combinations. Among more than
106 parameter combinations of α1, α2, β1, β2, m, and φ, we found no instance where
FST evaluated at the equilibrium F∞ was higher than that at F0 (results not shown).
Importantly, if recombination is weak or migration is weak then FST apparently always
increases with tighter linkage.

Comparison of our multilocus FST with averages of single-locus FST values showed
that the multilocus FST declines somwehat faster at small migration rates than the
averaged single-locus FST. For large parameter regions, the qualitative behavior of
these measures of differentiation is the same. Differences occur only for a subset of
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selection coefficients at high migration rates and high recombination rates. Finally,
we mention that our multilocus FST is a sensitive measure of differentiation only if
the effective number of haplotypes is low. This parallels the well known fact that the
classical FST is a sensitive measure of differentiation only if the effective number of
alleles is low (e.g., Nagylaki 1998, 2011). Thus, our multilocus FST may be most
useful if applied to short sequences of DNA. A thorough and more general study is in
preparation.

7 Invasion of a locally beneficial mutant

Differentiation between subpopulations can be increased by the invasion of mutants
that establish a stable polymorphism at their locus. Therefore, we consider a locus
(A) at which a new mutant A1 arises that is advantageous relative to the wild type
A2 in deme 1, but disadvantageous in deme 2. In terms of our model, we assume
α1 > 0 > α2. If locus A is isolated, this mutant can invade and become established in
a stable polymorphism if and only if |σ1 + σ2| < 1; cf. (3.7) and (3.9). Using m and
φ, this condition can be rewritten as

m < |mA|, (7.1)

see (4.3a) and (4.4a), or

m + α2

m
φA < φ <

m − α2

m
φA = φinv. (7.2)

We restrict attention to the case φ > φA (4.2a) when the influx of the deleterious allele
A2 into deme 1 is sufficiently strong such that A2 is protected. (The case φ < φA is
symmetric and more suitable to study invasion of A2 under influx into deme 2 of A1
which is deleterious there.) Then the mutant A1 can invade if any of the following
equivalent conditions hold:

m < mA, (7.3a)

α1 >
α2mφ

α2 − m(1 − φ)
= m1

1 − m2/α2
, (7.3b)

or

φA < φ < φinv, (7.3c)

where φinv > 1 if and only if m < α1. Thus, A1 can always invade if m < α1. For
the CI model (φ = 1), each of the conditions in (7.3) simplifies to the well known
invasion condition m < α1 (Haldane 1930). The conditions (7.3) show that invasion
is facilitated whenever back migration is increased, either by keeping m1 constant and
increasing m2, or by fixing m and decreasing φ.

For the CI model it was proved that invasion of a locally beneficial mutant is
always facilitated by increased linkage to a locus in migration-selection balance
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(Bürger and Akerman 2011). In fact, mutants of arbitrarily small effect can invade
provided they are sufficiently tightly linked to this polymorphic locus which may be
considered as the background in which the new mutant appears.

Here, we investigate whether this is also the case with two-way migration. Thus,
we assume that locus B is in migration-selection balance (which requires that analogs
of (7.3) are satisfied for β1 and β2) and a locally beneficial mutant A1 arises at the
linked locus A. Hence, the model in Sect. 2 applies and we assume (2.3).

Because we are mainly interested in the invasion properties of mutants of small
effect, we assume that locus B is under stronger selection than A, i.e., |αk | < |βk |
in deme k = 1, 2. Before the mutant A1 arises, the population is at the equilibrium
PB,2 (where |τ1 + τ2| < 1 must hold for admissibility; see Sect. 3). A1 can invade
if PB,2 is unstable. Since the eigenvalues determining external stability are zeros of a
complicated quartic equation, the stability of PB,2 cannot be determined analytically.
We expect that the new stable equilibrium that will be reached is the fully polymorphic
equilibrium F. For the CI model, this was be proved in (Bürger and Akerman 2011).
For the case of LE, it follows from Theorem 4.4.

Figure 8 displays typical results about the invasion of the mutant A1. In Fig. 8a,
the maximum recombination rate admitting invasion, denoted by ρmax, is shown as a
function of φ. In the shaded region, A1 can invade. If φ ≤ φinv = 0.55, (7.3c) implies
that A1 can always invade. If φ > φinv, there exists ρmax < ∞, such that A1 can invade
only if ρ < ρmax, i.e., if A1 is sufficiently tightly linked to locus B. In Fig. 8b, the
minimum selection coefficient α1 necessary for invasion of A1 is shown as a function
of ρ/m for various values of φ. These values are obtained by computing when the
leading eigenvalue that determines external stability of PB,2 equals zero.

We conclude that, as in the CI model, mutants of arbitrarily small effect can invade
provided they are sufficiently tightly linked to a locus that is already maintained in
migration-selection balance. In addition, as shown by both panels in Fig. 8, increas-
ingly symmetric migration facilitates the invasion and establishment of locally bene-
ficial alleles.

8 The effective migration rate at a linked neutral site

Linkage to loci under selection may impede or enhance gene flow at a neutral marker
locus. In the first case, linkage may act as a barrier to gene flow. This was shown
by the work of Petry (1983), Bengtsson (1985), Barton and Bengtsson (1986), and
Charlesworth et al. (1997), who developed and studied the concept of the effective
migration rate as a measure of the ‘effective’ gene flow at a neutral site. More recently,
the effective migration rate was studied for CI models with selection on a single locus
in a class-structured population (Kobayashi et al. 2008) or with selection on two
linked loci (Bürger and Akerman 2011). Fusco and Uyenoyama (2011) investigated
the consequences of a selectively maintained polymorphism on the rate of introgression
at a linked neutral site under symmetric migration between two demes.

