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ABSTRACT We present a two-layer hidden Markov model to detect the structure of haplotypes for unrelated individuals. This allows us
to model two scales of linkage disequilibrium (one within a group of haplotypes and one between groups), thereby taking advantage
of rich haplotype information to infer local ancestry of admixed individuals. Our method outperforms competing state-of-the-art
methods, particularly for regions of small ancestral track lengths. Applying our method to Mexican samples in HapMap3, we found
two regions on chromosomes 6 and 8 that show significant departure of local ancestry from the genome-wide average. A software
package implementing the methods described in this article is freely available at http:/bcm.edu/cnrc/mememc.

APLOTYPE variation is central to statistical and popula-

tion genetics. Studies have revealed considerable sharing
(Conrad et al. 2006) and significant variation (Liu et al. 2004)
of haplotypes among populations. Since markers are linked
on a haplotype, the makeup of haplotypes in a population
produces unique patterns of linkage disequilibrium (LD): the
dependence between markers’ marginal allele frequencies.
Therefore, modeling LD is key to understanding haplotype
variations. Many statistical models exist to model LD, but
a model that can detect the structure of haplotypes is missing.
The most elegant model for LD is the coalescent with
recombination (Kingman 1982; Hudson 1983) or the ancestral
recombination graph (ARG). However, despite successful
efforts on small-scale data sets (Wang and Rannala 2009),
ARG remains notoriously hard to compute. Considerable efforts
have been made to approximate ARG to allow computation on
a large scale (Stephens and Donnelly 2000; Fearnhead and
Donnelly 2002; Li and Stephens 2003; Scheet and Stephens
2006; Paul and Song 2010). Among them, the most successful
is the PAC model of Li and Stephens (2003), which models
a new haplotype as an imperfect mosaic of observed haplotypes
to produce a conditional likelihood; the joint likelihood of all
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haplotypes is then approximated by the product of those
conditionals. Using diffusion approximation, Paul and Song
(2010) derived a similar likelihood that they called the con-
ditional sampling distribution. A somewhat related approach
is the clustering model (Scheet and Stephens 2006), which
coalesces and condenses the observed haplotypes into a small
number of (ancestral) haplotypes and models the observed
haplotypes as imperfect mosaics of those condensed haplotypes.

These models assume haplotypes are sampled from a single
source population and become ineffective when haplotypes
are admixed. Admixed haplotypes have two scales of LD: the
admixture LD between alleles in different source populations
that typically spans a few to tens of centimorgans (Smith and
O’Brien 2005) and the LD between alleles within each source
population that typically spans a few tenths of a centimorgan.
The HAPMIX model (Price et al. 2009) is among the first to
model LD of admixed individuals, extending the PAC model
to two source populations. This model is effective for inferring
local ancestry of two-way admixtures (e.g., African-Americans),
but it is not yet applicable to three-way admixtures such as
Latinos. (In principle, however, HAPMIX should work with
three-way admixtures.) Two recent examples of progress include
LAMP-LD (Baran et al. 2012) and MULTIMIX (Churchhouse and
Marchini 2013), both of which achieve similar performance to
that of HAPMIX in inferring local ancestry of two-way admix-
tures and can handle three-way admixtures. However, HAPMIX
and LAMP-LD both require phased haplotypes from source
populations, and LAMP-LD and MULTIMIX both assume
ancestries are fixed within a window of markers and switch
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only between windows. These methods often perform well for
recent admixtures but underperform for distant admixtures,
which implies limited ability to detect local ancestries of short
track lengths. Distantly admixed individuals, such as Uyghurs
whose admixture occurred >100 generations ago, are valu-
able for disease association (Xu and Jin 2008) and human
genetic landscape studies (Li et al. 2009). Moreover, even
for recent admixtures, there exists a nontrivial proportion of
short ancestry segments. If we model the ancestral track length
as exponentially distributed with mean 10 ¢cM (equivalent to
admixture that occurred 10 generations ago), then we expect
to observe >9.5% of ancestry segments whose track lengths
are <1 cM.

A different perspective of two scales of LD in admixture—
one within a source population and one between different
source populations—is structure on local haplotypes. Taking
the two-way admixture as an example, haplotypes from two
source populations may be condensed and structured into
two groups, and a new haplotype is assigned probabilistically
to a group based on its similarity with the (condensed) hap-
lotypes in both groups. In fact, the local haplotype structure is
a ubiquitous phenomenon in genetic data, and the admixture
is just a more apparent example. Even among individuals
sampled from a single source population, a set of local hap-
lotypes might be enriched in one subset of individuals and
a different set of local haplotypes enriched in another. For
example, individuals of European descent may be separated
according to whether they have different two-digit human leu-
kocyte antigen (HLA)-A allele classes. Compared to the genetic
difference between two alleles sampled from distinct ances-
tries, the genetic difference between two-digit HLA allele
classes is more subtle. However, from the perspective of
statistical modeling, these two scenarios are the same—both
require detecting the structure of local haplotypes based on
their similarities. None of the current methods is designed to
handle this more delicate scenario.

In this study, we present a novel two-layer hidden Markov
model (HMM) designed to learn the structure of local
haplotypes. The new model uses two layers of latent clusters.
In each layer, clusters are labeled to represent ancestry alleles,
and multiple clusters of the same label over adjacent markers
represent an ancestral haplotype. In a nonrecombined region,
the upper layer aims to capture structure near the root of
a coalescent tree, whereas the lower layer aims to capture
haplotype variation near the tip. Recombination is approxi-
mated by cluster switching within each layer. The lower-layer
clusters are fuzzy mosaics of the upper-layer clusters, and
haplotypes in the observed data are fuzzy mosaics of the
lower-layer clusters. The fuzziness results from mutations and
uncertainty of inheritance; the mosaics are results of historic
recombinations. Existing cluster-based models use single-layer
clusters. For example, fastPHASE (Scheet and Stephens 2006)
and Beagle (Browning and Browning 2007) use, equivalently,
the lower-layer clusters to model ancestral haplotypes; and
STRUCTURE (Pritchard et al. 2000) equivalently uses the
upper-layer clusters to model ancestry populations. Although
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Figure 1 Graphic representation of the two-layer model. White circles
connected by dotted lines are seven haplotypes over three markers (for
simplicity, haplotypes are assumed to be observed instead of diplotypes).
Colored circles are lower-layer latent clusters representing ancestral hap-
lotypes; gray circles are upper-layer latent clusters that enforce structure
on haplotypes. Circles that share the same color (or gray level) have the
same labels over three markers. Two dotted lines between latent clusters
indicate that the lower cluster is shared between two upper clusters.
Refer to Figure 2 for a numerical example.

seemingly incremental, the two-layer model has an attractive
feature that is not available in a single-layer model—detecting
structure of haplotypes. The upper-layer clusters represent dif-
ferent groups (populations) and the lower-layer clusters repre-
sent group-specific haplotypes (Figure 1). Thus we may infer
local ancestries by condensing and grouping local haplotypes
into different groups and assigning a local haplotype probabi-
listically into groups.

