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ABSTRACT This work presents a model for the joint analysis of a binomial and a Gaussian trait using a recursive parametrization that
leads to a computationally efficient implementation. The model is illustrated in an analysis of mortality and litter size in two breeds of
Danish pigs, Landrace and Yorkshire. Available evidence suggests that mortality of piglets increased partly as a result of successful
selection for total number of piglets born. In recent years there has been a need to decrease the incidence of mortality in pig-breeding
programs. We report estimates of genetic variation at the level of the logit of the probability of mortality and quantify how it is affected
by the size of the litter. Several models for mortality are considered and the best fits are obtained by postulating linear and cubic
relationships between the logit of the probability of mortality and litter size, for Landrace and Yorkshire, respectively. An interpretation
of how the presence of genetic variation affects the probability of mortality in the population is provided and we discuss and quantify
the prospects of selecting for reduced mortality, without affecting litter size.

MIXED linear models (Henderson 1984) are broadly
used in livestock and plant breeding and play an im-

portant role in evolutionary and theoretical quantitative ge-
netics (Lande 1979; Cheverud 1984; Walsh 2003). The
classical approach for a multiple-trait analysis is to use mod-
els posing that the nature of the correlation between response
variables (phenotypes) is due to linear associations between
unobservables, such as additive genetic values or nongenetic
sources, like permanent or temporary environmental effects.

Structural equation models represent an extension of the
standard linear model to account for links (feedback and/or
recursiveness) involving either the phenotypes directly or
latent variables; they are well established in econometrics and
sociology (Goldberger 1972; Jöreskog 1973; Duncan 1975).
These models were discussed in the early genetics literature
by Wright (1921) but this work has not received much atten-
tion in quantitative genetics. Xiong et al. (2004) proposed the

use of structural equation models for modeling and identifying
genetic networks. In a quantitative genetics context, Gianola and
Sorensen (2004) studied the consequences of the existence of
simultaneous and recursive relationships between phenotypes
on genetic parameters and presented statistical methods for in-
ference. An application to study the relationship between somatic
cell score andmilk yield in goats is in de los Campos et al. (2006).
Varona et al. (2007) present a recursive model for the joint anal-
ysis of litter size and average litter weight in Danish pigs. These
studies were concerned with normally distributed traits. Here the
methodology is developed further for the joint analysis of a bi-
nomial and a continuous trait and it is shown that a computation-
ally simple implementation can be arrived at by appropriate
choice of the recursive specification. The method is illustrated
using mortality and litter size in two breeds of Danish pigs.

Litter size is basically determined by ovulation rate and
embryo mortality (Blasco et al. 1995); these processes take
place mainly at the early stages of gestation. Piglet weight at
birth is determined mostly by growth in late gestation and is
importantly related to piglet survival. It is then reasonable to
postulate a one-way causal path establishing an effect of litter
size on piglet mortality. This specification defines a recursive
two-trait system. On the other hand, simultaneity occurs
when trait 1 affects trait 2 and vice versa.
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Litter size has been under selection in the Danish pig-
breeding program since the early nineties and resulted in
considerable increase in total number born and also in the
proportion of stillborn piglets (Sorensen et al. 2000; Su et al.
2007). Sorensen et al. (2000) report an increase in the ob-
served proportion of piglets born dead at higher-litter-size
values. This has raised a number ethical and economic con-
cerns and has led to measures designed to reduce mortality.
A recently implemented approach in the Danish pig-breeding
program is based on changing the emphasis of selection
from total number born to total number of piglets alive 5
days after farrowing (Su et al. 2007). Despite the fact that
this selection strategy is not addressing the problem of mor-
tality directly, it seems to have had a beneficial effect on
both litter size and mortality (Nielsen et al. 2013).