Here, we derive an explicit expression for the effective migration rate at a neutral
locus (N) that is located between the two selected loci, A and B. Recombination
between locus A (B) and the neutral locus occurs with rate ρAN (ρNB) such that ρ =

123



1180 A. Akerman, R. Bürger

(a)

(b)

Fig. 8 Invasion properties of locally beneficial alleles. In a, the maximum recombination rate between
loci A and B, below which invasion of A1 can occur, is displayed as a function of φ. The parameters
α1 = −α2 = 0.1, β1 = −2β2 = 2, and m = 1 are fixed. Therefore, φA = 1

2 and φinv = 0.55. In b, the
minimum selective advantage α1 required for invasion of A1 is shown as a function of ρ for different values
of φ. The parameters α2 = −0.1, β1 = −2β2 = 2, and m = 1 are fixed

ρAN +ρNB. Thus, only one crossover event occurs in a sufficiently small time interval.
We assume that ρAN and ρNB are positive, i.e., the neutral locus is not completely
linked to a selected site. We consider two variants at the neutral locus, N1 and N2,
each with arbitrary, positive initial frequency in at least one deme. The frequency of
N1 in deme k(= 1, 2) is denoted by nk . We model evolution at the three loci by a
system of 7 × 2 ordinary differential equations for the allele frequencies and linkage
disequilibria (p1, p2, q1, q2, DAB

1 , DAB
2 , n1, n2, DAN

1 , DAN
2 , DNB

1 , DNB
2 , DANB

1 , DANB
2 ).

We refrain from presenting the equations for the allele frequencies at the neutral locus
and the associated linkage disequilibria because they are a straightforward extension
of those in Section 4.6 of Bürger and Akerman (2011).

Obviously, the equilibrium allele frequencies at the neutral locus are the same in
each deme and given by the initial allele frequencies averaged over the two demes:
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n̂1 = n̂2 = n̂ = m2n1(0)

m
+ m1n2(0)

m
. (8.1)

The equilibrium frequencies at the two selected loci are independent of the neutral
locus and, thus, the same as in the two-locus model treated above. The linkage dise-
quilibria involving the neutral locus (DAN

k , DNB
k , and DANB

k ) are zero at equilibrium.
By (8.1), there is a one-dimensional manifold of equilibria resulting from the absence
of selection at the neutral locus.

We assume that parameters are such that the fully polymorphic equilibrium F is
admissible and globally asymptotically stable. Using the above order for the allele fre-
quencies and linkage equilibria, the Jacobian at the equilibrium F has block structure,

J =
(

JS 0
0 JN

)
, (8.2)

where JS is the Jacobian describing convergence of (p1, p2, q1, q2, DAB
1 , DAB

2 ) to
F, and JN is the Jacobian describing convergence of (n1, n2, DAN

1 , DAN
2 , DNB

1 , DNB
2 ,

DANB
1 , DANB

2 ) to (n̂, n̂, 0, 0, 0, 0, 0, 0).
Because zero is the leading eigenvalue of JN , the rate of convergence to equilibrium

at the neutral locus is determined by the second largest eigenvalue of JN , which we
denote by λN . We define the effective (total) migration rate by meff = −λN (Bengtsson
1985; Kobayashi et al. 2008; Bürger and Akerman 2011). It can be checked that under
weak migration, i.e., to leading order in m1 and m2, one obtains

meff = −λN = m1
ρANρNB

(ρAN + α1)(ρNB + β1)
+ m2

ρANρNB

(ρAN − α2)(ρNB − β2)
(8.3)

(a Mathematica notebook is available on request). If the neutral site is linked only to
one selected locus (e.g., because β1 = β2 = 0), then

meff = m1
ρAN

ρAN + α1
+ m2

ρAN

ρAN − α2
(8.4)

is obtained. Thus, two linked selected loci act as a much stronger barrier to gene flow
than a single selected locus, especially if the recombination rate between the two loci
is not much larger than the selective coefficients. In Fig. 9, the approximation (8.3) of
the effective migration rate meff is displayed as a function of m for various parameter
combinations and compared with the exact value obtained by numerical evaluation
of λN .

We note that meff is (approximately) the sum of the two effective one-way migration
rates (Bürger and Akerman 2011) and closely related to Kobayashi and Telschow’s
(2011) effective recombination rate. Our result complements their explicit example on
two-locus incompatibilities. We refer to their paper for the discussion of the relation
of this concept of an effective migration rate to that of Bengtsson (1985) and for
applications in the context of speciation theory.
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Fig. 9 The effective migration rate meff as a function of m for α1 = −α2 = 0.1, β1 = −β2 = 0.2, φ = 1
2 ,

and ρ = 0.2. Recall that ρ = ρAN + ρNB. Lines show the weak-migration approximation of meff (8.3).
Symbols give the exact numerical value of meff = −λN

9 Discussion

The purpose of this investigation was to improve our understanding of how genetic
architecture, in particular recombination and locus effects, as well as the pattern and
amount of migration determine polymorphism, local adaptation, and differentiation
in a subdivided population inhabiting a heterogeneous environment. For simplicity,
we restricted attention to two linked, diallelic loci and to migration between two
demes. The study of diversifying selection in just two demes may also shape our
intuition about clinal variation if the two subpopulations are from different ends of
the cline. If alleles are beneficial in only one environment and detrimental in the
other, local adaptation of subpopulations and differentiation between them can be
obtained only if a (multilocus) polymorphism is maintained. Therefore, most of our
mathematical results focus on existence and stability of polymorphic equilibria and on
the dependence of the equilibrium configurations on the model parameters (migration
rates, selection coefficients, recombination rate).

The model is introduced in Sect. 2. Sections 3 and 4 are devoted to the derivation
of the possible equilibrium configurations and bifurcation patterns. They contain our
main mathematical results. Explicit analytical results about existence and stability of
equilibria were obtained for several limiting or special cases and are complemented
by numerical work.

The conditions for admissibility of all single-locus polymorphisms (SLPs) are given
in Sect. 3.1, those for asymptotic stability of the monomorphic equilibria (ME) in
Proposition 3.1 in Sect. 3.2. The stability of SLPs could not generally be determined
(Sect. 3.3). Weak migration is treated by perturbation methods in Sect. 3.4. For suf-
ficiently weak migration, there exists a globally attracting fully polymorphic equilib-
rium, F (Proposition 3.2). Its approximate coordinates are given by (3.16).

The complete equilibrium and stability structure could be derived under the assump-
tion of linkage equilibrium (Sect. 3.5). The unique, fully polymorphic equilibrium
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F = F∞ is admissible and globally attracting if and only if all four SLPs are admis-
sible. Otherwise, one boundary equilibrium (SLP or ME) is globally asymptotically
stable (Proposition 3.3). These results extend straightforwardly to an arbitrary num-
ber of diallelic loci. Based on these results, nonlinear perturbation theory establishes
the existence of a globally stable, fully polymorphic equilibrium in a perturbed para-
meter range if recombination is sufficiently strong (Sect. 3.6). This equilibrium is in
quasi-linkage equilibrium and given by (3.21).