Local ancestries of admixed individuals provide important
information for disease association mapping (Smith and O’Brien
2005) and demographic history (Johnson et al. 2011). It is an
important subject that has attracted much recent attention
(Patterson et al. 2004; Tang et al. 2006; Sundquist et al. 2008;
Price et al. 2009; Baran et al. 2012; Churchhouse and Marchini
2013). One way to infer local ancestry is to use ancestry
informative markers (AIMs)—markers whose allele frequencies
have large differences among populations (Smith et al. 2004).
Local ancestry inference using AIMs has a low resolution
because AIMs are relatively scarce. On the other hand, hap-
lotypes provide richer information that is complementary to
the AIMs. Taking an extreme example, if one population has
50% A-T and 50% T-A haplotypes whereas another population
has 50% A-A and 50% T-T haplotypes, there would be no
difference in the marginal allele frequencies between the
two populations, while the two-marker haplotypes are very
informative. The two-layer model uses local haplotypes in
source populations to define population features for each
small genomic region, based on which admixed haplotypes
are assigned probabilistically to different populations. These
genomic regions are not prespecified; instead, they are learned
from data. Compared to methods that group markers in win-
dows and allow only ancestral switches between windows
(Baran et al. 2012; Churchhouse and Marchini 2013), our



method performs better because prespecified windows may
conflict with actual ancestral switches.

Methods and Models

For ease of presentation, we assume haplotypes are ob-
served. By integrating out phase, our model applies directly
to diploid individuals (Appendix). We assume readers have
some basic knowledge of the HMM or are familiar with
classic LD models such as PAC (Li and Stephens 2003)
and fastPHASE (Scheet and Stephens 2006).

The two-layer HMM

We assume the numbers of upper- and lower-layer clusters
are S and K, respectively, and denote N the number of hap-
lotypes and M the number of markers. For each individual i,
let X@, Y) be the latent state of the upper and lower clus-
ters at marker m. Here X,(,? takes valuesin1,...,S and and
Y,Si) takes values in 1 ,...,K; a lower cluster k associates
with a parameter 6,,; to represent ancestral allele frequency.
We may drop the superscript when referring to an arbitrary
individual.

The main HMM: The emission of an observed haplotype
marker h,(,? of individual i at marker m from a lower-layer
cluster is modeled as

p (i vl ) = p (mid | €)
O f =1 o
=100 if hi/ =0
1 if hﬁ,? is missing,

where ¢ is the collection of parameters associated with the
HMM (details will follow), and 6, is the allele frequency
associated with lower-cluster k at marker m. The complete
data likelihood has the form

AN X y ()

) ,X(N)7y(N)|§)
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= H [1 p(hm

v\ 5) p (X#P, v 5). 2)

The Markov transition of the latent states tries to capture the
following intuitions: a haplotype copies mosaically from
(ancestral) haplotypes in one source population and then
may switch to another source population and copy mosai-
cally from its haplotypes. The upper-layer switch probabil-
ities j determine how frequently switches occur between
different source populations and the lower-layer switch
probabilities r determine how frequently switches occur be-
tween ancestral haplotypes within each source population.
Thus, the model accommodates two scales of LD observed in
admixed individuals. We have at the first marker

p(X1=s5,Y1=k)=p(Y1=k[X; = s)p(X1 = 5) = o\ B1g (3)

and the Markov transitions

PXm=5$,Ym =klXm-1=5",Yp1=k)
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where aﬁi) is the probability that individual i jumps to upper-
cluster s given the jump occurs, and B, is the probability
an individual jumps to lower-cluster k given the jump occurs
and the upper-cluster being s. Note a® is an individual
specific S vector to denote the admixture proportion, and
Bisan M X S X K tensor shared by all individuals. The I(a =
b) is an indicator function.

We made three assumptions on the transition matrix of
the hidden states. First, given the switch occurs between
markerm — 1 and m, X\ is independent of Xf,?,l, and ! is
independent of Y,(,i),l. This assumption, used by previous
models (Li and Stephens 2003; Scheet and Stephens
2006), reduces the number of parameters and simplifies
computation. Second, given the switch occurs, X,S? takes
values according to a® and only according to a®; on the
other hand, given the switch occurs and X, D= s, Y takes
values according to 8, which is a function of m, but not i.
This accommodates the fact that LD patterns are heteroge-
neous across markers. Third, we assume that if the upper
layer switches, then the lower layer must switch; however,
the lower layer can switch even if the upper layer does not
switch. This encourages the upper-layer-specific LD
patterns.

In the main HMM, the upper-layer latent state X, con-
tributes only to transitions of latent states (through 8) and
does not contribute to emitting an observed genotype or 6
estimates (likelihood does not involve allele frequencies as-
sociated with X;,,). This works well when K, the number of
lower-layer clusters, is not too large, but less well for a large
K. To stabilize 0 estimates for a large K, we use an ancillary
HMM to model the upper-layer clusters emitting 6.

The ancillary HMM: Given estimates of 6, we assume the
ancillary HMM is independent of the main HMM. The ancil-
lary HMM is a single-layer HMM where the K ancestral
haplotypes (the 6 matrix) are assumed as observed (recall
K is the number of lower clusters). The latent state of the kth
ancestral haplotype at marker m, denoted by Wik ), repre-
sents which population (upper cluster) the ancestral marker
descends from; W,(,If ) takes values in 1 ,...,S (recall S is the
number of upper clusters), and it associates with an allele
frequency parameter 7. Here we use W instead of X to de-
note the upper-layer cluster because X belongs to the ob-
served genotypes and W belongs to the inferred ancestral
haplotypes. We model emission of 6, from W,(,f ) as

P(0miIWit, €) = Beta(0pmki 1y, F(1 = 1) ). (5)

where Beta(x, a, b) denotes a Beta density with parameters
a, b. This emission is adapted from the Balding—Nichols
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model (Balding and Nichols 1995). The original model is
designed to model population divergence, and hence F is
specified through F;; values (a measurement of allele fre-
quency divergence) between different populations. In our
context, we use it as a “random effect model” to stabilize
0 estimates. For computational convenience, we set F = 1
(Appendix). Treating 60, as observed, the complete data
likelihood has the form

p(0a,....0%, WD, . WK|g)

K M (6)
= 11 I1 p(6meWit).€)p (Wil ).
k=1 m=1
The transition of the latent states is modeled as
(k) (k)
pIW; ' =s)=a
(=)=

k k , ,
p(Wi)=sWiily =) = pal + (1= p)i(s = ).
where the jump probabilities p are unrelated to the jump
probabilities of the main HMM.

Model fitting

In the main HMM, the collection of parameters ¢ contains
allele frequencies 6 (an M X K matrix) and 8 (an M X S X K
matrix), ¢ (an N X S matrix), and j and r (both M vectors).
In the ancillary HMV, the set of parameters contains 1 (an
M X S matrix), a (a K X S matrix), and p (an M vector). We
briefly discuss how to estimate these parameters using ex-
pectation maximization (EM), focusing on the main HMM.
For details, please refer to the Appendix.

For an arbitrary individual i, we write the forward prob-
ability ¢(m, s, k) = p(him, X = 5, Yo, = k|€) and the
backward probability ¢(m, s, k) = p(hpms1:m|Xm = S, Vi =
k|£&); both probabilities can be computed analytically. The
posterior probabilities of the latent states at each marker are
pX = s, Yy, = k|h, & x ¢(m, s, k)(m, s, k). We then
compute quantities to update the model parameters, which
are ancestral allele frequencies 6 and the Markov transition
parameters «, 3, j, and r. For 6, we follow the classical ap-
proach to derive updates by optimizing the expected com-
plete data (observed and latent) log-likelihood, conditioning
on the previous estimates of £. For Markov transition param-
eters, we identify and compute sufficient statistics (the
expected number of switches to each cluster pair); the
updates are functions of those sufficient statistics. All
updates can be computed analytically or numerically and
require no sampling. Upon convergence of EM, we have &£*.

