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Abstract

Background: Tumor cell invasion into the surrounding matrix has been well documented as an early event of metastasis
occurrence. However, the dynamic expression patterns of proteins during early invasion of hepatocellular carcinoma (HCC)
are largely unknown. Using a three-dimensional HCC invasion culture model established previously, we investigated the
dynamic expression patterns of identified proteins during early invasion of HCC.

Materials and Methods: Highly metastatic MHCC97H cells and a liver tissue fragment were long-term co-cultured in a
rotating wall vessel (RWV) bioreactor to simulate different pathological states of HCC invasion. The established spherical co-
cultures were collected on days 0, 5, 10, and 15 for dynamic expression pattern analysis. Significantly different proteins
among spheroids at different time points were screened and identified using quantitative proteomics of iTRAQ labeling
coupled with LC-MS/MS. Dynamic expression patterns of differential proteins were further categorized by K-means
clustering. The expression modes of several differentially expressed proteins were confirmed by Western blot and gRT-PCR.

Results: Time course analysis of invasion/metastasis gene expressions (MMP2, MMP7, MMP9, CD44, SPP1, CXCR4, CXCL12,
and CDH1) showed remarkable, dynamic alterations during the invasion process of HCC. A total of 1,028 proteins were
identified in spherical co-cultures collected at different time points by quantitative proteomics. Among these proteins, 529
common differential proteins related to HCC invasion were clustered into 25 types of expression patterns. Some proteins
displayed significant dynamic alterations during the early invasion process of HCC, such as upregulation at the early
invasion stage and downregulation at the late invasion stage (e.g., MAPRE1, PHB2, cathepsin D, etc.) or continuous
upregulation during the entire invasion process (e.g., vitronectin, Met, clusterin, ICAM1, GSN, etc.).

Conclusions: Dynamic expression patterns of candidate proteins during the early invasion process of HCC facilitate the
discovery of new molecular targets for early intervention to prevent HCC invasion and metastasis.
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metastasis. As well, single experimental models are known to

) ) mimic only a subclass of cancer or one of its pathological phases
Metastasis and recurrence are major obstacles towards to a [4].

Introduction

significant improvement in HCC treatment or HCC prognosis
after surgical resection [1]. In recent years, increasing evidence on
metastasis has suggested that multiple factors, such as malignant
phenotypes of cancer cells, extracellular matrix, immunity,
angiogenesis, or target organs, are all involved in this complicated
pathological process [2], thereby rendering great difficulties in the
design of i wvitro simulation experiments for HCC metastasis
explaining. The development of experimental models has consid-
erably contributed to our understanding of the pathogenesis of
HCC metastasis [3]. However, no available i vitro experimental
model can yet mirror the exact pathological progression of HCC
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Exclusive reliance on data from traditional stepwise metastatic
HCC cells, HCC animal models, and clinical cancer tissue samples
results in difficulties in understanding the diverse pathological
changes that occur during HCC metastasis. In addition, most of
the known metastasis-associated proteins/genes are identified by
comparative proteomics/genomics between primary tumor tissues
and metastases, primary tumors with and without metastasis,
cancer tissues and paracancerous tissues, as well as HCC cells with
different metastasis potentials [5-8]. Samples obtained ‘after
metastasis” have been used to demonstrate that key events and
molecules altered at early invasion stage of metastasis may easily
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be missed. Expression patterns of molecules responsible for early
mnvasion may also differ from those of known and identified
molecules associated with metastasis. Thus, establishing a novel
model clearly mimicking HCC invasion processes can help
discover “root” molecules in the early invasion of HCC and
ultimately find potential therapeutic targets for early intervention
of cancer invasion and metastasis.