Also for completely linked loci all equilibria and their local stability properties could
be derived (Sect. 3.7). In this case, the fully polymorphic equilibrium F0 (3.24) may
lose stability while it is admissible (3.28). At this threshold a boundary equilibrium
becomes stable by a ‘jump bifurcation’ (Proposition 3.4). In general, however, more
complicated equilibrium patterns than determined by Propositions 3.3 and 3.4 can
occur, in particular, multiple stable equilibria.

In Sect. 3.8, we apply perturbation theory to infer the equilibrium properties under
highly asymmetric migration from those derived for the continent-island model in
Bürger and Akerman (2011) and Bank et al. (2012). There, a stable (F) and an unsta-
ble fully polymorphic equilibrium may exist if recombination is intermediate, and F is
simultaneously stable with a boundary equilibrium. In general (Sect. 3.11), we cannot
exclude the existence of more than two internal equilibria or complicated dynamical
behavior. Numerical searches produced no such instances. What can be shown eas-
ily is that, if ρ < ∞, any fully polymorphic equilibrium exhibits LD. In all cases,
where an internal equilibrium was calculated (numerically or analytically), it exhibited
positive LD.

In the super-symmetric case, in which selection in deme 2 mirrors that in deme
1 and migration is symmetric, an assumption made in several applications, a fully
polymorphic equilibrium exists always and, presumably, is stable (Sect. 3.10). This is
a highly degenerate situation because if θ �= 0, only a monomorphic equilibrium can
be stable for sufficiently large migration rates (Proposition 4.3). If θ = 0 (Sect. 3.9),
then a fully polymorphic equilibrium can exist for arbitrarily large migration rates if
φ = φAB (see also Sect. 4.11).

Whereas in Sect. 3 the focus was on the efficient presentation of the existence and
stability results of equilibria, in Sect. 4 these results are used to derive the possible
bifurcation patterns with the total migration rate m as the bifurcation parameter. All
possible bifurcation patterns could be derived under the assumption of LE (Theorem
4.4, Figs. 2, 3), and under the assumption of complete linkage (Theorem 4.6, Figs. 4,
5). The latter case is considerably more complex. Interestingly, in each case, every
bifurcation pattern can occur for every ratio φ = m1/m of migration rates by choosing
the selection coefficients appropriately. Hence, the assumption of symmetric migration
does not yield simpler equilibrium configurations than general migration if arbitrary
selection coefficients are admitted.

In each of these cases (LE or ρ = 0), we determined the maximum migration rate
mmax admitting an asymptotically stable, fully polymorphic equilibrium (Corollaries
4.5 and 4.7). The maximum migration rate m0

max for ρ = 0 always exceeds or equals
that (m∞

max) for LE, i.e., m∞
max ≤ m0

max. Although for strong recombination, mmax can
be very slightly smaller than m∞

max (Sect. 4.7), in the vast majority of investigated
cases, mmax is bracketed by m∞

max and m0
max (Fig. 6, Sect. 4.11).
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Proposition 4.3 demonstrates that a ME is globally attracting if migration is suffi-
ciently strong (except in the degenerate case noted above). If we interpret the equilibria
M2 and M3 as fixation of a generalist (A1 B2 and A2 B1 are haplotypes of intermediate
fitness), and M1 and M4 as fixation of a specialist (A1 B1 and A2 B2 are the locally
adapted haplotypes), then depending on the sign of θ one of the generalists becomes
fixed for high m if φ is intermediate (i.e., φA < φ < φB if θ > 0, φB < φ < φA if
θ < 0; but note that, depending on the selection coefficients, both φA and φB can be
arbitrarily close to 0 or 1.). The critical value m as well as φA and φB are independent
of ρ. Otherwise, one of the specialists becomes fixed for large m.

The fact that a generalist becomes fixed for strong migration is a distinct feature of
(balanced) two-way migration: in the CI model or if migration is sufficiently asym-
metric (φ < φA or φ > φB if θ > 0), one of the specialist haplotypes swamps
the populations and becomes fixed. Another difference between highly asymmetric
and more symmetric migration patterns is that in the first case, it is always the locus
under weaker selection that first loses its polymorphism while m increases, whereas
this not necessarily so in the latter case (see Sect. 4.2 and Theorem 4.6, cases A3
and A4).

In summary, we determined quantitatively when the following three evolutionarily
stable states discussed by Kawecki and Ebert (2004) occur: (i) existence of a single
specialist optimally adapted to one deme and poorly to the other, (ii) existence of a
single generalist type which has higher average fitness in the whole population than
than any of the specialists, and (iii) existence of a set of specialists each adapted to its
deme, i.e., coexistence in a polymorphism. Local adaptation and differentiation occur
only in case (iii).

In Sect. 5, we used the migration load in each deme to quantify the degree of
local adaptation. In Sect. 6 we introduced a new multilocus version of FST to mea-
sure differentiation. If migration is weak, then local adaptation and differentiation
decrease with increasing migration rate and increase with increasing linkage between
the loci (Fig. 7). In particular, for given (small) migration rate, local adaptation and
differentiation are maximized if the fitness effects are concentrated on a single locus
(corresponding to ρ = 0 in our model). However, as discussed in Sect. 5, for high
migration rates, the migration load of the total population can decrease with increasing
recombination or migration rate. Similarly, at high recombination and migration rates,
FST can increase with increasing migration or recombination rate. Thus, for given,
relatively high migration rate, FST may be minimized at intermediate recombination
rates. Apparently, it is always maximized in the absence of recombination.

In Sect. 7, we investigated the conditions for invasion of locally beneficial mutants.
At an isolated locus, such a mutant can invade and become established in a migration-
selection equilibrium if and only if its advantage exceeds a threshold that increases
with the immigration rate of the wild type; see (7.3b). If, however, this mutant occurs
at a locus that is linked to a locus that is already in migration-selection balance, then
its invasion is facilitated, i.e., its local selective advantage can be smaller (Fig. 8b).
Equivalently, for given selection coefficients and total migration rate, the minimum
recombination rate needed for invasion increases if φ, or the influx of the (deleterious)
wild type relative to the efflux of the new mutant, increases (Fig. 8a). For the extreme
case of one-way migration from a ‘continental’ population to an ‘island’ population
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that is adapting to a new environment, Bürger and Akerman (2011) proved that invasion
of a locally beneficial mutant is always facilitated by increased linkage to a locus in
migration-selection balance.