Constraint on cluster switches: Estimating switch proba-
bilities j and r is more difficult for two reasons. First, a large
jm (or ry,) estimate in a previous iteration often results in
a large estimate in the current iteration, and, as a conse-
quence, the choice of initial values of j and r influences
heavily the point at which they converge. Second, j and r
are not completely identifiable. If both « and B, are close
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to 1, then a large probability in either j,, or r,, results in
a similar likelihood. We overcome these difficulties by put-
ting constraints on j and r; the constraints are derived from
the coalescent theory.

Define r, =1 — exp(—t,(,ll)), where tf,lf = 4N.cp 81 is the
lower-layer cluster switch rate, where N, is the effective
population size and ¢, is the genetic distance between
markers (m — 1) and m. We approximate c,, by assuming
1 c¢M spans 1 Mb. Recall from the coalescent theory (cf.
Ewens 2004) that T), =1/ (’;) is the mean coalescent time
for k lineages; we then have 6 =Ty +...+Tn =
1/K —1/N. Assuming N > K, then §; ~ 1/K. This leads to
a natural choice for constraint on t,SP (and hence r). For
example, if N. = 10,000, > ¢, =5 cM, and K = 10, then
we may apply the constraint > t = 500. In practice, we
directly estimate r,, and compute t,(,i), rescale t,(,ll) to match
the constraint, and reestimate r,,.

Define j,, = exp(— tﬁp), where tﬁ,‘l’) = 4Necp 6y. One
might be tempted to follow a similar coalescent argument
to specify &8,, but unlike &;, which is robust to recent demo-
graphic history because it pertains to an “ideal” ancestral
population, 8, is heavily influenced by demographic histo-
ries (for example, admixture generations) and the coales-
cent argument becomes ineffective. As a workaround, we
constrain j through the admixture generation vy. In practice,
we first estimate j, to compute t and then use
> t,(,lf ) — v cm to rescale t,(,lf ) to reestimate Jm. Defining an-
cestry track length asA = M/ tp,, then A and +y follow a sim-
ple relationship yA = 100.

Inference and computation: We are interested in the upper
cluster dosage for each individual i, defined as Pr(X. |hD, &),
which is the posterior estimate of local ancestry at marker m;
its genome-wide average is the admixture proportion. To
investigate structure of haplotypes, we are also interested
in computing conditional dosage for lower clusters, defined
as 1/NY N Pr(v\) = k| X\ =s,h0, ¢).

After trial and error, we arrived at the following ways to
improve model-fitting performance:

1. Because the dimension of ¢ is high and standard EM
procedures tend to converge to a local mode instead of
the global mode, it is useful to average inferences over
multiple EM runs.

2. It is helpful to initialize parameters with values that pre-
serve symmetry; e.g., O ~ 0.5, o\ ~ 1/S, and Bk ~ 1/
K for all values of m, s, and k, respectively. The initial
values can be simulated from symmetric Beta or Dirichlet
distributions with large rates.

3. The training data from source populations can be either
phased or unphased. The difference is small when phas-
ing is accurate and the computation with phased data is
faster (linear vs. quadratic in numbers of upper-layer
clusters S and lower-layer clusters K). However, when
phasing is less accurate, for example, pure statistical
phasing without help of transmission, using unphased



data is preferred. By default, we assume phased training
data sets are used, except in the analysis of Mexican
samples or where noted.

4. The common practice used in imputation (¢f. Guan and
Stephens 2008), for which one first fits the model to the
training data from source populations and then runs the
forward-backward algorithm once on the admixed indi-
viduals, tends to produce spurious ancestry switches in
spikes; performing additional EM steps using both source
samples and admixed samples (joint model fitting)
reduces spurious ancestry switches. We recommend joint
model fitting.

Metrics for performance: We used two metrics to measure
performance of local ancestry inference: the mean deviation
and Pearson’s correlation. An individual’s local ancestry can
be expressed by an M X S matrix, where M is the number of
markers and S is the number of upper-layer clusters (or
source populations). The column stacking of the matrix pro-
duces a vector x. The mean deviation is defined as
1/LE _ |%m — Xm|, where x,, is the actual value, X, is an
inferred value, |-| denotes absolute value, and L = MS.
Pearson’s correlation is computed using x and X.

Choice of parameters: The companion software is easy to
use—users need to specify only three parameters: the num-
ber of upper clusters S, the number of lower clusters K, and
the admixture generations vy. For local ancestry inference, S
is clear a priori. For example, S = 2 for African-Americans
and S = 3 for Latinos. We used K = 5S in our study, but the
method is robust to a wide range of K values. We demon-
strate this through examples. For a set of simulated two-way
admixed individuals, we used S = 2 and K = 5, 10, or 20 to
fit the model. K = 10 and K = 20 outperform K = 5 for both
deviation and correlation, especially for correlation; the dif-
ference between K = 10 and K = 20 is small (Supporting
Information, Table S1).

As a rule, we recommend averaging results over multiple
choices of y. In general, y = 10 for African-American sam-
ples, ¥ = 20 for Latinos, and y = 100 for Uyghurs appear to
be good choices. In our simulation studies, the local ancestry
inference is robust to y up to a multiple of 2; however, y
affects the smoothness of the local ancestry inference. We
simulated two-way admixed individuals with admixture
generation y = 100 and fitted the model using y = 50,
100, and 200, respectively. For all individuals, small values
of y produce smoother local ancestry estimates than those
obtained from large values of y. But, for all three choices of
v, the main ancestry blocks were inferred well. Taking one
individual as an example, the deviation estimates for three
choices of y were 0.067, 0.062, and 0.092, with y = 100
performing the best and y = 200 performing the worst,
presumably because the metric is sensitive to smoothness.
Three Pearson’s correlations are 0.934, 0.947, and 0.932 for

three choices of y. As a comparison, the deviation estimate
for HAPMIX is 0.067 and the correlation is 0.939. Although
quantitatively similar to our method, HAPMIX does miss
a major ancestry block in the middle (Figure S1).

Simulating admixed individuals: The procedure we used
to simulate three-way admixed individuals is similar to what
is used in HAPMIX (Price et al. 2009) for two-way admix-
tures. For a given admixture generation y, we compute the
average ancestral track length A = 100/y and then t =
1000A (a region of 1 Mb contains ~1000 HapMap SNPs).
We randomly choose three haplotypes, he, hy, and h,, from
Utah residents with Northern and Western European ances-
try (CEU), Yoruba in Ibadan, Nigeria (YRI), and Han Chi-
nese in Beijing, China, CHB and Japanese in Tokyo, Japan
(CHB+JPT) populations, respectively, and copy from the
three haplotypes to form a new admixed haplotype by repeat-
ing the following three steps: (1) let s be the current position
on a genome and generate a number w according to an expo-
nential distribution with mean t; (2) copy SNPs (s, s + w] from
h, with probability §,, from h, with probability §,, and from h,
with probability 63 = 1 — 8; — &,; and (3) increase s by w;
finish if s exceeds the total number of SNPs. Two admixed
haplotypes are paired randomly to form a diploid individual.
The markers are then thinned to match the Illumina 650K SNP
chip. The two-way admixture can be simulated accordingly.
We chose (0.8, 0.2) as the target two-way admixture propor-
tions and (0.6, 0.2, 0.2) for three-way admixture proportions.
Note that the simulated admixture proportions vary due to
a finite number of SNPs.

Summary of symbols and notations: For the convenience
of the reader, we summarize the symbols used in the Meth-
ods and Models and Appendix sections in Table 1.