A number of studies have reported genetic variation for
mortality with heritabilities ranging from 0.03 to 0.17. These
studies have assumed normality of the sampling model for
mortality (e.g., Van Arendonk et al. 1996), based inferences on
a variety of threshold models (e.g., Roehe and Kalm 2000;
Arango et al. 2006), or implemented mixed models for count
data (Varona and Sorensen 2010). Mortality data, regarded as
a trait of the mother, show typically a large proportion of
“zeros” (many litters do not have stillborn piglets). The study
of Varona and Sorensen (2010) included a variety of models
that accounted for this feature of the data and concluded that
the best fit was achieved with a hierarchical binomial logit
mixed model. In this work we extend this model in two direc-
tions. First, the probability of mortality is assumed to be a func-
tion of the total number of piglets born in the litter. This is
achieved by assigning a recurrent relationship between the logit
of the probability of mortality and litter size. Linear and higher-
order functions of litter size are investigated, and the quality of
fit of the models is studied. The second extension allows for
a joint analysis of mortality and litter size. The recursive param-
eterization implemented has the attractive feature that the joint
posterior distribution of the two traits factorizes into two in-
dependent posterior distributions, one for each trait, whereby
the computational burden of implementation is reduced.

The article is organized as follows. Material and Methods
introduces the models, including the prior and posterior dis-
tributions, the method used to compare the models, and
a brief description of the data. This is followed by Results,
where the focus is on mortality but results for litter size are
briefly reported. A Discussion comprises the final section of
the paper and the Appendix sketches technical details regard-
ing the model and the Markov chain Monte Carlo algorithm.

Material and Methods

Model and prior distributions

Total number of dead piglets at birth (called mortality
hereinafter, treated as a trait of the mother) and total number
of piglets born (called litter size hereinafter, treated as a trait of
the mother) are analyzed jointly using a model that exploits the

factorization of their joint distribution. The conditional binomial
model for mortality in litter i, Yi, given litter size in litter i, ti is

f ðYi ¼ yijti;fiÞ ¼
�
ti
yi

�
f

yi
i ð12fiÞti2yi ; Yi ¼ 0; 1; . . . ; ti;

(1)

where fi is the probability that a piglet dies (referred to as
the probability of mortality hereinafter) in litter i, which is
assumed to vary over the observations as an inverse logistic
deterministic function of unknown parameters. Thus, the
linear structure of the logit of fi is assumed to be equal to

logit fi ¼ x9iay þ z9i~uy þ w9i~py þ gjðtiÞ; (2)

where x9i, z9i, and w9i are vectors of observed incidence matri-
ces X, Z, andW, ay is a vector of systematic effect parameters
affecting mortality (herd-year and parity), ~uy is a vector
of residual additive genetic values affecting mortality de-
fined in the Appendix, ~py is a vector of residual permanent
environmental effects affecting mortality (see also the
Appendix for an explanation), and g1(t1) = l1ti ( j = 1
for Model 1), g2ðtiÞ ¼ l1ti þ l2t2i ( j = 2 for Model 2),
g3ðtiÞ ¼ l1ti þ l2t2i þ l3t3i ( j = 3 for Model 3), where the
l9s are recurrent parameters. In the case of Model 1 it is easy
to see that two possible partitions are

logit fi ¼ x9i ay þ z9i~uy þ w9i~py þ l1ti
¼ x9iay þ z9iuy þ w9ipy þ l1x9iat þ l1eti ;

where uyi ¼ Eðuyi
��utiÞ þ ~uyi and pyi ¼ Eðpyi jptiÞ þ ~pyi (see

Appendix) represent draws from the marginal distributions
of additive genetic values and permanent environmental
effects affecting mortality.

Given vectors of systematic effects at (herd-year and parity),
of additive genetic values ut and of permanent environmental
effects pt, litter size records are conditionally independent and
assumed to follow the Gaussian process

tijat; ut; pt � N
�
x9iat þ z9iut þ w9ipt;s2

et

�
: (3)

In the Appendix it is shown that the structure of ð~pyi ; ptiÞ is�
~pyi ; pti

�
� N

"�
0
0

�
;

 
s2
~py

0

0 s2
pt

!#

and also in the Appendix it is shown that under the recursive
parameterization employed,

�
~uyi ; uti

� � N

"�
0
0

�
;

 
s2
~uy

0

0 s2
ut

!#
:

The covariance matrix of the joint distribution of the vectors
~uy and ut is G 5 A, where G ¼ diagðs2

~uy ;s
2
utÞ: Therefore the

joint distribution factors into the product of the marginal
distributions; that is,
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:

In these expressions, A is the additive genetic relationship ma-
trix, s2

~uy is the residual additive genetic variance for mortality
(conditional variance of the additive genetic value for mortality,
given the additive genetic value of liter size), s2

ut is the additive
genetic variance for litter size, s2

py is the variance of permanent
environmental effects for mortality, and s2

pt is the variance of
permanent environmental effects for litter size. The phenotypic
variance for litter size is s2

t ¼ s2
ut þ s2

pt þ s2
et , where s2

et is the
variance of the conditional distribution of litter size.