Thus, our results complement the numerical finding by Yeaman and Whitlock
(2011) for a multilocus quantitative-genetic model that clusters of locally adaptive
mutations, or concentrated genetic architectures, build up in spatially structured pop-
ulations with opposing selection pressures in two demes. Because tighter linkage is
required for invasion under increasingly asymmetric migration rates, more concen-
trated architectures and a greater advantage for recombination-reducing mechanisms
(such as chromosome inversions) should be expected for highly asymmetric migration.
In finite populations, invasion of new mutants occurs only with a certain probability,
and genetic drift may erase polymorphism. Numerical work, supported by analytical
methods, has already shed some light on the dependence of the probability of estab-
lishment of new, locally adaptive mutations on the recombination rate and other factors
(Yeaman and Otto 2011; Feder et al. 2012). Analytical work on the role of genetic
drift and finite population size on these issues is in progress.

Our results also show that, in the absence of epistasis and under the present form of
balancing selection, reduced recombination between selected loci is favored, except
when migration rates are sufficiently symmetric and high (Sect. 5). Selection inducing
certain forms of epistasis may favor high recombination in structured populations more
easily (Pylkov et al. 1998; Lenormand and Otto 2000; Bank et al. 2012). Therefore,
general predictions about the emergence of clusters of locally adaptive mutations in
regions of reduced recombination, or of genomic islands of speciation (Wu and Ting
2004) or of differentiation (Feder et al. 2012), can not be made in the absence of
detailed information about epistasis and the spatial pattern of selection and migration.
At least in the absence of epistasis, the most favorable situation for the emergence
of such clusters should occur in populations that are adapting to a new environment,
still receiving maladaptive gene flow but sending out only very few or no migrants
(corresponding to a continent-island model).

In Sect. 8, we derived the approximation (8.3) for the effective migration rate at a
linked neutral locus that is located between the selected loci. This approximation is
simply the sum of the two effective migration rates under one-way migration (Bürger
and Akerman 2011). Because in the present model, polymorphism at the selected loci is
maintained by balancing selection, the effective migration rate may be greatly reduced
compared with the actual migration rate (see Fig. 9). Thus, strong barriers against
gene flow may build up at such neutral sites and enhance (neutral) differentiation (see
Charlesworth and Charlesworth 2010, Chap. 8.3). Future work will have to study the
actual amount and pattern of neutral diversity at such sites in finite populations.
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Appendix A

A.1 Sufficiency of the assumptions (2.3)

By relabeling alleles, we can assume without loss of generality (2.3a). Generically,
one of the following six parameter sets applies:

θ > 0, α1 < β1, and α2 ≥ β2, (10.1a)

θ > 0, α1 < β1, and α2 < β2, (10.1b)

θ > 0, α1 ≥ β1, and α2 < β2, (10.1c)

θ < 0, α1 > β1, and α2 ≤ β2, (10.1d)

θ < 0, α1 > β1, and α2 > β2, (10.1e)

θ < 0, α1 ≤ β1, and α2 > β2. (10.1f)

In addition, there are the following three parameter sets:

θ = 0, α1 < β1 and α2 > β2, (10.1g)

θ = 0, α1 = β1 and α2 = β2, (10.1h)

θ = 0, α1 > β1 and α2 < β2. (10.1i)

The sets (10.1a)–(10.1i) yield the complete parameter space of the selection coeffi-
cients.

We show that the parameter sets (10.1c)–(10.1f) can be derived from (10.1a) and
(10.1b) by simple transformations. Let f denote the exchange of loci, i.e., f (αk) = βk

and f (βk) = αk , and g the exchange of demes, i.e., g(αk) = −αk∗ and g(βk) = −βk∗ .
We observe that sign( f (θ)) = sign(g(θ)) = −sign(θ) and

(10.1a)
f→ (10.1d)

g→ (10.1c)
f→ (10.1 f ), (10.2a)

(10.1b)
g→ (10.1e) (10.2b)

hold. Therefore, (2.3) is sufficient to describe the (generic) parameter region where
θ �= 0. Since

(10.1g)
f→ (10.1i), (10.3)

(3.34) is sufficient to describe the degenerate cases θ = 0.

A.2 Proof of Proposition 3.1

At each monomorphic equilibrium, the characteristic polynomial factors into three
quadratic polynomials, P(λ) = t1(λ)t2(λ)t3(λ). Two of them, t1(λ) and t2(λ), deter-
mine stability with respect to the adjacent marginal one-locus systems. The corre-
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sponding conditions are already known from one-locus theory. The third, t3(λ), deter-
mines stability with respect to the interior of the state space.

In the following, we derive the stability conditions (3.10) and (3.11) for M1. Those
for M4 can be deduced analogously or by symmetry considerations by taking into
account that (2.3b) implies min{α1, β1} = α1. The stability analysis of M2 and M3 is
much simpler and left to the reader.

For M1, it is straightforward to show that

t1(λ) = λ2 + [α1(1 + σ1) + α2(1 + σ2)]λ + α1α2(1 + σ1 + σ2), (10.4a)

t2(λ) = λ2 + [β1(1 + τ1) + β2(1 + τ2)]λ + β1β2(1 + τ1 + τ2), (10.4b)

t3(λ) = λ2 + (α1 + α2 + β1 + β2 + 2ρ + m1 + m2)λ

+(α1 + β1 + m1 + ρ)(α2 + β2 + m2 + ρ) − m1m2. (10.4c)

Because t ′′1 (λ) > 0 for every λ, t ′1(0) = α1(1 + σ1) + α2(1 + σ2) > 0 if σ2 < −1,
t1(0) > 0 if and only if σ1 + σ2 < −1, and minλ{t1(λ)} < 0, we conclude that the
two eigenvalues emanating from t1 are negative if and only if

σ1 + σ2 < −1. (10.5a)

Analogously, the two eigenvalues emanating from t2 are negative if and only if

τ1 + τ2 < −1, (10.5b)

and those originating from t3 are negative if and only if

m2 > − (α1 + β1 + m1 + ρ)(α2 + β2 + ρ)