Results
Structure of haplotypes

The two-layer model can detect the structure of (ancestral)
haplotypes. To illustrate this, we took chromosome 2 of
unrelated CEU and YRI individuals (120 haplotypes each)
from HapMap2 (International Hapmap Consortium 2007)
and fitted the two-layer model with S = 2, K = 10,
and y = 100, ignoring their population labels. Then,
we computed the conditional dosage (conditioning on X; =
1), which, we recall, is defined as p, =
1NN Pr(vy) = k|x\) = 1,g0,&). The conditional dos-
ages pi for two typical regions (100 SNPs each) are plotted
in Figure 2. In one region, the lower clusters are split clearly
(but not evenly) between two upper-layer clusters; in the
other, the lower-layer clusters are split but less clearly with
some lower clusters shared between two upper clusters. This
example demonstrates that the two-layer model can indeed
detect the structure of (ancestral) haplotypes. Moreover, Fig-
ure 2 illustrates that some local haplotypes are population
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Table 1 Symbols and their brief definitions

Catagory Symbols Values Definition
Constant S Integer No. upper clusters
K Integer No. lower clusters
N Integer No. individuals
M Integer No. markers
Main HMM X,(,;) (1,....9 Individual i's upper cluster at marker m
Y,Sé) 1,...,K Individual i's lower cluster at marker m
Zy Zy = (Xp), V)
Ok [0, 1] Lower cluster allele frequency
al) 0, 1] Prxy) =s)
Brmsk [0, 1] Pr(Yy = kIXy =)
Jm [0, 1] Probability that X, switches labels
I'm [0, 1] Probability that Y, switches labels
Ancillary HMM W,(,,k> 1,....9 Haplotype k’s upper cluster at marker m
Nk [0, 1] Upper cluster allele frequency
al® [0, 11 Pr W =)
Pm [0, 1] Probability that W,,, switches labels
Derived parameter y Integer Admixture generations
A Real Ancestry track length
g, & ®, a, B,j, r.m a, p) Collection of all parameters
&Nm, s, k) Real Forward probability of individual /
$Am, s, k) Real Backward probability of individual i
Data h,(,? 0, 1 or missing Haplotype individual i at marker m
gg,) 0, 1, 2 or missing Diplotype individual i at marker m

When a superscript is omitted, it stands for an arbitrary individual; when a subscript is omitted or substituted with a dot, it stands for a collection of parameters of that

coordinate. For example, g%)denotes genotype at marker m of individual i; g denote

s genotypes at all markers of individual /; and g denotes genotypes at all markers of an

arbitrary individual. In addition, we may use gﬁ,’ﬂn to denote a subset of genotypes from marker m to marker n of individual /.

specific whereas others are shared between populations. This
local haplotype sharing is an intrinsic feature of genetic data
(Conrad et al. 2006), and the two-layer model can learn this
feature, which is of particular importance in local ancestry
inference.

Figure 2 underpins the most important difference between
our model and the HAPMIX model. The HAPMIX model
assumes to have contemporary—not ancestral—haplotypes
as training data from each source population; this is equiva-
lent to having fixed and exclusive edges between an upper-
layer cluster and lower-layer clusters in our model. In our
two-layer model, however, the edges are learned from data
and are not predetermined; an edge can emerge and disap-
pear along a chromosome and a lower-layer cluster can have
multiple edges connecting to upper-layer clusters, which
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naturally captures local haplotype sharing. As a compari-
son, local haplotype sharing is not a natural part of the
HAPMIX (Price et al. 2009) model, and a miscopy param-
eter is introduced and (somewhat) arbitrarily specified to
adapt to the local haplotype sharing feature of the data.

Local ancestry inference

We first demonstrate that our method achieves exceptional
accuracy in local ancestry inference. We simulated a three-
way admixed individual, using the procedure described in
the Methods and Models section with y = 20 (equivalently,
A =5 cM), and then fitted the two-layer model (S = 3,K =
15) using this individual and individuals from source pop-
ulations, excluding haplotypes used to simulate the admixed
individual. (We used 100 haplotypes from CEU, 100 from

K

Figure 2 Structure of haplotypes. Each row
denotes a SNP, and each column denotes
a lower-layer haplotype in our model. We chose
two typical regions, each containing 100 SNPs.
The plot shows the lower-cluster dosage condi-
tional on the left upper cluster (conditional dos-
age). Brighter pixels indicate larger dosages. A
solid edge connecting to the left upper cluster
indicates the average (over 100 SNPs in the re-
gion) conditional dosage is >80% of total dos-
ages; a solid edge connecting to the right upper
cluster indicates the conditional dosage is
<20% of total dosages. A dotted line indicates
edge uncertainty.
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Figure 3 Inference of local ancestry. The plot shows the results of a typical EM run for local ancestry inference of a three-way admixed individual. Each
panel shows ancestry allele dosages (y-axis), one for each source population, along the chromosome (x-axis). Black lines in each panel are the true
values, and blue lines are estimated mean dosages. Gray bars on top of blue lines reflect =2 SD of the estimated mean dosages. At each marker, y-

values on lines of the same color sum to 2.

YRI, and 160 from East Asian of HapMap2 as source haplo-
types.) Figure 3 compares the actual and inferred local
ancestries: the local ancestry of a three-way admixed indi-
vidual was inferred with exceptional accuracy. The estimated
ancestral allele dosages often have large uncertainties at
markers where the estimates differ from the true values. This
suggests that, when combining results over multiple EM runs,
the estimates may be weighted by their uncertainty, e.g.,
inverse of variance. Note that, for a diploid individual, our
method can compute the probabilistic assignment to all
possible pairs of ancestries at each marker, allowing us to
quantify the mean and variance of the estimated ancestry
dosages. The admixture proportions were also accurately
inferred (Figure S2).

Comparison with HAPMIX and LAMP-LD: Next, we com-
pared our method with two state-of-the-art methods used in
local ancestry inference: HAPMIX (for two-way admixture)
and LAMP-LD (for three-way admixture). We used two
metrics in our comparison—mean deviation and Pearson’s
correlation between the inferred and actual local ancestries
for each simulated admixed individual (see Methods and
Models section for their definitions).

For comparison with HAPMIX, we simulated three sets (10
individuals in each set) of two-way admixed individuals with
y = 10, 20, and 100 (corresponding to the ancestry track
lengths of A = 10, 5, and 1 cM, respectively). The difficulty
in inferring local ancestry increases as the admixture genera-
tion increases. The results of our method were obtained with

S = 2 and K = 10 and averaged over 10 independent EM
runs. The results of HAPMIX were obtained using its default
parameters. Both methods used 100 haplotypes from CEU
and 100 haplotypes from YRI as source haplotypes; the hap-
lotypes used to simulate admixed individuals are excluded
from the source haplotypes. Table 2 summarizes the results.
For easier problems (A = 10 and 5 cM or, equivalently, y = 10
and 20), when both methods perform well, HAPMIX performs
slightly but not significantly better (two-sample t-test, P =
0.52 and 0.63 for deviation, and P = 0.20 and 0.09 for cor-
relation), whereas for harder problems (A = 1 cM or, equiv-
alently, y = 100), our method outperforms HAPMIX (P = 5 X
10~4 for deviation and P = 2 X 1075 for correlation). Our
method has some practical advantages over HAPMIX:

1. It cleanly handles missing data, whereas HAPMIX does
not allow missing data.

2. It does not require a recombination map as an input,
whereas HAPMIX requires a highly accurate recombina-
tion map. In fact, our method can be used to infer the
recombination rate, a potential application we might doc-
ument elsewhere.