The variance component parameters, the recurrent param-
eters, and the vectors ay and at are assigned independent
improper uniform distributions a priori.

Posterior distributions

Given the likelihood models (1) and (3) and the prior
distributions of the parameters, the joint posterior distribu-
tions corresponding to Model 1, say, are

p
�
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;s2
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;s2
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�
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�
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�
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(4)

where y and t are vectors with elements yi and ti, respec-
tively and

f
�
yjt;ay; ~uy; ~py; l1; l2; l3

�
¼ Qn

i¼1
f ðYi ¼ yijti;fiÞ

¼ Qn
i¼1

 
ti

yi

!
f
yi
i ð12fiÞti2yi ;

pðtjat; ut; ptÞ¼
�
2ps2

et

�2n=2
exp
h
2 1

2s2
et
ðt2Xat þ Zut þWptÞ9

3 ðt2Xat þ Zut þWptÞ
i
:

Note that in (4), the joint posterior distribution factorizes into
two independent posterior distributions, one for each trait.

Model comparison

The models are compared using the pseudo-log-marginal prob-
ability of the data. The pseudo-log-marginal probability of the
data is a standard measure of model comparison (Gelfand 1996)
and is defined and computed as follows. Consider data vector
y9 ¼ ðyi; y92iÞ, where yi is the ith datum, and y2i is the vector of
data with the ith datum deleted. The conditional predictive dis-
tribution can be interpreted as the probability of each data point
given the remainder of the data and has probability density

p ð yi j y2iÞ ¼
R
p ð yi j u; y2iÞ f ðu j y2iÞdu;

u ¼ fuigni¼1;
(5)

where u is the vector of parameters. The actual value of
p( yi|y2i) is known as the conditional predictive ordinate
(CPO) for the ith observation. The pseudo-log-marginal
probability of the data are given byX

i
ln pð yijy2iÞ: (6)

A Monte Carlo approximation of the CPO (5) for observa-
tion i is given by (Gelfand 1996)

p
︹ðyijy2i;MkÞ¼ N

24XN
j¼1

1

p
�
yijuð jÞi ;Mk

�
3521

; (7)

where N is the number of MCMC draws, Mk is a label for
model k, and u

ð jÞ
i is the jth draw from the posterior of ui under

model k corresponding to the ith observation. The so-called
Log CPOs reported below are based onX

i

ln p̂ð yijy2i;MkÞ:

MCMC algorithm

The fully conditional posterior distributions associated with
mortality do not all have closed forms, except for the variance

Figure 1 Raw phenotypic averages of the propor-
tion of dead-born piglets as a function of litter size,
for Landrace and for Yorkshire.
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components s2
~uy and s2

~py
, which are scaled inverted chi-square

distributions and can therefore be easily updated. For the
remaining parameters of the model, ay; ~uy, and ~py, a random
walk single-site Metropolis–Hastings algorithm was chosen as
updating strategy. This required a little preliminary experi-
mentation to tune the input parameters. For ~uy and ~py, the
random walk proposal consisted of a draw from a uniform
distribution centered at the current value, and with lower and
upper bounds given by plus and minus the updated draw
from s~uy and s~py , respectively. For ay the uniform was also
centered at the current value and the bounds were given by
60.15. In the case of the recursion parameters, the bounds
were as follows: for l1, 60.015, for l2, 60.0015, and for l2,
60.00015. The final inference was based on single chains of
length 5 million (several were run with different starting
values as checks and the convergence of the chains to their
posterior distributions was studied by visual inspection of
trace plots of chosen parameters). The effective chain sizes
for the dispersion parameters for mortality varied from �750
to 3600 in Landrace and from 400 to 4600 in Yorkshire. For
the best fitting models, the effective chain sizes associated
with the regression parameter(s) were 3700 in Landrace
(Model 1) and varied from 40 to 90 in Yorkshire (Model 3).