α1 + β1 + ρ
. (10.5c)

Conditions (10.5a) and (10.5b) yield (3.10).
Concerning (10.5c), we observe that it is always satisfied if ρ > −(α2+β2) because

then the right-hand side is negative. Next we show, that (10.5c) is also satisfied if
ρ > −α2. Because the right-hand side of (10.5c) is strictly monotone decreasing in
ρ, it is sufficient to prove that (10.5c) holds if ρ = −α2. Then simple rearrangement
of (10.5c) leads to the condition

m2(α1 + β1 − α2)

β1β2
+ α1 + β1 − α2 + m1

β1
< 0, (10.6)

which can be rewritten as

τ1 + τ2 + 1 + α1 − α2

β1
(1 + τ2) < 0. (10.7)

This is satisfied if (10.5b) holds because this also implies 1 + τ2 < 0. One shows
similarly that (10.5c) is satisfied if ρ ≥ −β2. Therefore, we have proved that M1 is
asymptotically stable if (3.10) and (3.11) hold.
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A.3 Calculation of equilibria with two polymorphic loci if ρ = 0

As shown in the main text, by Corollary 3.9 of Nagylaki and Lou (2007) it is sufficient
to assume that A1 B2 is absent, which implies Dk = pk(1 − qk) and pk ≤ qk . Setting
ρ = 0, we find from the equations ṗ1 = 0 and q̇1 = 0 (2.7) that

p2 = p1[m1 − α1(1 − p1) − β1(1 − q1)]/m1, (10.8a)

q2 = 1 − (1 − q1)(m1 + α1 p1 + β1q1)/m1 (10.8b)

holds at equilibrium. Substituting (10.8) into ṗ2 and q̇2, we obtain at equilibrium,

0 = p1[g1(p1, q1) − α2
1α2 p3

1 − β2
1β2q3

1 ]/m2
1, (10.9a)

0 = (1 − q1)[g2(p1, q1) − α2
1α2 p3

1 − β2
1β2q3

1 ]/m2
1, (10.9b)

where g1 and g2 are quadratic polynomials in (p1, q1). The obvious substitution results
in the equilibrium condition

0 = α1α2(α1 + β1)p2
1 + β1β2(α1 + β1)q

2
1 + (α1 + β1)(α1β2 + α2β1)p1q1

+[m1(α1(2α2 + β2) + α2β1) − (α1 + β1)(α2β1 + α1(α2 + β2))]p1

+[m1(β2(α1 + 2β2) + α2β1) − β1β2(α1 + β1)]q1

+m1[m1(α2 + β2) + m2(α1 + β1) − (α1 + β1)(α2 + β2)]. (10.10a)

It is easy to check that F0 always fulfills this condition and it is the only solution
satisfying 0 ≤ p1 = q1 ≤ 1. Hence, unless there is curve (p1, q1) of solutions of
(10.10) that passes through F0 and through either a point on p1 = 0 with 0 < q1 ≤ 1
or on q1 = 1 with 0 ≤ p1 < 1, F0 is the unique admissible solution of (10.10).

Because F0 has an eigenvalue 0 only if either (3.26) is satisfied or if |κ1 + κ2| = 1
(which occurs if and only if F0 collides with either M1 or M4), F0 is the only equilibrium
with both loci polymorphic, except when (3.26) is satisfied. In the latter case, a line
of equilibria exists, as we show now.

We calculate m2 from (3.26) and substitute into (10.10). The right-hand side fac-
torizes into two linear terms. Only one of them gives rise to admissible equilibria and,
in fact, yields the manifold:

p1 = θ [β1(1 − q1) − m1] − α1β1(α2 + β2)

α1θ
, (10.11)

where 0 ≤ q1 ≤ 1. The allele frequencies in the other deme are obtained from (10.8).
It is straightforward to check that not only F0, but also the equilibria PA,1 and PB,2 lie
on this manifold. In terms of the gamete frequencies, this manifold is a straight line.

A.4 Stability of F0

In this section we derive the stability of F0.
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As A1 B2 is lost if ρ = 0 and (2.3) hold, it is sufficient to consider the dynamics
(2.5) in S3 × S3. In this case, the characteristic polynomial at F0 factors into two
quadratic polynomials, P(λ) = t1(λ)t2(λ). These are given by

t1(λ) = λ2 +
[
(α1 + β1 − α2 − β2)

√
1 − κ1κ2 − (m1 + m2)

]
λ

+(α1 + β1)(α2 + β2)
[
1 + (κ1 − κ2)

√
1 − κ1κ2

]
, (10.12a)

t2(λ) = λ2 + 1

2

[
α1 + α2 − β1 − β2 + (α1 − α2 + β1 − β2)

√
1 − κ1κ2

]
λ

+1

2

[
−α1β2(1 + √

1 − κ1κ2) − α2β1(1 − √
1 − κ1κ2)

]
. (10.12b)

The polynomial t1 determines the stability with respect to the (effectively one-locus)
system where only ’alleles’ A1 B1 and A2 B2 are present. It is convex with t1(0) ≥ 0
if and only if |κ1 + κ2| ≤ 1 (where the equalities correspond), i.e., whenever F0 is
admissible, cf. (3.23). If |κ1 + κ2| < 1, t

′
1(0) > 0 and t1 attains a negative value at its

minimum (as can be shown easily). Therefore, all eigenvalues emanating from t1 are
real and negative whenever F0 is admissible.

The polynomial t2 determines stability with respect to the interior of S3 × S3. It is
convex and attains its minimum at

λmin = 1

4

[
(α1 + β2 − α2 − β2)(1 − √

1 − κ1κ2)
]

(10.13)

where λmin < 0 by (2.3a) and (3.22). As t2(λmin) < 0, the eigenvalues emanating
from t2 are real. As

t2(0) ≥ 0 ⇐⇒ m1m2 ≤ m̃, (10.14)

where the equalities correspond and m̃ is defined in (3.27), and because t
′
2(0) > 0, we

conclude that the two eigenvalues emanating from t2 are negative if and only if (3.28)
holds.

A.5 Stability of SLPs if ρ = 0

For ρ = 0 it is sufficient to study the dynamics (2.5) in S3 × S3. SLPs where x̂k,2 > 0
(k = 1, 2), i.e., PA,2 and PB,1, are unstable. It remains to study the stability of PA,1
and PB,2.