3. It can directly work with diploid data, whereas HAPMIX
requires haplotypes from source populations. When the
phasing of individuals from source populations is imper-
fect (e.g., statistical phasing without the help of trans-
mission), our method has an advantage.

We compared our method with LAMP-LD for three-way
admixed individuals. Similar to the comparison with HAPMIX,
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Table 2 Comparison with HAPMIX for two-way admixture

Table 3 Comparison with LAPM-LD for three-way admixture

Metrics 1cM 5cM 10 cM Methods Metrics 1cM 5cM 10 cM Methods
Deviation  0.104 = 0.013 0.034 = 0.015 0.019 * 0.001 Two-layer Deviation  0.155 = 0.010 0.043 = 0.009 0.020 + 0.006 Two-layer
0.126 = 0.011 0.030 = 0.013 0.017 £ 0.001 HAPMIX 0.192 = 0.024 0.046 = 0.014 0.022 = 0.012 LAMP-LD

Correlation 0.891 + 0.018 0.963 = 0.020 0.971 * 0.012 Two-layer
0.844 = 0.019 0.973 = 0.016 0.980 = 0.010 HAPMIX

Correlation 0.859 + 0.020 0.961 = 0.013 0.981 = 0.005 Two-layer
0.721 = 0.035 0.934 = 0.021 0.966 = 0.016 LAMP-LD

We used two metrics: deviation (the smaller the better) and correlation (the larger
the better). We simulated 10 admixed individuals under three different average
ancestral track lengths (in centimorgans). Each cell includes the mean = SD. See
main text for more details.

we simulated three sets (10 individuals in each set) of three-
way admixed individuals with y = 10, 20, and 100, which
produced the mean ancestral track lengths of 10, 5, and 1 cM,
respectively. The results of our method were obtained with
S =3 and K =15 and averaged over 10 independent EM runs.
The results of LAMP-LD were obtained with default parame-
ters. Both methods used 100 haplotypes from CEU, 100 hap-
lotypes from YRI, and 160 haplotypes from East Asian
(CHB+JPT) as source haplotypes; the haplotypes used to
simulated admixed individuals are excluded from the source
haplotypes. Table 3 summarizes our results.

Similar to the comparison with HAPMIX, for more
difficult problems (A = 1 cM or, equivalently, vy = 100),
our method outperforms LAMP-LD (deviation P = 6 X
10~% and correlation P = 2 X 1078). For easier problems
(A = 10 and 5 cM or, equivalently, y = 10 and 20), both
methods perform similarly if measured by deviation (P =
0.69 or 0.67). There is a marked difference in performance if
measured by Pearson’s correlation—our method outper-
forms LAMP-LD (P = 0.01 for y = 10 and P = 3 X 1073
for y = 20). A closer look revealed that LAMP-LD tends to
make more mistakes on small regions of a few hundred
SNPs (Figure S3). We suspect that this has to do with group-
ing markers into windows, even though the recommended
window size [50—100 SNPs (Baran et al. 2012)] is smaller
than the size of often misidentified regions. In addition,
LAMP-LD appears to be very certain everywhere, which
can be misleading.

Computation speed: We compared the speed of our method
with that of HAPMIX and LAMP-LD. For each method, we
used the same parameters as those that produced the results
presented in this article. The run time was obtained from
a desktop computer with an Intel Xeon CPU X5690 of 3.47
GHz; all programs used a single core. For two-way admix-
ture we compared with HAPMIX. With two sets of source
haplotypes of 100 each and 10 simulated diploid individuals
of 7,616 SNPs, HAPMIX took 201 sec with its default
parameters, while our method took 118 sec with S = 2
and K = 10 for a single EM run of 30 steps. For three-way
admixture we compared with LAMP-LD. With three sets of
source haplotypes of 100, 100, and 160 and 10 simulated
diploid individuals of 6,983 SNPs, LAMP-LD took 218 sec
with its default parameters, while our method took 538 sec
with S = 3 and K = 15 for a single EM run of 30 steps.
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We used two metrics: deviation (the smaller the better) and correlation (the larger
the better). We simulated 10 admixed individuals under three different average
ancestral track lengths (in centimorgans). Each cell includes the mean =+ SD. See
main text for more details.

Local ancestry of Mexican samples

We applied our method to infer the local ancestries of
Mexican samples in both HapMap3 (International Hapmap
Consortium 2010) and the 1000 genomes (1000G) projects
(1000 Genomes Project Consortium 2010). In these analy-
ses, we used only markers that are present in all source
populations, and those that are absent in one source popu-
lation were removed from the study.

HapMap3 samples: We used 112 diplotypes from CEU and
147 diplotypes from YRI in HapMap3 and 35 diplotypes
from Maya and Pima in the Human Genetic Diversity Panel
(HGDP) (Li et al. 2008) as three source populations
(denoted as SP1) to infer the local ancestry of 58 Mexican
samples from HapMap3 (all diplotypes). We fitted the
model with S = 3, K = 15, and y = 10, 20, or 50 on each
chromosome separately. The mean ancestry proportions for
CEU, YRI, and Native Americans are 0.495, 0.048, and
0.457, respectively, consistent with those reported by others
(Johnson et al. 2011; Churchhouse and Marchini 2013). In
examining local ancestral allele dosages, we found two
regions that had significant departures from the genome-
wide averages (Figure 4). Perhaps not very surprisingly,
one is within the MHC region on chromosome 6, and the
other is located on chromosome 8p23.1, a region known to
harbor a large inversion. The region with elevated African
ancestry on chromosome 6 contains two peaks that are lo-
cated at 27.99-28.78 Mb and 30.93—32.44 Mb, respec-
tively, both of which have African allele dosages >0.5.
Assuming binomial sampling and approximating sample
mean with normal distribution, we obtained a P-value
<1039 for African ancestry to reach above 0.50 allele dos-
ages. Similarly for the region on chromosome 8 we com-
puted a P-value <1078 for Native American ancestry to
reach above 1.44 (a P-value ~ 2 X 10~7 for European an-
cestry to reach below 0.52).

1000G samples: We also analyzed Mexican samples in the
1000G. Using identity by state, we identified 29 (of 66 total)
samples that overlap with HapMap3 Mexican samples. For
SNPs that are typed in both projects, there is a high genotype
concordance for all 29 samples (average Hamming distance
<0.002). We inferred the local ancestries of these 66 sam-
ples, using 234 CEU and 230 YRI haplotypes in 1000G and 35


http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.113.160697/-/DC1/genetics.113.160697-3.pdf

n_
- —— African
—— European
—— Native American
8 o |
%) b g
w0
o
©
iy
7]
]
w
g3
o |
=4 I |
T T T T . } )
0 50 100 150 Figure 4 Regions whose local ancestries depart
Chromosome 6 (Mb) from the genome-wide averages. The y-axis is
the average ancestral allele dosages over 58
& Mexican samples. Black segments at the bot-
- ] —— African tom indicate SNPs, whose coordinates are from
—— European NCBI Build 36.
—— Native American
g o
% -—
[72]
o
o
2
D
8w |
< o
o
S 7| N N N1 N S e

0 50 100
Chromosome 8 (Mb)

diplotypes of Maya and Pima in HGDP as three source pop-
ulations (denoted as SP2). We found the following:

1. Not surprisingly, the two regions on chromosomes 6 and
8 also show significant departure from the genome-wide
averages in these samples.