A three-dimensional (3D) culture model reflects the clinical
pathological characteristics of solid tumors more accurately than
two-dimensional (2D) culture models [9,10]. Tumor spheroids
exhibit many distinct advantages in resembling the 3D cytoarchi-
tecture and pathophysiological micromilieu of tumors [11]. The
established 3D hepatocyte cultures in some studies show better cell
structure and liver-specific functions [12]. HCC spheroids also
exhibit the most malignant properties of HCC tumors [13].
However, little is known about the pathological changes of early
mvasion of HCC cells in the 3D state. Using a 3D HCC invasion
culture model established previously, we identified several
candidate proteins involved in early invasion of HCC using
quantitative proteomics by isobaric tags for relative and absolute
quantitation 1ITRAQ) labeling coupled with liquid chromatogra-
phy-tandem mass spectrometry (LC-MS/MS) and explored their
dynamic expression patterns.

Materials and Methods

Cell culture and preparation of liver tissue fragments
Highly metastatic MHCC97H cells, established at the Liver
Cancer Institute of Fudan University [14,15], were cultured in
standard DMEM/F12 medium (GIBCO, USA) supplemented
with 10% fetal bovine serum (Biowest, South America Origin) and
1% penicillin—streptomycin (100 unit/mL each; GIBCO). The
culture medium was changed twice weekly. When cells had grown
to 90% confluence, they were harvested for 3D co-culture. Male
athymic BALB/C-—nu/nu nude mice (4 weeks old) were obtained
from Shanghai SLAC Laboratory Animal Co. Ltd. Animal care
and study protocols were in accordance with guidelines established
by the Shanghai Medical Experimental Animal Care Committee.
The study protocol was approved by the Committee on the Ethics
of Animal Experiments of Zhongshan Hospital, Fudan University.
Nude mice were executed by dislocation, and fresh livers were
carefully excised by operation. Blood in the liver tissue was
removed by repeated washing with 0.9% normal saline. Liver
tissue fragments (2 mm X2 mmX2 mm) were prepared and pre-
incubated with DMEM/F12 culture medium until use.

3D co-culture of HCC cells and a liver tissue fragment in
RWV bioreactor

A 3D co-culture in a rotating wall vessel (RWYV) bioreactor was
performed as described in our previous study [13,16]. Briefly,
approximately 1x10” MHCC97H cells suspended in 10 mL of
DMEM/F12 medium and a liver tissue fragment were transferred
into a RWV bioreactor (Synthecon, Houston, TX, USA) for long-
term rotating co-culture. After initial culture conditions of low-
speed rotation for 24 h, a co-culture spheroid was formed. The
spheroid was then maintained in a freely suspended state within
the vessel by modulation of its speed. The medium was replaced
after 36 h. Spheroids were collected at different time points (0, 5,
10, and 15 d after co-culture).

Quantitative reverse transcription polymerase chain
reaction (QRT-PCR)