We present the analysis for PA,1 in detail, as results for PB,2 follow analogously.
At PA,1 the characteristic polynomial factors into two quadratic polynomials,

P(λ) = t1(λ)t2(λ), given by
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t1(λ) = λ2 +
[
α1(

√
1 − 4σ1σ2 − σ1) − α2(

√
1 − 4σ1σ2 + σ2)

]
λ

+α1α2

[
(σ1 − σ2)

√
1 − 4σ1σ2 − (1 − 4σ1σ2)

]
, (10.15a)

t2(λ) = λ2 + 1

2

[
2β1 + 2β2 + α1(1 − √

1 − 4σ1σ2) + α1(1 + √
1 − 4σ1σ2)

]
λ

+1

2

[
β1(β2 + α2) + β2(α1 + β1) + θ

√
1 − σ1σ2

]
. (10.15b)

t1 determines stability with respect to the one-locus system where B1 is fixed. t1(0) = 0
if and only if |σ1 +σ2| = 1, i.e., whenever PA,1 collides with a ME according to (3.9a)
and (3.9b). Whenever |σ1 + σ2| < 1, i.e., PA,1 is admissible (3.7), t1(0) > 0 and
t
′
1(0) > 0. As t

′′
1 (λ) > 0 for every λ, t1 attains a minimum, where it is straightforward

to show that t1 takes a negative value at its minimum. Thus, all eigenvalues emanating
from t1 are real and negative whenever PA,1 is admissible.

t2 determines stability with respect to the interior of S3 × S3. t2(0) ≥ 0, if and only
if m1m2 ≥ m̃, cf. (3.27), where the equalities correspond. Whenever m1m2 > m̃,
t
′
2(0) > 0. As t

′′
2 (λ) > 0 for every λ, t2 attains a minimum, where it is straightforward

to show that t2 takes a negative value at its minimum. Thus, all eigenvalues emanating
from t1 are real and negative whenever m1m2 > m̃ holds. Otherwise, at least one
eigenvalue is positive.

Combining the results obtained for t1 and t2 it follows that PA,1 is asymptotically
stable if and only if

− 1 < σ1 + σ2 < 1 and m1m2 > m̃ (10.16)

hold. We note that m1m2 > m̃ is equivalent to (σ1τ2 −σ2τ1)
2 < −(σ1 + τ1)(σ2 + τ2),

and our general assumption (2.3) implies τ1 < σ1 and σ1τ2 − σ2τ1 < 0. Using these
relations we can show with the help of Mathematica that (10.16) is incompatible with
−1 < τ1 + τ2. Consequently, PB,2 is not admissible if PA,1 is asymptotically stable.

A.6 The super-symmetric case

We prove that in the super-symmetric case of Sect. 3.10, all SLPs are unstable.
We assume symmetric migration rates (m1 = m2 = m), equivalent loci (αk =

βk = a), and selection in deme 2 mirrors that in deme 1 (αk = −αk∗ ). Thus, θ = 0.
Equilibria may collide (thus leave or enter the state space) if and only if at least one
of their eigenvalues is zero. Eigenvalues are zeros of the characteristic polynomial,
which has the form P(λ) = c6λ

6 + · · · + c1λ + c0. If zero is an eigenvalue at an
equilibrium, i.e., P(0) = 0, the constant term c0 must vanish. In the super-symmetric
case every characteristic polynomials at an SLP has the same constant term

c0 =−a2ρ
(

2a2
√

a2+m2+m(3m−ρ)
√

a2+m2−(a2+m2)(3m−ρ)
)

. (10.17)

One can show that c0 = 0 is impossible if m > 0.
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A.7 Important quantities and relations

The following section complements Sect. 4.1. Here, we derive all relations of φX (4.2)
and mX (4.3) needed inSects. 4.2 to 4.8 and in the proofs of the theorems there.

Using (4.9a), (4.9b), (4.5a), (4.5b), (4.12) and (4.13), we derive all possible inequal-
ities between mA and mB:

0 < mA < mB ⇐⇒ φB ≤ φ, (10.18a)

0 < −mA < −mB ⇐⇒ α2 > β2 and φ < φ̃AB, (10.18b)

0 < −mB < −mA ⇐⇒
{

α2 ≤ β2 and φ < φA, or

α2 > β2 and φ̃AB < φ < φA,
(10.18c)

0 < −mB < mA ⇐⇒ φA ≤ φ < φAB, (10.18d)

0 < mA < −mB ⇐⇒ φAB < φ < φB, (10.18e)

where

0 < mB ≤mA, 0<−mA ≤mB, and 0 < mB ≤−mA are infeasible. (10.18f)

Using (4.6), (4.5), and (4.12)–(4.15) we obtain the following inequalities for m∗:

0 < m∗ < −mF0 ⇐⇒ φM1(ρ = 0) < φ < φF0 , (10.19a)

0 < −mF0 < m∗ ⇐⇒ φ < φM1(ρ = 0), (10.19b)

0 < m∗ < mF0 ⇐⇒ φF0 < φ < φM4(ρ = 0), (10.19c)

0 < mF0 < m∗ ⇐⇒ φM4(ρ = 0) < φ, (10.19d)

0 < m∗ < −mA ⇐⇒ φM1(ρ = 0) < φ < φA, (10.19e)

0 < m∗ < −mB ⇐⇒ φAB < φ < φB, (10.19f)

0 < m∗ < mA ⇐⇒ φA < φ < φAB, (10.19g)

0 < m∗ < mB ⇐⇒ φB < φ < φM4(ρ = 0), (10.19h)

0 < −mA < m∗ ⇐⇒ φ < φM4(ρ = 0), (10.19i)

0 < −mB < m∗ ⇐⇒ φ < φAB, (10.19j)

0 < mA < m∗ ⇐⇒ φAB < φ, (10.19k)

0 < mB < m∗ ⇐⇒ φM4(ρ = 0) < φ. (10.19l)

From (4.12), (4.13), (10.18), and (10.19e)–(10.19l) we infer

min{|mA|, |mB|} ≤ m∗. (10.20)

Next, we derive the relations between mF0 and mA or mB needed in the proof of
Theorem 4.6. As their derivation is lengthy, the reader may wish to skip the proof and
go immediately to the results given by (10.37) and (10.38).