2. Among 29 overlapping individuals, the inferred admix-
ture proportions have a high concordance between two
choices of source populations SP1 and SP2 (Figure 5).
Because we used unphased CEU and YRI in HapMap3
as source populations (SP1) for HapMap3 Mexican sam-
ples and used phased CEU and YRI in 1000G as source
populations (SP2) for 1000G Mexican samples, this high
concordance suggests, indirectly, that the phasing of CEU
and YRI in 1000G is reliable.

3. The 37 nonoverlapping individuals in 1000G have an
average smaller European ancestry proportion of 41.9%
compared to 56.6% of those 29 overlapping individuals
(Figure 5), and this difference is not likely caused by
random sampling (permutation test P < 0.004).

T
150

Since 1000G provides phased haplotypes for Mexicans,
we therefore inferred the local ancestries of these haplo-
types, using three source populations, SP2. The inferred
local ancestries have excessive ancestry switches compared
to those using unphased diplotype data (Figure 6). These
excessive switches are likely caused by imperfect phasing—
when using diplotypes our method integrates out phase
uncertainties. Phasing admixed individuals is a difficult
problem. Our results suggest, indirectly, that there is room
for improvement in this area and we anticipate the two-layer
model will make meaningful contributions.

Discussion

We have presented a two-layer HMM to detect structure of
local haplotypes and demonstrated its usefulness in local
ancestry inference. The prevailing model for admixture is
the one-pulse model [or “immediate admixture” model
(Ewens and Spielman 1995)], where haplotypes from two
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source populations mixed once some generations ago and
continued to admix afterward without influx of additional
haplotypes from source populations. In reality, however, this
assumption is overly simplified. Treating the mixing gener-
ation +y as a parameter, the two-layer model can average
results over multiple choices of mixing generations. This
makes our method applicable to the scenario of continuously
mixing, which is perhaps a more realistic model for
admixture.

Our method can directly work with diploid data and thus
eliminates phase uncertainty that often plagues other
methods. This is particularly useful for local ancestry
inference of Latinos, as high-quality Native American
haplotypes are unavailable. Our method performs signifi-
cantly better than other methods for ancestry segments of
=1 cM, as demonstrated in both simulated and real data
analysis. Because of the high resolution, our method discov-
ered an interesting phenomenon—departure of local ances-
try from the genome-wide averages. Although it makes
biological sense for the two regions—the MHC region and
a large inversion on chromosome 8—to show significant de-
parture from genome-wide averages, we nonetheless cau-
tion readers not to generalize the conclusions to Mexican
populations or Latinos in general, unless these are con-
firmed after analyzing much larger data sets.

The two-layer model extends the fastPHASE (Scheet and
Stephens 2006) model from a single source population to
multiple source populations; indeed, if the number of upper-
layer clusters is set to 1, then the two-layer model reduces to
the fastPHASE model. On the other hand, the two-layer
model extends the STRUCTURE (Pritchard et al. 2000)
model from independent markers to densely linked markers;
if markers are assumed independent and the numbers of
upper and lower clusters are equal and each lower cluster
is assumed to descend deterministically from an upper clus-
ter, then the two-layer model reduces to the STRUCTURE
model. As an integration of STRUCTURE and fastPHASE
models, the two-layer model enforces and learns the struc-
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ture of local haplotypes. Because the structure of haplotypes
is a ubiquitous phenomenon in genetic data, the two-layer
model has many other potential applications:

1. Using lower-cluster dosages, we can compute pairwise
local haplotype sharing, defined as the probability of
two haplotypes descending from the same lower clusters,
which reflects genetic relatedness between haplotypes.
Preliminary studies suggest that local haplotype sharing
can be used to impute HLA alleles and detect genetic
associations.

2. As the two-layer model can infer the local ancestry with
high accuracy, it is reasonable to speculate that it will also
be effective in genotype imputation and phasing for
admixed individuals.

3. Our method can directly estimate cluster-switch rates
between adjacent markers, and this permits the inference
of recombination rates and hotspots, which will be par-
ticularly useful for admixed individuals.

4. Aggregating is an effective method for detecting rare var-
iant associations (Li and Leal 2008). For admixed indi-
viduals, it would be helpful to aggregate rare variants of
the same local ancestries.

Because a diploid individual has two sets of latent states
(one for each haplotype), our EM algorithm is quadratic in
both numbers of upper clusters S and numbers of lower
clusters K and linear in numbers of individuals and markers.
This potentially limits the two-layer model’s applicability.
With phased data in source populations, the computation
is fast because our EM algorithm is linear in S and K for
a haploid individual. It is a challenge to find a linear algo-
rithm that is as accurate as the quadratic algorithm when
fitting our model to diploid individuals; nevertheless, we are
actively investigating this possibility. The recent progress
concerning linear algorithms to fit the PAC model (Delaneau
et al. 2012) is extremely encouraging. Note that this qua-
dratic computational challenge might disappear in the near
future due to the recent development of methods such as



2.0
1
—

15

0.5
I

European ancestry dosages
1.0
1

0.0
1
—

T T T T T T
0 50 100 150 200 250

Chromosome 2 (Mb)

Figure 6 Comparison between phased and unphased 1000G data. The
plot shows the inferred European ancestry allele dosages (y-axis) of a typ-
ical Mexican individual. The x-axis denotes SNPs. The blue (pink) line
denotes inferred values using unphased (phased) 1000G data. Excessive
ancestry switches of the pink line indicate imperfect phasing.

phase-seq (Yang et al. 2011), which produces genomic
sequences completely phased across an entire chromosome.
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Appendix: Expectation Maximization

We first outline the EM algorithm, assummg the haplotypes are observed. Given an initial guess of parameters &¥,
)

complete data likelihood, denoting z4) (X Ym ), is
p(hM, ... h) Zz) [z |g)
= {1 HL ol o ) p (] (el ).
The new estimate of £ is
argmax; EZ<1J,...,Z<”)|h(1),...‘ {logp<h< ). AWz zm 5)} (A2)

Update ¢* = ¢ and iterate the procedure until £* converges.

To elaborate on the EM algorithm: conditioning on &*, the posterior distribution of p(z® ‘h(i “) can be cornputed for
each i. To estimate £, one can either sample many paths from p(Z®|h®, ¢*) (the hard EM) or integrate out p(Z®|h® &)
analytically (the soft EM). Intuitively, the soft EM will perform better because it does not introduce sampling variation.
However, with the hard EM only forward probabilities need to be computed to sample from p(Z® |h®, £*). More importantly,
computational tricks may be applied on the sampled paths to avoid possible traps of local optimum. In this article we use the
soft EM for model fitting and report possible computational improvement elsewhere.

A diploid individual has two sets of latent states at each marker, Z}, = (X1,Y}),Z% = (X2,Y?2), which indicate the upper-
and lower-layer cluster membership (we drop the superscript for the 1nd1Vidua1 and this should cause no confusion). The
conditional likelihood for the ith individual is p(g?¥|Z", 22, &) = [}_1p (g ‘Yl Y2 &) with “emission”

m? m’
Gtk if gfn) =
i . t(1—t¢ 1-t)t if gl =
p(eh|vh =g v2 = k&) = 4 O o+ (1) i g}”) (A3)
(1 - tj)(l - tk) if gm =
1 if g W is missing,
where
5] :amj(l—/.,b)+ (l—emj)M (A
4)
tk = Omi(1 — ) + (1 = Opuc)

and p = 4Nv is the scaled mutation rate. In the implementation we used w = 0.001. Note the one-to-one correspondence
between t. and 6,,. and that we implicitly assumed Hardy-Weinberg equilibrium in the emission.