Total RNA of the collected spheroids were extracted using
TRIZOL (Invitrogen, USA) according to the manufacturer’s
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protocol and 2 pg of it was reverse-transcribed into cDNA with
the primer oligo(dT);3 using a RevertAid first-strand cDNA
synthesis kit (Fermentas). cDNA was then used as template for
PCR amplification of specific genes (SYBR Green PCR Master
Mix Kit, Invitrogen). Relative expressions of genes were normal-
ized to GAPDH and reported as 2~ 2“, and ACT= Cftarget
gene)— G{GAPDH). The primer sequences were as follows:
CXCLI2 sense, 5'-GTT CAA AGC CAG CGT C-3'; CXCL12
antisense, 5'-TAG TTC ACC CCA AAG GA-3'; MMP2 sense,
5-GTT CAT TTG GCG GAC TGT-3'; MMP2 antisense, 5'-
AGG GTG CTG GCT GAG TAG-3'; MMP9 sense, 5'-CTT
TGG ACA CGC ACG AC-3'; MMP9 antisense, 5'-CCA CCT
GGT TCA ACT CAC T-3'; CD44 sense, 5'-GGT GAA CAA
GGA GTC GTC-3'; CD44 antisense, 5'-TTC CAA GAT AAT
GGT GTA GGT G-3'; SPPI sense, 5'-CAG TGA TTT GCT
TTT GCC-3’; SPP1 antisense, 5'-AGA TGG GTC AGG GTT
TAG-3"; MMP7 sense, 5'-GGG ACT CCT ACC CAT TTG-3';
MMP7 antisense, 5'-CCA GCG TTC ATC CTC ATC-3';
CXCR# sense, 5'-GGA AAT GGG CTC AGG G-3'; CXCR4
antisense, 5'-GAT GGA GTA GAT GGT GGG-3'; CDHI sense,
5'-ATT GAA TGA TGA TGG TGG AC-3’; CDHI1 antisense,
5'-GCT GTG GAG GTG GTG AGA-3'; GAPDH sense, 5'-
CTC CTC CAC CTT TGA CGC-3'; and GAPDH antisense, 5'-
CCA CCA CCC TGT TGC TGT-3'; PHB2 sense, 5'-GCT
GGA CTA CGA GGA ACG-3'; PHB?2 antisense, 5'-CTG TGA
GGC ATT GAA CTT-3'; Vimentin sense, 5'-TTG AAC GCA
AAG TGG AAT-3'; Clusterin (CLU) sense, 5'-ACG AGA AGG
CGA CGA TGA-3'; CLU antisense, 5'-CTG GGA GGG GTT
GTT GGT-3'; Gelsolin (GSN) sense, 5'-ACG ATG CCT TTG
TTC TGA-3'; GSN antisense, 5'-TCT GGC TCG CTG CCT
TCT-3"; SI00A11 sense, 5'-CCT GAT TGC TGT CTT CC-3';
S100A11 antisense, 5'-AGG GTC CTT CTG GTT CT-
3’;Vimentin antisense, 5'-AGG TCA GGC TTG GAA ACA-3'.

iTRAQ labeling coupled with LC-MS/MS

Protein sample preparation and iTRAQ labeling. Spher-
oids were homogenized in lysis buffer (7 M urea, 2 M thiourea, and
1% cocktail proteinase inhibitor) using Precellys bead beating
homogenizer (Bertin Technologies, France) for total protein extrac-
tion. The quality and concentration of the total proteins were
measured using SDS-PAGE and a 2D quantification kit, respective-
ly. Briefly, 100 ug of protein in each sample was precipitated with ice-
cold acetone overnight at —20°C.. The protein pellets were dissolved,
reduced, denatured, blocked, and digested with sequencing-grade
modified trypsin (Sigma; ratio of protein to enzyme, 20:1; 37°C,
overnight) as described in the iITRAQ protocol. The peptides were
labeled as follows: Day 0, iTRAQ 117; Day 5, iTRAQ 118; Day 10,
iITRAQ 119; and Day 15, iTRAQ 121. The iTRAQ-labeled
peptides were mixed and dried using a rotary vacuum concentrator
(Christ RVC 2-25; Osterodeam Harz, Germany), and the iTRAQ
labeling experiment was independently carried out in triplicate.

Off-line 2D LC-MS/MS. 'The labeled peptides were desalted
using a Sep-Pak Vac C18 cartridge(Waters, Milford, USA) and
then fractionated by a strong cation-exchange (SCX) chromatog-
raphy - on a 20AD HPLC system (Shimadzu, Japan) using an
SCX column (polysulfoethyl column, 2.1 mmx100 mm, 5 um,
The Nest Group, Inc. USA). Mixed peptides were eluted using a
linear binary gradient of 0-45% buffer B (350 mM KCI, 10 mM
KH2PO4 in 25% ACN, pH 2.6) in buffer A (10 mM KH2PO4 in
25% ACN, pH 2.6) at a flow rate of 200 uL./min for 60 min. A
total of 28 fractions were collected. Each SCX fraction was dried,
dissolved in buffer C (5% (v/v) acetonitrile and 0.1% formic acid),
and analyzed on a QSTAR XI. LC-MS/MS system (ABI, USA)
with an RPLC column (ZORBAX 300SB-C18 column, 3 um,
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75 um %150 mm, Microm, Auburn, CA). The RPLC gradient was
5% to 35% buffer B (95% acetonitrile, 0.1% formic acid) in buffer
A (5% ACN, 0.1% formic acid) at a flow rate of 0.3 uL./min for
90 min.