Our approach to derive the possible relations between mF0 and mA or mB is as
follows: First, we derive all relevant relations of φX (4.2) for arbitrary recombination
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ρ. We use these relations to determine the required relations between mA, mB, mM1 and
mM4 for arbitrary ρ. By setting ρ = 0 in the results obtained and by the equivalence
given in (4.10), the possible relations between mF0 and mA or mB follow immediately.

By definition, the values φA, φB, φF0 , φ̃AB, φAB, φAF0 , and φBF0 (4.2) are inde-
pendent of the recombination rate ρ. Their relations under (2.3) are given in (4.12),
(4.13), and (4.14).

The values φM1 , φ̃M1 , φM4 , and φ̃M4 (4.2) depend on ρ, and we analyze this depen-
dence in the following. The conditions which determine the admissibility of φMi and
φ̃Mi (i = 1, 4) are:

0 < φM1 < 1 ⇐⇒ 0 ≤ ρ < −β2 or ρ > −α2 − β2, (10.21a)

0 < φ̃M1 < 1 ⇐⇒ 0 ≤ ρ < −α2 or ρ > −α2 − β2, (10.21b)

0 < φM4 < 1 ⇐⇒ 0 ≤ ρ < α1 or ρ > α1 + β1, (10.21c)

0 < φ̃M4 < 1 ⇐⇒ 0 ≤ ρ < β1 or ρ > α2 + β2, (10.21d)

with the relations

0 ≤ ρ < −β2 �⇒ 0 < φM1 < φA, (10.22a)

0 ≤ ρ < α1 �⇒ φB < φM4 < 1. (10.22b)

To determine further relations of φM1 , φ̃M1 , φM4 , and φ̃M4 , we define the following
critical recombination rates:

ρM1 = α2β1(α2+β1)−α1β2(α1+β2)

2θ

+
√

(α2β1(α2+β1)−α1β2(α1+β2))2−4θ2(α2β1+α1β2)

2θ
, (10.23a)

ρ̃M1 = −θ(α1+α2)+α2β
2
1 −α1β

2
2

2θ

+
√

(−θ(α1+α2)+α2β
2
1 −α1β

2
2 )2−4θ2(α2β1+α1(α2+β2))

2θ
, (10.23b)

ρM4 = α1β2(α1+β2)−α2β1(α2+β1)

2θ

+
√

(α1β2(α1+β2)−α2β1(α2+β1))2−4θ2(α2β1+α1β2)

2θ
, (10.23c)
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ρ̃M4 = θ(β1+β2)+α2
1β2−α2

2β1

2θ

+
√

(−θ(β1+β2)+α2
2β1−α2

1β2)2 − 4θ2(α2β1+β2(α1 + β1))

2θ
. (10.23d)

Next, we determine the admissibility of ρX and ρ̃X defined in (10.23). Therefore, we
partition the selection parameters satisfying (2.3) and β2 > α2 according to

β2 > α2 + α1β2(β2 − α1)

β1(α1 + β1 − β2)
> α2 (10.24a)

and

α2 + α1β2(β2 − α1)

β1(α1 + β1 − β2)
> β2 > α2. (10.24b)

Analogously, the selection parameters satisfying (2.3) and β1 > α1 can be partitioned
according to

β1 > α1 + α1α2(α1 − α2)

β2(α1 − α2 − β2)
> α1 (10.25a)

and

α1 + α1α2(α1 − α2)

β2(α1 − α2 − β2)
> β1 > α1. (10.25b)

Using these partitions, we obtain that ρX and ρ̃X satisfy the following relations (as
can be checked with Mathematica):

ρ̃M1 < ρM1 < −α2 < −β2 ⇐⇒ β2 < α2, (10.26a)

ρ̃M1 < ρM1 = −α2 = −β2 ⇐⇒ β2 = α2, (10.26b)

−β2 < ρ̃M1 < −α2 < ρM1 < −α2 − β2 ⇐⇒ (10.24a) holds, (10.26c)

ρ̃M1 < −β2 < −α2 < ρM1 < −α2 − β2 ⇐⇒ (10.24b) holds, (10.26d)

α1 < ρ̃M4 < β1 < ρM4 < α1 + β1 ⇐⇒ (10.25a) holds, (10.26e)

ρ̃M4 < α1 < β1 < ρM4 < α1 + β1 ⇐⇒ (10.25b) holds. (10.26f)

As ρ ≥ 0 and (2.3) hold, we obtain that

φM1 = φ̃M1 ⇐⇒ ρ = −α2 − β2 or ρ = ρM1 , (10.27a)

φ̃AB = φM1 ⇐⇒ φ̃AB = φ̃M1 ⇐⇒ ρ = ρM1 , (10.27b)

φA = φ̃M1 ⇐⇒ ρ = ρ̃M1 , (10.27c)
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and

φM4 = φ̃M4 ⇐⇒ ρ = α1 + β1 or ρ = ρM4 , (10.28a)

φB = φ̃M4 ⇐⇒ ρ = ρ̃M4 , (10.28b)

where

φA = φM1 and φB = φM4 are infeasible. (10.28c)

We derive the following relations additional to (10.22a) and (10.22b), using (10.26)
and (10.27):

0 < φ̃M1 < φA ⇐⇒ ρ̃M1 < ρ < −α2, (10.29a)

φA < φ̃M1 < 1 ⇐� 0 ≤ ρ < ρ̃M1 , (10.29b)

and

φB < φ̃M4 < 1 ⇐⇒ ρ̃M4 < ρ < β1, (10.30a)

0 < φ̃M4 < φB ⇐� 0 ≤ ρ < ρ̃M4 , (10.30b)

and by recalling (4.13):

φ̃AB < φM1 < φA ⇐⇒ β2 < α2 and 0 ≤ ρ < ρM1 , (10.31a)

0 < φM1 < φ̃AB ⇐⇒ β2 < α2 and ρM1 < ρ < −α2. (10.31b)

Now we derived all relations between φX necessary to deduce the relevant relations
between mM1 (mM4 ) and mA, mB.