Forward and Backward Recursion

In what follows, every probability statement is conditioned on £*. The forward recursion follows,

d(m+1,s1,k1,s2,k2)
:p(g(ll:)rn+17zrln+1 = (Slvkl)’zrznﬂ = (527k2)‘§*)

=P (8 |Zme1) D0 (mst kst k)P (2012 = (oK) )p (2211122 = (oK)
‘e
= p (81 [Zme1) (apus +mir (1= Jimsn) (0o + Pu) + (1= ims1) P ) (AS5)
where ¢(1,51,k1,52,k2) = &, B1,, @l Brsx, PV lsl»khszvkz) and
Poo = (1=Tmi1)?p(m, s1, k1,52, ka) + 12,1 Z(b(m 517k1,52,k2)l3m+1 suaBmtsy ks (A6)

ki, k>

+ 'm+1 (1 —I'm41 ( Z d’(ma S1, ki7527 kz)Berl‘sl,kl + Z ¢(m7517 k1752, kz’)Bn‘bFl,Sz,kz)
ki k3
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plo = ag?ﬁm+l.517k1 (rm+1 Z d’(m»sl/yk1’7527k2’)ﬁm+1,52_,k2 + (1 - rm+1) Z (j)(masfv ki7527k2>) (A7)

51,k k3 sk’
i
P = & Birsais | Tmin D B(mus1 K 55,K8 ) By, + (1= Tmsn) D (mosa ko, s5,k5 ) (A8)
s3.ki k3 s3.k3
N0 (0 K sh kS A9
Py = sy By 1,51,k %2 Bl ks d(m, s, ki,s5,ks ). (A9)
st kfs2 ks

All summation with dummy variables s/ t’ needs to be done only once. This is the benefit of the parameterization for Markov
transition described in this article. The overall complexity of the forward and backward recursion is O(MS?K?) for diploid
individuals and O(MSK) for haploid individuals.

Note p(gfi):M‘sl,kl,sz,kz) = y(m,s1,k1,52,ka) p (g,(,? ’sl, kl,sz,kz). The backward recursion follows,

l/f(m_ 1751_7k1552ak2)
:p(g,(,le‘Z;_l = (s1,k1), 24 | = (527k2)|§*)
-z (msf, i, 55,k )p (880 [sf ki 58, K8 )p (Zh = (50, k) |28, )p (25 = (s8.K8)[22,)  (A1O)
s1,ki,53,k3
= (]1%1 q11 +jm(1 _jm)(qm +q01) + (1 _jm)2q00>7
where (M, s1,k1,52,kz) = 1 and

Gy = rrzn klzk,ﬁm,sl,k'lﬁm,sz,ké p (g,(,ril):M’SLki, Sz,kﬁ) + (1*rm)2 p (ggl)zM‘m,sl, kl,SZ,k2> (All)
1,k2

+rm(1 —rm) X [Zﬁm,sl,k{ P(gf,?;M‘Slaki,Sz,kz) + Zﬁm,sz,ké P (gg,?:M‘SlakLSz’kz')}
k! ks

@10 =Tm Y @Bt Bmssis P (S fst- ki 2.K8) + (1= rim) 3 @l b (Slnna]st K 52,k ) (A12)
s1.ki k3 s1.ki

Go1 =T D o BrssieBmsiis P8t [51:KE 55K ) + (1 =1m) S @) B s P (Bolsr k.52, k8) (a13)
s3.ki k3 s3.k3

qu1 = Z as(l{)Bm,s; akiaiz)ﬁm.sﬁvké p (g,(fq);M

51,k ,83,k3

s,k 53,k ) (A14)

The posterior of latent states at each marker for each individual can be computed via
p (Zrln = (31, kl)azrzn = (SZa k2)|g(l) ) g*) o ¢(m7 S1, k17327 kZ)l!/(ma S1, k1a527 kZ) (Als)

and renormalize to have Zsykl,sz‘kzp (Z%’l = (817 kl)vzrzn = (527 k2)|g(l)7§J) =1

Update 6

To update parameters in each EM step, we solve for each component x of &,

Zm|h ... g & |:10g p(h(1)7 s 7g(n>az(1>7 s aZ(n)

g)] —o0. (A16)

aEz(l)vm
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Assume we have both diploid g and haploid h individuals in our data. For diploid individuals, at marker m, write
Dik = Dg,5, P(Z = (51,)), 22, = (s2,k)|g¥, &"). Let S = {i :gﬁ,ll> =k} for k = 0, 1, 2. Similarly, for haploid individuals, at
marker m, write g = Y . p(Zm = (s,j)|h$,ll),§*). Let T, = {i: hﬁ,? =k} fork = 0, 1. Let

Qojo = 2. Pijks  Qoj = X Pijs

i€Sg k4] i€S,
Qjo = Zk Pijk,  Qgjj = ES: Pijj»
i€Sy k#j i€
1SSk e (A17)
Qijk = Y Pijk»  a1j = 2 Pijj»
icS; €S
boj = > qj, b= Y gy
€Ty i€l
Take the derivative with respect to 6,,; and sum over k for diploid individuals to get
-1 1 1— 2t
Bt) =1 (agjo + 2agj + ay;j +bgj) + 5 (azio + 2az +ay; +by) + ) 5o 265 vk 0 (A18)

kA

for eachj = 1,...,K (recall K is the number of lower-layer clusters). We have K equations with K unknowns and we can
solve numerically for t; and hence 6,,;. To do so, we need the Jacobian J(t.) = (djx), where

dF; -1 .
dg=—7r=———Say fork+#j, (A19)
dte (4 + t—2tty.)
and
- -1 1-26.)2
j = 3 (a0 + 2005 + a1 + boy) + 5~ (azjo + 2az + @y +by) + 3 (1=26) 5 k- (A20)
(1-4) ] 7 (6 + tk—2ttk)
We can solve J(tM) (@™ + D — M) = —F(t™) for the unknown t + 1 — ¢,

Compared to the update used in Scheet and Stephens (2006), this update for 6 does not directly involve its value in the
previous iteration. Perhaps unwilling to solve a linear system repetitively, Scheet and Stephens (2006) used an approxima-
tion to the last terms of Equation A18,

1- 26 (1 , 1, )
T ors Ak = Ty — T Ak | (A21)
;tj—i—tk—thtk J ; t J 1-¢ J
where
, t(1— i) y t(l—¢
Ayj = ! Qjk;  Ajg = #%’k, (A22)

t; + ti — 285ty G+t — 28ty

which can be computed by approximating t; and t; with values in the previous iteration. Denote

Tjo = Y G Ao = )i (A23)
k#j k#j
and we have
_ " 1 ’
Fj(to) = 1= (a0jo + 2agj + azjj + boj +a'tjo) + = <a2j® + 2ag; + agjj + byj + alj@) =0 (A24)
J J

and solve to get

(azj@ + 2ag;; + aijo + agjj + blj)

ti = .
7 (aojo + 2a0j + aijo + 21 + ayjo + 2az; + boj + by;)

(A25)
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With (A25) as a starting point only a few iterations are needed to estimate 6 using the numerical method described earlier.
Note, however, that solving the linear system has complexity O(K®), which makes the complexity of model fitting to be
O(max(MS2K2, MK?3)).