Data

Data were obtained from an existing database of performance
records collected from nucleus farms of Danish Landrace and
Danish Yorkshire during the period from May 2002 until
December 2004. Pedigrees were traced back five generations
or more. For Landrace, the data comprised records from 5178
litters and a pedigree file of 8800 individuals. The Yorkshire
data consisted of records from 3938 litters and a pedigree file
of 7143 individuals. Sows were kept under commercial
conditions and all matings took place using artificial insemi-
nation. More details can be found in Su et al. (2007).

Results

The raw means for litter size for parities 1, 2, 3, and.4 are as
follows: 13.4, 15.3, 16.1, and 16.3 for Landrace and 12.3,
14.1, 14.5, and 14.6 for Yorkshire. The average observed
proportion of dead-born piglets in parities 1, 2, 3, and .4
are 0.17, 0.17, 0.20, and 0.23 in Landrace and 0.11, 0.09,
0.12, and 0.17 in Yorkshire. Figure 1 shows the raw mortality
proportions for a given litter size, across the range of values of

litter size of the data sets, in Landrace and Yorkshire. The
figures provide a rough illustration for the phenotypic rela-
tionship between mortality and litter size, especially within
the range defined by litter sizes between 7 and 20 in Land-
race and between 6 and 19 in Yorkshire. Within this range
each point is represented with a minimum of 100 observa-
tions, and outside this range, especially at litter sizes ,3 and
.23 in Landrace, and 4 and 21 in Yorkshire, with,20 obser-
vations. The figures indicate that the proportions increase
nonlinearly with the size of the litters, but the relationships
are a little different in the two breeds (this is more clearly
visualized in Figure 4, which displays the probability of mor-
tality as a function of litter size, based on the best-fitting
models—Model 1 for Landrace and Model 3 for Yorkshire).

The Monte Carlo estimates of Log CPO (best model has the
largest value) indicate that in both breeds, the poorest fit is
obtained with Model 0, which assumes that the probability of
mortality does not depend on litter size. The differences in the
quality of fit are not very marked among the remaining
models. For Landrace, the results in Table 1 indicate that a lin-
ear relationship (Model 1) gives the best overall fit. The re-
gression parameters differ in Yorkshire (Table 2) and the Log
CPO indicates that for this breed a cubic relationship (Model 3)
between the logit of mortality and litter size gives the best
overall fit.

Shown in Table 1 are Monte Carlo estimates of posterior
means and posterior standard deviations of various parame-
ters in Landrace. In the case of mortality, the figures in the
table indicate that �37% of the total variance of the logit of
mortality (total variance is equal to s2

~uy þ s2
py ¼ 0:443) is

accounted for by the residual additive genetic variance (for
the best-fitting model, Model 1 for Landrace). These results
imply that at the level of the logit for mortality, the additive
genetic correlation between mortality and litter size based on
Model 1 is �0.20 in both breeds [calculated from (9), using
estimates of posterior means of the additive genetic variance
for litter size, ŝ2

ut � 0:8, retrieves an estimate of the genetic
correlation l1ðŝut=ŝuyÞ � 0:09ð0:80=0:16Þ0:5 ¼ 0:20]. Simi-
lar calculations show that the estimate of the correlation
between permanent environmental effects is �0.13 in both
breeds. Nielsen et al. (2013) report estimates of the genetic
correlation between mortality and litter size ranging between
0.22 and 0.28. However, their analysis treats mortality as
a Gaussian trait and the figures are not directly comparable
with the results reported here.

Table 1 Posterior means and standard deviations (in brackets) of variance components, recursive parameters and of LogCPO in Landrace,
for mortality

Model 0a Model 1 Model 2 Model 3

s2
~uy

0.168 (0.035) 0.162 (0.032) 0.162 (0.031) 0.157 (0.031)
s2
~py

0.344 (0.032) 0.281 (0.028) 0.283 (0.028) 0.288 (0.029)
l1 0.094 (0.005) 0.087 (0.017) 0.075 (0.016)
l2 3 1023 0.278 (0.570) 1.530 (1.010)
l3 3 1024 20.314 (0.248)
Log CPO 210164 29930 29934 29949
a For Model 0, s2

~uy
¼ s2

uy and s2
~py

¼ s2
py .
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For Yorkshire (see Table 2), estimates of variances for
mortality are broadly similar although the additive genetic
variance comprises a somewhat smaller proportion of the
total variance of the logit of mortality (26% for Model 3,
the best-fitting model in Yorkshire).