First, we note that under (2.3), mM1 > 0 if φ < φA and mM4 > 0 if φB < φ.
In the following, we derive all possible relations between mA, mB, and mM1 where

we assume that φ < φA (otherwise M1 is unstable, cf. Proposition 4.1, and mM1 is not
of particular interest). By (4.5a), (4.5b), (4.12), (4.13), (10.22a), (10.27), (10.29), and
(10.31), we obtain that

0 < −mB < −mA < mM1

⇐⇒
{

β2 < α2 and ρ < ρM1 and φ̃AB < φ < φM1 , or

β2 ≥ α2 and ρ < −β2 and φ < φM1,
(10.32a)

0 < −mA < −mB < mM1

⇐⇒ β2 < α2 and

{
ρ < ρM1 and φ < φ̃AB, or

ρM1 < ρ < −α2 and φ < φ̃M1,
(10.32b)

0<−mA =−mB < mM1 ⇐⇒ β2 < α2 and ρ <ρM1 and φ= φ̃AB,

(10.32c)
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and

0 < −mB < mM1 < −mA

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

β2 ≤ α2 and ρ < ρ̃M1 and φM1 < φ < φA, or

β2 ≤ α2 and ρ̃M1 < ρ < ρM1 and φM1 < φ < φ̃M1 , or

(10.24a) and ρ < −β2 and φM1 < φ < φA, or

(10.24a) and − β2 < ρ < φ̃M1 and φ < φA, or

(10.24a) and ρ̃M1 < ρ < −α2 and φ < φ̃M1, or

(10.24b) and ρ < ρ̃M1 and φM1 < φ < φA, or

(10.24b) and ρ̃M1 < ρ < −β2 and φM1 < φ < φ̃M1 , or

(10.24b) and − β2 < ρ < −α2 and φ < φ̃M1 ,

(10.33a)

0 < −mA < mM1 < −mB

⇐⇒ β2 < α2 and

{
ρM1 < ρ < −α2 and φ̃M1 < φ < φM1 , or

−α2 < ρ < −β2 and φ < φM1 ,
(10.33b)

0 < mM1 < −mB < −mA

⇐⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β2 < α2 and ρ̃M1 < ρ < ρM1 and φ̃M1 < φ < φA, or

β2 < α2 and ρM1 < ρ and φ̃AB < φ < φA, or

β2 ≥ α2 and ρ̃M1 < ρ < −β2 and φ̃M1 < φ < φA, or

β2 ≥ α2 and − β2 < ρ and φ < φA, or

(10.33c)

0 < mM1 < −mA < −mB

⇐⇒ β2 < α2 and

{
ρM1 < ρ < −β2 and φM1 < φ < φ̃AB, or

−β2 < ρ and φ < φ̃AB.
(10.33d)

From (10.18f) it follows that

0 < −mA < −mB < mM1 occurs never if β2 ≥ α2, (10.34a)

0 < −mA < mM1 < −mB occurs never if β2 ≥ α2, (10.34b)

0 < mM1 < −mA < −mB occurs never if β2 ≥ α2. (10.34c)

To derive all possible relations between mA, mB, and mM4 we assume φ > φB (cf.
Proposition 4.1). By (4.5a), (4.5b), (4.12), (4.13), (10.22b), (10.28), and (10.30), we
obtain that

0 < mA < mB < mM4 ⇐⇒ ρ < α1 and φM4 < φ, (10.35a)
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0 < mA < mM4 < mB

⇐⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(10.25a) and ρ < α1 and φB < φ < φM4 , or

(10.25a) and α1 < ρ < ρ̃M4 and φB < φ, or

(10.25a) and ρ̃M4 < ρ < β1 and φ̃M4 < φ, or

(10.25b) and ρ < ρ̃M4 and φB < φ < φM4 , or

(10.25b) and ρ̃M4 < ρ < α1 and φ̃M4 < φ < φM4 , or

(10.25b) and α1 < ρ < β1 and φ̃M4 < φ,

(10.35b)

0 < mM4 < mA < mB ⇐⇒
{

ρ̃M4 < ρ < β1 and φB < φ < φ̃M4 , or

β1 < ρ and φB < φ.

(10.35c)

From (10.18f) it follows that

0 < mB < mA < mM4 occurs never if α1 < β1, (10.36a)

0 < mB < mM4 < mA occurs never if α1 < β1, (10.36b)

0 < mM4 < mB < mA occurs never if α1 < β1. (10.36c)

If φ < φA or φ > φB, the relations involving mF0 , mA and mB follow immediately
by (4.10), i.e., by setting ρ = 0 in the relevant formulas in (10.32)–(10.35). The
remaining cases where φA < φ < φB can be calculated easily using θ̃ = α1α2 −β1β2,
(4.5), (4.15), and (10.18). Then, all admissible relations are:

0 < −mA < −mB < −mF0 ⇐⇒ α2 > β2 and φ < φ̃AB, (10.37a)

0 < −mB < −mA < −mF0 ⇐⇒
{

α2 > β2 and φ̃AB < φ < φM1 , or

α2 ≤ β2 and φ < φM1 ,
(10.37b)

0 < mA < −mB < −mF0 ⇐⇒ θ̃ > 0 and φAB < φ < φF0 , (10.37c)

0 < −mB < mA < −mF0 ⇐⇒
{

θ̃ < 0 and φAF0 < φ < φF0 , or

θ̃ ≥ 0 and φAF0 < φ < φAB,
(10.37d)

0 < mA < −mB < mF0 ⇐⇒
{

θ̃ < 0 and φAB < φ < φBF0 , or

θ̃ ≥ 0 and φF0 < φ < φBF0 ,
(10.37e)

0 < −mB < mA < mF0 ⇐⇒ θ̃ < 0 and φF0 < φ < φAB, (10.37f)

0 < mA < mB < mF0 ⇐⇒ φM4(ρ = 0) < φ, (10.37g)

0 < −mB < −mF0 < −mA ⇐⇒ φM1(ρ = 0) < φ < φA, (10.37h)

0 < −mB < −mF0 < mA ⇐⇒ φA < φ < φAF0 , (10.37i)

0 < mA < mF0 < −mB ⇐⇒ φBF0 < φ < φB, (10.37j)

0 < mA < mF0 < mB ⇐⇒ φB < φ < φM4(ρ = 0). (10.37k)
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Because other strict inequalities between mA, mB, and mF0 do not occur, we infer

min{|mA|, |mB|} ≤ |mF0 |. (10.38)
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