Data analysis. All SCX fractions were analyzed twice using
a QSTAR XL LC-MS/MS system (Applied Biosystems, USA).
Data were acquired automatically using Analyst QS 1.0 Service
Pack 8 (ABI/MDS SCIEX, Concord, Canada). Analysis survey
scans were acquired from 400-1800 m/z and the 6 most intense
peaks over 30 counts with a charge state of 2—4 were selected for
MS/MS scan acquired from 100-2000 m/z. Other mass spec-
trometry parameters were set as following: curtain gas was set to
10, nitrogen was used as the collision gas, ionization tip voltage
was set to 2,800 V and a rolling collision energy (CE) was applied
for peptide fragmentation.

Protein Pilot software (version 3.0) was used for data processing
and database searching. The following parameters were set in the
searching: sample type, iITRAQ (4-plex peptide labeled); enzyme,
trypsin; cycteinemodification: methylmethanethiosulfate; no spe-
cial factors; biological modification; searching effort, thorough
identification search. All proteins were identified at =95%
confidence level. In addition, protein score threshold cutoff
determined by Protein Pilot was set to 1.3 (Prot Score). At least
one unique peptide with 95% confidence was considered for
protein quantification. For iTRAQ quantitation, the peptide for
quantification was automatically selected by the Pro Group
algorithm (at least one peptide with 99% confidence) to calculate
error factor (EF), and P-value. The true value for the average ratio
was expressed and calculated as an EF (£F=10 at 95% confidence
level). An EF of <2 was set to satisfy quantification quality. In
addition, a P-value of <0.05 was considered significant for protein
quantification. Ratios of the 117, 118, 119, and 121 signature mass
tags generated by MS/MS fragmentation from the iTRAQ-
labeled peptides were calculated using Protein Pilot (version 3.0,
ABI, USA) in Analyst. To designate significant changes in protein
expression, fold changes of >1.2 or <0.83 were set as cutoff
values. “Auto” bias correction was used to reduce artificial errors.

The differential proteins were further analyzed in the context of
Gene Ontology (GO) biological process using the molecule
annotation system 2.0 (MAS 2.0, http://bioinfo.capitalbio.com/
mas3/) software (CapitalBio, Beijing, China).

Western blot

The total protein (50 ug) extracted from the spheroid was
resolved in 10% SDS-PAGE gels, followed by transferring onto
PVDF membrane (Millipore, USA). After blocking in buffer (0.5%
Tween-20 in TBS, and 5% w/v dried skimmed milk) for 1 h at
room temperature, the membrane was incubated with the diluted
primary antibody overnight at 4°C. Subsequently, it was washed
with TBST (TBS with 0.5% Tween-20) and reacted with a HRP-
conjugated secondary antibody (1:10,000) for 1 h at room
temperature. Finally, the target band was visualized using an
ECL plus detection system. Primary antibodies used in the study
were diluted as the following: ICAM-1(1:500, Epitomics, Burlin-
game, CA, USA), ANXAI (annexin Al, 1:1000, Proteintech
Group, Chicago, IL, USA), CK18 (1:1000, Cell Signal Technol-
ogy, Boston, MA, USA), FTL (ferritin, 1:500, Proteintech Group,
Chicago, 1L, USA), GSN (Gelsolin,1:2000, Epitomics, Burlin-
game, CA, USA), HSP90 (1:500, Proteintech Group, Chicago, 1L,
USA), PCNA(1:1000, Abcam, Boston, MA, USA), Vimentin
(1:1000, Epitomics, Burlingame, CA, USA) and beta-actin
(1:1000, HuaAn Biotechnology, Hangzhou,China).
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Statistical analysis

Data analysis was performed with SPSS 15.0 (SPSS, Chicago,
IL, USA). Quantitative variables were expressed as mean * SD
(standard deviations) and analyzed using the Student’s ftest. A
two-sided P value of <<0.05 was considered statistically significant.