The estimates of heritability for litter size in both breeds
are very similar. The posterior mean is equal to 0.077 with
a posterior standard deviation of 0.020. These estimates are
similar to those reported by Su et al. (2007).

We have also studied how predictions of residual additive
genetic values for mortality (based on posterior means) differ
among the four models. In both breeds, the three product
moment correlations between the predictions based on Model
0 and those based on each of the other three models are in
the vicinity of 0.96. The three product moment correlations
between predictions derived from Models 1, 2, and 3 are all
.0.99.

Discussion

In previous work we performed genetic analyses of count
data using a number of discrete models (Varona and
Sorensen 2010) with an illustration using mortality in pigs.
Mortality data show overdispersion, due to a high propor-
tion of litter records with an absence of mortality and het-
erogeneity induced by covariation among observations. The
models accounted for both sources of overdispersion and the
study confirmed the presence of genetic variation for mor-
tality. The model that showed the best global fit was a hier-
archical binomial logit model and was therefore chosen in
this work. In contrast with the models implemented by
Varona and Sorensen (2010), in this work the logit of the
probability of mortality is assumed to be functionally related
to litter size. Both linear and nonlinear functions at the level
of the logit were studied and the results indicate that in
Landrace, the linear relationship leads to the best global fit.
In Yorkshire, quadratic and cubic relationships produce better
global fits and all the models translate into nonlinear relation-
ships between the probability of mortality and litter size.

In mixed linear models the interpretation of variance
components is straightforward because the random effects
operate on the same scale as the values of the response
variable. This is not the case in generalized mixed models.
One way of studying the direct impact of the variances on
the probability of mortality is as follows. Consider first the

simplified version (excluding “random effects”) of the model
defined in (2), with g1(ti) = l1ti,

ln
�

fi
12fi

�
¼ mi þ lti;

where mi is the mean of the ith record (that includes the sum
of the effects herd-year and parity) and ti is the effect of
litter size. For example, in Landrace, replacing the values
of the parameters for parity 1 and herd-year 1 by their pos-
terior means (resulting in a value of mi � 22.5), and using
the posterior mean of l (0.094), translates into a value of
the probability

f̂i ¼
exp
�
m̂i þ l̂ti

�
1þ exp

�
m̂i þ l̂ti

�
equal to 0.17 for ti = 10 and 0.21 for ti = 17. The extended
“mixed model” version of the logit for the ith record is

ln
�

fi
12fi

�
¼ mi þ lti þ qi;

where the random effect qi � Nð0;s2
qÞ is the sum of the

residual additive genetic effect and of the residual perma-
nent environmental effect, with s2

q ¼ s2
~uy þ s2

~py
. Given mi

and ti the probability fi is a function of qi,

fi ¼ f ðqiÞ ¼ expðmi þ lti þ qiÞ
1þ expðmi þ lti þ qiÞ:

The inverse function is f21ðfiÞ ¼ ln½fi=ð12fiÞ�2mi þ lti
and the Jacobian is equal to (fi(1 2 fi))21. Therefore the
probability density of fi is

pðfiÞ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

q

q exp

"
2

ðln½fi=ð12fiÞ�2mi þ ltiÞ2
2s2

q

#
1

fið12fiÞ
:

(8)

The effect of the variance component on the probability of
mortality can be studied using the density (8).