Update Markov Transition Parameters

To estimate Markov transition parameters, following Scheet and Stephens (2006), we introduce latent state transitions
(jumps) J;,, and R;,,, that occurred between marker m — 1 and m at upper and lower layers for individual i. Denote J;,,; the
number of upper-layer jumps to X, W — s and Riimsic the number of lower-layer jumps to X,(,? =sand Y,S? = k. Recognizing that
Jims and Ry are sufficient for «, B, j, and r, we have

) _ Do Elimlg? &)

as " = Z?:ZZZE[JimS‘g(i)" §]
s (A26)
j > Elimslg® ]
Jm = Number of haploids
r > Rl ]

m = Number of haploids X S’

where one may recall that S is the number of upper-layer clusters.
In what follows, when a latent state in forward or backward probabilities was substituted by a dot, then that component

was summed over. Note that p(g®@|&*) = ¢(M, -, -, -, -) and

(¥

P(gm;M S,k17527k2,f*> :P(gﬁril) ‘517k1>527k2,§*)¢(m»51ak17527k2)~

First E[Jims |87, &"] = 2p(Jism = 2|87, &) + p(Jism = 1|87, &) with

M \?
Zp(Jism =2 |g(i)7§*) — mx dm—1,-,-,-, .)I;bgmsklﬁmskz p(ggl):M s, ki,s, k27§*),
(A27)
and
PUam = 1/g0,¢7) = Bl
X [(1 - rm)s§2¢(m —1,.,-,52,k2) %Bmskl P(gszM’S,kLSz,kzé*)
+7m %: ¢p(m—1,--52,") kl%z Brms,k,Brmsk, P(g,(Q:M’& ki,s2, sz"”) (A28)
+(1- rm)glgl ¢(m—1,s1,ki,-,-) %Bmskz p(g,ﬂ?:M‘sl,kLs, sz*)
+I'm %: dp(m—1,51,-,-,) k%:{z Brnsyky Brmsk, P(gﬁ,il);M’SL ki,s, k2,§*)} :
Second,
E[Rimgk|g®, €] = 2P (Rimgk = 2.Jims = 018", £") + P (Rimgtc = 1,Jims = 0lg"", &) (A29)

+p(Rimsk = 17Jims = 1|g(i),§*)7

with each component being
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Do 201 - |
29 (Rimsk = 2, Jims = 0/, ¢”) =L|§Bmsk X p(m =155 p (g5 ks k£, (A30)
[ * l7Am2ml*m ms
P(Ringk = 1, Jims = Olgt), &) = L1l il el
Zk ¢(m—1,s,-,52,ka)p (gf,lZM‘S,kﬁz,kz,f*) (A31)
S2,K2
+ Z d’(m - 17Slak175a )P (gr(yll);M’Sbklasakagﬁ)
51,k
p(Rimsk =1,Jims = 1‘g(i) ) =kl (;T‘)gn)ﬁmk
X |:¢(m_ »Ss ) Z asz Bmszkz ( (l) Sak7527k27§*) (ABZ)
52,ka

+ d)(m - 17 S, ) Z a81 Bmslklp (g;;{M)slvklas7ka§*):| -

s1,k

Finally, special treatment is needed at marker m = 1. For each s, k set

E[Ralg®.¢'| = asBrocp (gl hls. . €°) (A33)

and renormalize such that Z kE[ 1sk|g?, €] = d, where d = 2, 1 for diploid and haploid individuals, respectively. Set
[ lls‘g< ] ZkE[ llsk‘g ]

Ancillary HMM

The expected complete data log-likelihood is given as

K M ) M K
EW\h,gg* Z Z log p(emja Wr(rp ‘nmsv E) = Z Z log p(amj|77msv §*)pmj37 (A34)

j=1 m=1 m=1 j=1

where p,,;; is the sth upper-cluster dosage of the jth haplotype at marker m. From the Balding—Nichols model (Balding and
Nichols 1995), we have

1

s — 1 F(1-m,,)—1
P(ij\ﬂms) :B(ans F(1— 1)) 051? (1_9mj) (=) : (A35)

Combining the above two equations and dropping the m in notation, we have for an arbitrary marker

M

f(6;,m) = ) [~log B(Fng, F(1 —n;)) + (Fn; — 1)logb; + (F(1 — n5) — 1)log(1 — 6;) | pjs,

! (A36)
Fn,—1_ F(1-n)-1
di()',f(ejans) = l: nﬁj ((1 _7)0)]) :|sz

This suggests that we add (Fn; — 1)p;, to the top and (F — 2)pj; to the bottom of (A25) to estimate 6,

K
anf (65, m5) = 21[ sE T aa B, F(1 = n,)) +F logr25 }P]s
” . (A37)
= _F_lejs[r(Fns) _F(F(l s )] +F210g1 gpjs7
J= Jj=1

where T is a digamma function. When F > 1, we use recurrence relation I'(x + 1) = 1/x + I'(x) twice to get
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T(Fng) =T(Fn, +2) — mbg — i

s

L(F(1—m)) =T(F(1—m) +2)— F(1 *1715)+1 T L )

(A38)

Because 7 € [0, 1], we may use 1/exp(I'(x)) = 1/x +1/2x? +5/(4-3x3) +3/(2- 4! - x*) +47/(48 - 5! - x°) at x = Fy, + 2
and x = F(1 — n,) + 2 to solve for n, numerically. When F = 1, however, we may use the reflection formula I'(1 — n,) —
I'(ns) =  cot(arn;) to solve for 7, analytically.

The forward and backward probabilities of the ancillary HMM and other parameter estimates are simply special cases of
the main HMM.
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Table S1: Robustness with different choices of K. We use two metrics: deviation (the smaller the
better) and correlation (the larger the better). We simulated 10 two-way admixed individuals with
A = 1cM; using S = 2 and v = 50 we infer the local ancestry using K = 5,10,20. In each cell,
we put mean + standard deviation. The larger standard error compare to Table 1 in main text
because we use chromosome 22 in this simulation instead of chromosome 2 in the main text.

Metrics 2-Layer Model
K=5 K=10 K=20
Deviation  0.110 +0.040 0.100 +0.031 0.100 40.035
Correlation 0.881 4+0.057 0.903 £+0.037 0.894 +0.043
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Figure S1: Comparison for different v. The x-axis denotes genetic markers along a chromosome,
the y-axis is inferred allele counts at each marker of an arbitrarily chosen ancestral population.The
black lines are the simulated truth; the red lines are inferred values with different choice of mixing
generations; the blue line are the results of the HapMix as a comparison. Each column denotes
an individual, v = 50, 100, 200 from top to bottom panels. The individual on the left is explained
in the main text. For the individual on the right, the deviation error are 0.053,0.054,0.077, and
correlations are 0.941,0.946,0.939 respectively. As an comparison, HAPMIX has deviation 0.086
and correlation 0.866.
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Figure S2: Inference of admixture proportion. The x-axis denotes the truth of admixture pro-
portions, and the y-axis denotes inferred values. The gray line indicates x = y. For a three-way
admixed individual there are three numbers (that sum to 1) to denote admixture proportions. For
admixture events that happened recently (v = 10,20), the inference of admixture proportions is
very accurate; for remote admixture events (y = 100), our method slightly over-estimates large
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admixture proportions and slightly under-estimates the small ones.
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Figure S3: Detailed comparison with LAMP-LD. The plots shows the comparison for a typical
simulated individual using g = 20. Each panel denotes an ancestry, on which we plot the local
ancestry of the actual (black line), our inference (blue line), and LAMP-LD inference (pink line).

Compare to our method, LAMP-LD makes more mistakes on regions of a few hundred SNPs.
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