Results

Dynamic expression patterns of invasion/metastasis-
associated genes during the development of an in vitro
HCC invasion model

An wm vitro HCC invasion culture model developed in our
previous study could adequately mirror different pathological
states of HCC invasion [16]. According to the pathological and
morphological changes observed, day 5, in which HCC cells
attached to the liver tissue fragment or slightly invaded it, and day
10, in which cells clearly invaded the liver tissue fragment, were
defined as early stages of HCC invasion. By contrast, day 15, in
which HCC cells formed tumor foci on the liver fragment, was
defined as a late stage of invasion. Expression patterns of eight
known invasion/metastasis-associated genes, including MMP2,
MMP7, MMP9, CD44, SPP1, CXCR4, CXCL12, and CDHI,
were used to evaluate dynamic alterations during the development
of HCC invasion model (Fig. 1). Compared with those of the
control (day 0), the expressions of MMP9, MMP7, and CD44
increased whereas that of CDHI (E-cadherin) significantly
decreased at early stages of invasion (day 5). The expressions of
MMP2 and SPP1 were upregulated at early and middle stages of
HCC invasion (days 5 and 10). Expressions of CXCL12 and
CXCR4 were continually upregulated during the entire process of
HCC invasion (days 5, 10, and 15). These results demonstrate
remarkable, dynamic alterations in invasion/metastasis gene
expression occurring along with the invasion process of HCC
and indicate that HCC cells possess different invasion capabilities
at different pathological states of invasion.

Protein identification and categorization of common

differential proteins

An average of 1,028 proteins (mean 1028%+92; range, 923—
1094) was identified by iTRAQ labeling coupled with LC-MS/MS
in three independent experiments (Figs. 2 and 3). Among these
proteins, 529 common differential proteins (fold-change of >1.2 or
<0.83, P<<0.05) related to HCC invasion were clustered into 25
types of expression patterns based on their relative expression
levels at different time points (Figs. 2 and 4, Table Sl1). Eight
typical expression patterns comprising 201 differential proteins
(Types I to VIII, Fig. 5) were highlighted because of their
significant dynamic alterations during the early invasion of HCC.
These alterations included upregulation of expression at early
invasion stages but downregulation at the late invasion stages (e.g.,
MAPREL, PHB2, cathepsin D, TGM2, peroxiredoxin-2, lamin-
B1, annexin Al, etc.) and continual upregulation of proteins
throughout the entire invasion process (e.g., vitronectin, met,
clusterin, ICAM1, GSN, S100A11, Hsp90, calpain, galectin, etc.).
These identified proteins implicated in the early invasion of HCC
were dynamically altered as invasion proceeded. Molecular
function classification of these proteins showed that most of the
significant differentially expressed proteins (66/201, 32.8% of all
proteins) were associated with cell adhesion, cytoskeleton regula-
tion, cell motility, ECM remodeling, and angiogenesis, which
suggests that they contribute to pathological processes during early
mvasion of HCC (Fig. 6).
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Figure 1. Expression patterns of eight invasion/metastasis-associated genes (MMP2, MMP7, MMP9, CD44, SPP1, CXCR4, CXCL12,
and CDH1). Time course analysis showed remarkable, dynamic alterations in invasion/metastasis gene expression during the development of the

HCC invasion model.
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Validation of differential expression patterns of proteins

during early HCC invasion

Dynamic alterations in differential protein expression related to
HCC invasion (e.g. ICAM-1, ANXAIl, CKI18, FIL, GSN,
HSP90, PCNA, Vimentin, PHB2, Clusterin, S100All, and
Vitronectin) were verified by Western blot (Fig. 7A) and
quantitative RT-PCR (Fig. 7B), respectively. Dynamic changes
of differential proteins validated by both Western blot and
quantitative RT-PCR were all consistent with their expression
modes acquired from quantitative proteomics.