Figure 2 displays the distribution of fi for ti = 10, where
s2
q is replaced by its posterior mean ŝ2

q ¼ 0:443 (computed
as 0.162 + 0.281; see Table 1). The variance parameter ŝ2

q
defines the range and shape of the distribution in a manner

Table 2 Posterior means and standard deviations (in brackets) of variance components, recursive parameters and of Log CPO in Yorkshire,
for mortality

Model 0a Model 1 Model 2 Model 3

s2
uy 0.170 (0.044) 0.165 (0.046) 0.163 (0.045) 0.168 (0.053)

s2
py 0.585 (0.051) 0.494 (0.049) 0.484 (0.049) 0.487 (0.053)

l1 0.121 (0.007) 20.0094 (0.0362) 20.191 (0.046)
l2 3 1022 0.473 (0.129) 1.943 (0.306)
l3 3 1023 20.371 (0.076)
Log CPO 26363 26185 26181 26176
a For Model 0, s2

~uy
¼ s2

uy and s2
~py

¼ s2
py .
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that depends on the value of mi + lti. For example, for ti =
10, the 0.1, 0.5, and the 0.9 quantiles are fi = 0.082, 0.173,
and 0.330, respectively, with a mode at fi = 0.131. As s2

q
tends to zero, the distribution of fi becomes a point mass at a
value of fi given by the solution to lnðfi=½12fi�Þ ¼ mi þ lti
(resulting in fi � 0:17). The figure shows also the distribu-
tion of the probability of mortality evaluated at the posterior
mean of the residual additive genetic variance for mortality
ŝ2
~uy ¼ 0:162 (dashed lines).
The model specified by Equations 1 and 2 leads to a simple

strategy to reduce mortality, without affecting litter size.
Given the model, the residual additive genetic values of
mortality are independent of the additive genetic values of
litter size. The model predicts, therefore, that selecting on the
basis of residual additive genetic values for mortality should
not lead to correlated changes in litter size. This lack of
association is supported by Figure 3, which discloses the pos-
terior distribution of the product moment correlation be-
tween the residual additive genetic values of mortality and
the additive genetic values of litter size. The value of zero is in
a region of very high-density mass.

To give an idea of the likely response to selection to reduce
mortality that is expected under the model, we plotted in
Figure 4 the range and mean of values of the probability of
mortality based on the top and bottom 20% of the distribu-
tion of the posterior means of the residual additive genetic
values of mortality, for a given value of litter size. The range is

governed by the selection pressure and the variability of the
posterior means among individuals. For example, Figure 4
indicates that in the Yorkshire population, for a value of litter
size of 14 piglets, the average probability of mortality is
�9.14%, and selecting for reduced mortality from the lowest
20% of the distribution changes this probability to 8.16%
[a relative change in the proportion of mortality equal to
(9.14% 2 8.16%)/9.14% � 11%]. At a value of litter size of
17, the average probability of mortality is �13.24% and select-
ing from the lowest 20% changes the probability to 11.88%
[a relative change in the proportion of mortality equal to
(13.24% 2 11.88%)/13.24% � 10%]. It is of course possible to
retrieve from the MCMC output draws from the marginal
distribution of the additive genetic values for mortality uyi
using Equation 10 and base selection on these instead.

The classical analysis involving two or more traits is based
on a description of their correlation structure at the level of
additive genetic and environmental correlations. In this work
a recursive parameterization as in Varona et al. (2007) was
chosen instead. In this parameterization, a one-way causal
path establishes a direct effect of the size of the litter on
mortality, omitting the details of the underlying nature of this
relationship. A graphical representation of this relationship is
in Figure 4. The models that condition the logit of mortality
on litter size retrieve estimates of residual (additive genetic
and permanent environmental) variances, in contrast to
Model 0, which provides estimates of marginal variances.
The figures in Table 1 and Table 2 illustrate this, especially
for the total variance of the logit of mortality (given by
s2
~uy þ s2

~py
). Although the signal is not strong for each of the

terms taken separately, their sum is clearly larger for Model
0 (which yields instead estimates of s2

uy þ s2
py) than for the

remaining models, in both breeds.
From a practical point of view it is relevant to compare the

predictive ability of this model with the one currently in
operation in the Danish pig-breeding program. In the latter,
the traits analyzed are total number born and total number
born alive, from which parameters associated with number of
piglets dead are derived. The model is based on multivariate
normality and ignores the truncated nature of one of the
traits (number born alive is smaller or equal to total number
born). However, it has the appeal of ease of implementation,

Figure 2 Probability distribution of the probability of mortality for ti = 10.
Solid line, s2

q ¼ 0:443; dashed line s2
~uy

¼ 0:162.