Discussion

Tumor cell invasion into the surrounding matrix is an early
event of metastasis occurrence [17,18]. Proteins that contribute to
this early pathological process of invasion may be key molecular
targets for early intervention of HCC invasion and metastasis.
However, based on traditional cell experiment models and “after
metastasis” comparative strategies, these proteins and their
dynamic changes in expression can hardly be identified or defined
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at late stages of invasion. In contrast to previous reports on HCC
metastasis, the current study mainly explores dynamic changes in
key molecules during the early invasion process of HCC by means
of a novel 3D HCC invasion culture model. This model was
validated in our previous study [16] to better mimic the main
pathological states of HCC invasion, including early invasion
stages, such as attachment onto and invasion of HCC cells into
liver tissue fragments, and late invasion stages, such as formation
of tumor foci in the target tissue.

We evaluated dynamic alterations in invasion/metastasis gene
expression using this HCC invasion culture model and found
remarkable, dynamic alterations in invasion/metastasis gene
expression that occurred along with the HCC invasion process.
Some genes, such as MMP9, MMP7, CD44, and SPP1, were
highly expressed at early invasion stages but eventually decreased
at the late invasion stages. By contrast, the expression of CDH1 (E-
cadherin) decreased at early invasion stages but increased at the
late invasion stages. Some genes, such as MMP2 and CXCR4,
were gradually upregulated at the early and middle stages of HCC
invasion and then decreased at the late invasion stage. CXCL12
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Figure 2. Schematic diagram showing the workflow of the current iTRAQ-based study using an in vitro HCC invasion culture model.
Proteins from co-culture spheroids obtained at different time points (days 0, 5, 10, and 15) were labeled with iTRAQ tags (117, 118, 119, and 121). An
average of 1,028 proteins (mean 1028+92; range, 923-1094) were identified in three independent experiments. A total of 529 common differential

proteins were categorized by K-means clustering.
doi:10.1371/journal.pone.0088543.9002
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Figure 5. Eight typical expression patterns including 201 differential proteins during in vitro HCC invasion. Proteins obtained from the
co-culture spheroids at different time points are labeled as Day 0, Day 5, Day 10, and Day 15.

doi:10.1371/journal.pone.0088543.9g005

was continually upregulated during the entire invasion process.
These results support the hypothesis that HCC cells can alter their
invasion phenotypes and capabilities at different pathological
stages of invasion. Thus, identification of candidate proteins
during early invasion of HCC using this model and exploration of

PLOS ONE | www.plosone.org

their dynamic expression patterns for early diagnosis and
treatment of HCC are necessary.

1TRAQ-based quantitative proteomics is now widely applied in
screening disease-associated differential proteins [19]. This tech-
nology enables comparative analysis of at most four different tissue
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samples with different pathological characteristics in one MS (mass
spectrometry) experiment. Using this method, some proteins
related to tumor metastasis have been successfully identified
[5,20]. However, little literature is found about the screening and
identification of early invasion-associated HCC proteins. In the
current study, a total of 1,028 differential proteins were identified
in three independent experiments, and 529 common modulated
proteins related to HCC invasion were screened for dynamic
expression pattern analysis. These proteins were clustered into 25
types of expression patterns.

Eight typical expression patterns comprising 201 differential
proteins, such as ICAM1, cathepsin D, vitronectin, Met, clusterin,
and S100A11, were determined for future biological function
analysis based on the following.

Generally, types II, III, and VIII proteins classified in Fig. 5,
which increase at early stages of invasion but decrease at late
stages, are ideal targets for early intervention. Considering their
lower expression at the late stage of invasion or downregulation
after completion of the invasion process, these identified proteins
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are not easily detected in clinical tumor tissue samples. To the best
of our knowledge, most of these identified proteins, such as
STOML2 (stomatin- like protein 2), SDF4, CES1, and PGRMCI,
are not associated with HCC invasion and metastasis; thus, they
may be considered unimportant by traditional research strategies.
However, the biological functions of these proteins in early
invasion deserve further investigation. Other proteins, such as
MAPREL, PHB2, cathepsin D, TGM2, peroxiredoxin-2, lamin-
B1, and annexin Al, etc., have been reported to participate in
HCC progression in other studies. MAPRE] (EB1), also identified
by proteomics analysis, is controlled by c-Myc, RhoA, and
CDC42, all of which are linked to HCC malignancy, and shows
prognostic prediction value for HCC [21]. PHB2 (prohibitin-2)
increases the survival of HCC cells in hypoxic microenvironments
[22]. Cathepsin D, which features proteolytic activity, serves as a
prerequisite for cancer invasion, and its expression is significant in
predicting HCC prognosis [23]. Why could these proteins be
detected in the ‘“after metastasis” samples? We speculate that
among these “after metastasis” tumor tissues, several tumor

DAY 5
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DAY 15

S100A11

Vimentin

Figure 7. Dynamic alterations of some candidate differential proteins during early invasion of HCC were validated by Western blot

(A) and gRT-PCR (B).
doi:10.1371/journal.pone.0088543.g007
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samples with undetected aggressive or invasive events facilitate to
discover this sort of candidate proteins.

Types IV, VI, and VII proteins classified in Fig. 5, which are
continuously upregulated during the entire period of invasion,
such as vitronectin, Met, Clusterin, ICAM1, GSN (Gelsolin),
S100A11, Hsp90, Calpain, and Galectin, etc., are also potential
valuable targets for disrupting the invasion process. Most of these
proteins have been identified in clinical tissue specimens and
confirmed to be associated with HCC invasion and metastasis.
Vitronectin interacting with integrin avf3 is involved in HCC
metastasis. Aberrant Met activation promotes tumor growth,
angiogenesis, and metastasis; in fact, many Met inhibitors have
been developed for advanced HCC treatment [24]. Clusterin can
induce EMT to promote HCC metastasis [25,26]. ICAM1 is
considered a marker of HCC stem cells, and its inhibitors suppress
HCC tumor formation and metastasis [27]. GSN is involved in the
Rack1/PI3K/Racl signaling pathway and affects HCC prolifer-
ation, migration, and invasion capacity [28]. Calpain is required
for the invasive and metastatic potential of HCC cells and may be
a drug target for preventing HCC metastasis [29]. Such findings
further prove that this group of candidate proteins has important
roles in the early invasion of HCC.

Types I and V proteins classified in Fig. 5, which are
downregulated at early invasion stages but upregulated at the late
invasion stage, are also involved in the process of HCC invasion
and metastasis. Vimentin, S100A6, RAB10, and IQGAPI are
related to EMT, cytoskeletal dynamics, cell migration, and
mnvasion. Vimentin, as an EMT-associated protein, is associated
with HCC metastasis [30]. Network analysis has revealed that
knockdown of vimentin can disturb the expression and stability of
various cytoskeletal proteins, resulting in impaired HCC cell
adhesion, motility, and metastasis [31]. The Ca®*-binding protein
S100A6 mediates HBx-induced cell migration [32]. The small
GTPase RAB10, which is frequently upregulated in HCC tissues
[33], participates in vesicular transport. Increases in the scaffold
protein IQGAP1 contribute to HCC tumorigenesis [34]; IQGAPI
can also integrate Rho GTPase and Ca**/calmodulin signals with
cell adhesion and cytoskeletal remodeling. This group of candidate
proteins may be associated with the formation of metastatic tumor
colonies after invasion.

We further selected some differential proteins representing
different expression patterns and verified their dynamic expression
patterns using Western blot and quantitative RT-PCR. Their
dynamic changes of expression were all confirmed to be consistent
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that there exist the dynamic expression patterns for the identified
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In conclusion, the different expression patterns of candidate
proteins identified from the invasion culture model demonstrate
their diverse functions in the early invasion process of HCC. The
dynamic expression patterns of candidate proteins observed during
early invasion of HCC facilitate the discovery of new molecular
targets for early intervention of HCC invasion and metastasis.
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