Figure 3 Monte Carlo posterior distribution (in
form of boxplots) of the product moment correla-
tion between residual additive genetic values for
mortality and additive genetic values for litter size
in Landrace and Yorkshire.
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from the point of view of both computing requirements and
data collection. Details of this model can be found in Su et al.
(2007) and Nielsen et al. (2013). The comparison presented
here for each breed is based on a 10-fold cross-validation (for
example, Hastie et al. 2009), whereby the total number of
sows with records were divided into 10 groups of equal size.
Phenotypic records of each fold were excluded in the training
phase, predicted in the validating data set, and the correla-
tion between observed and predicted number of dead piglets
in the validating data set was computed. The predictions of
the number of dead piglets using both models are obtained
conditional on observed total number of piglets born. We
label the model currently in operation by MVN (multivariate
normal), and the binomial-normal model by BN. The average
correlations (over the 10 folds) in Landrace based on MVN
and on BN are 0.52 and 0.57, respectively. In Yorkshire, the
correlations are 0.46 (MVN) and 0.50 (BN). The figures in-
dicate that the BN model has a small advantage in terms of
predictive ability. However, a breeding program involves
a large number of traits and further work is needed, including
refinements of the model to account for possible effects of the
sire on mortality (Strange et al. 2013), to study the feasibility
of incorporating the BN model into a system that can yield
routine predictions of aggregate genotypes in a computation-
ally efficient manner.

We have investigated the properties of the logit model for
mortality and the Gaussian model for litter size using a mod-
estly sized data set. In this investigation no attempt was made
at exploring efficient MCMC algorithms. An implementation on
a larger scale requires more attention to algorithmic details,
especially if the model is extended to include dense genetic
marker information. This should be the subject of future
studies.

The Landrace and Yorkshire data and pedigree files as
well as the FORTRAN code used for fitting the models can
be found in supporting information, File S1.
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Appendix

The model for the joint distribution of additive genetic and permanent environmental values for mortality
and litter size

The independence of the residual additive genetic values for mortality and additive genetic values for litter size is based on
the following result. A recurrent formulation for the additive genetic values for mortality and litter size for an individual is
(Varona et al. 2007)

�
uyi ; uti

� � N

"�
0
0

�
;

 
s2
uy

ls2
ut

ls2
ut

s2
ut

!#
; (A1)

where l is a recurrent parameter that describes the linear relationship between mortality and litter size. Then,�
uyi
��uti� � N

h
luti ;s

2
uy
2 l2s2

ut

i
:

We can write

uyi ¼ E
�
uyi
��uti�þ ~uyi ; (A2)

where ~uyi is the residual term in the additive genetic regression of mortality on litter size and is referred to as the residual
additive genetic value of mortality. Then,
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where s2
~uy ¼ s2

uy 2 l2s2
ut . The covariance matrix of the joint distribution of the vectors ~uy and ut is G 5 A,

where G ¼ diagðs2
~uy ;s

2
ut Þ is the diagonal covariance matrix of (A3). Therefore the joint distribution factors into the product

of the marginal distributions; that is,

p
�
~uy; utjA;s2

~uy
;s2

ut

�
¼ p
�
~uy
��A;s2

~uy

�
p
�
utjA;s2

ut

�
:

In the case of the permanent environmental values, the starting point is
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which in a similar manner leads to
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Sketch of the MCMC algorithm

The fully posterior distributions of the parameters, except for the variance components, do not have closed forms. For
example, updating the jth element of ay requires the computation of its fully conditional posterior distribution

p
�
ay; j
��all; y; t�} Qn

i¼1

h
expðxi9ayþ zi9~uyþwi9pyþ gðtiÞÞ

1þexpðx9ayþ z9i~uyþwi9pyþ gðtiÞÞ
iyiIðxi9ay¼ay; jÞ

3



12

expðxi9ayþzi9~uyþwi9pyþgðtiÞÞ
1þexpðxi9ayþzi9~uyþwi9pyþgðtiÞÞ

�ðti2yiÞIðxi9ay¼ay; jÞ
;

(A6)

where I(�) is the indicator function that takes the value 1 if the argument is satisfied, and zero otherwise. This distribution is
not of standard form and an updating strategy based on a uniform random walk Metropolis–Hastings algorithm was chosen.
A similar strategy was adopted to update the residual additive genetic and permanent environmental effects.
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