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ABSTRACT The recent advent of high-throughput sequencing and genotyping technologies makes it possible to produce, easily and cost
effectively, large amounts of detailed data on the genotype composition of populations. Detecting locus-specific effects may help identify
those genes that have been, or are currently, targeted by natural selection. How best to identify these selected regions, loci, or single
nucleotides remains a challenging issue. Here, we introduce a new model-based method, called SelEstim, to distinguish putative selected
polymorphisms from the background of neutral (or nearly neutral) ones and to estimate the intensity of selection at the former. The
underlying population genetic model is a diffusion approximation for the distribution of allele frequency in a population subdivided into
a number of demes that exchange migrants. We use a Markov chain Monte Carlo algorithm for sampling from the joint posterior
distribution of the model parameters, in a hierarchical Bayesian framework. We present evidence from stochastic simulations, which
demonstrates the good power of SelEstim to identify loci targeted by selection and to estimate the strength of selection acting on these
loci, within each deme. We also reanalyze a subset of SNP data from the Stanford HGDP-CEPH Human Genome Diversity Cell Line Panel
to illustrate the performance of SelEstim on real data. In agreement with previous studies, our analyses point to a very strong signal of
positive selection upstream of the LCT gene, which encodes for the enzyme lactase—phlorizin hydrolase and is associated with adult-type
hypolactasia. The geographical distribution of the strength of positive selection across the Old World matches the interpolated map of

lactase persistence phenotype frequencies, with the strongest selection coefficients in Europe and in the Indus Valley.

N the new era of population genomics, surveys of genetic

polymorphism (“genome scans”) offer the opportunity to
distinguish locus-specific from genome-wide effects at many
loci (Black et al. 2001). Reliable inference of demography
and phylogenetic history depends on being able to identify
putative neutral regions of the genome, which are assumed
to be influenced by genome-wide effects only (Ross et al.
1999). Conversely, detecting locus-specific effects may help
identify those genes that have been, or still are, targeted by
natural selection (Luikart et al. 2003). Such genes may be
involved, for example, in the adaptation to new environ-
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ments or in the arms race with pathogens (Nielsen 2005).
The applications for population genomic analyses therefore
cover a wide range of disciplines. Although some progress
has been made (Nielsen 2001), the problem of how best to
identify regions, loci, or single nucleotides that have been,
or are currently, targets of selection remains challenging.
Tests of selective neutrality have been developed for
samples drawn from single populations. Most of them are
based on the comparison of some summary statistics of the
site-frequency spectrum (i.e., the observed distribution of gene
frequencies) to their expected distribution from diffusion the-
ory under an infinitely many sites mutation model (Bustamante
et al. 2001; Payseur et al. 2002; Nielsen et al. 2005b; Williamson
et al. 2005). Accounting for different classes of markers (e.g.,
selected and neutral) is achieved by a Poisson random field
(PRF) approximation (Sawyer and Hartl 1992), which assumes
independent mutation and selection parameters across sites
(see, e.g., Kim and Stephan 2002; Bustamante et al. 2003).
In particular, Bustamante et al. (2003) developed a hierarchical
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PRF model that allows the estimation of selection coefficients
at a set of DNA polymorphisms sampled in a single population
(see also Nielsen et al. 2005a). Williamson et al. (2005) used
a similar approach to infer selection in a nonequilibrium de-
mographic model. Yet, they assume a priori which mutations
are selectively neutral and which are not. The putatively neu-
tral class of markers is then used to infer demographic param-
eters and, given these estimates, inferences regarding selection
are performed on the other class of markers.

Other tests of selective neutrality are based on haplo-
type structure. Focusing on haplotypes at a locus of interest
(referred to as “core haplotypes”), Sabeti et al. (2002) analyzed
the decay of gene identity as a function of distance from the
core, as measured by the extended haplotype homozygosity
(EHH). Core haplotypes that have both a high population
frequency and a high EHH are evidence of recent positive
selection. Deriving the expected distribution of the EHH
requires making strong assumptions about the underlying
population history, however, which makes it difficult to eval-
uate the significance of observed values. Several extensions
have therefore been proposed and adapted to genome-wide
scans of single nucleotide polymorphism (SNP) data (reviewed
in Gautier and Vitalis 2012), based on the empirical distribu-
tion of EHH-like statistics either for single populations (Voight
et al. 2006) or for pairs of differentiated populations (Tang
et al. 2007). Such approaches therefore rely on the assumption
that most SNPs behave neutrally, so that the observed distri-
bution of the statistics provides a proxy to the null distribution.

When markers are genotyped across multiple populations, it
has been advocated that signatures of natural selection may
simply be identified in the extreme tails of the empirical
distribution of Fgt estimates (Goldstein and Chikhi 2002). The
rationale is that loci that are involved in adaptation to local
environmental conditions are expected to show unusually high
levels of differentiation among populations. Conversely, loci
that are under balancing selection are expected to show
unusually low levels of differentiation. These model-free
approaches are highly computationally efficient and, therefore,
have early been applied to large data sets of tens to hundreds
of thousands of SNPs, such as the Perlegen (Hinds et al. 2005)
and the HapMap (International HapMap Consortium 2003,
2005) data in humans (see, e.g., Akey et al. 2002; Weir et al.
2005; Barreiro et al. 2008). Model-free approaches implicitly
assume that most of the markers analyzed are selectively
neutral, however, and the choice of a decision criterion to
characterize “outlier loci” is fairly subjective. These methods
are intended to be immune to arbitrary assumptions about
the (unknown) demographic history of the sample. Dependence
upon the unknown demography (including the geographic and
historical relationship among populations) was indeed a severe
criticism of Lewontin and Krakauer’s model-based test of
selective neutrality (Lewontin and Krakauer 1973), which
relies on the sampling distribution of the parameter Fgy
(Robertson 1975; Nei and Maryuyama 1975).

Refinements of this controversial test (see, e.g., Beaumont
and Nichols 1996) were based on the properties of gene
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genealogies in structured populations (Beaumont 2005),
which, in many cases, tend toward a simple structure (Nordborg
1997; Wakeley 1999). In this simple structure, the recent
genealogy of genes in each local population can be sepa-
rated from the ancestral genealogy of the whole meta-
population (Wakeley 2004). If this separation-of-timescale
approximation holds, the gene frequency distribution in
each local population may be approximated as a Dirichlet-
multinomial distribution (Balding and Nichols 1995; Balding
2003). Otherwise, it may be necessary to model demogra-
phy explicitly (Nielsen et al. 2009), to restrict the analysis
to pairwise comparisons (Vitalis et al. 2001), or to account
for the covariance matrix of the population allele frequen-
cies (Bonhomme et al. 2010; Coop et al. 2010; Frichot et al.
2013; Giinther and Coop 2013; Guillot et al. 2014). Several
likelihood-based approaches that take advantage of the
Dirichlet-multinomial distribution of gene frequencies have
been proposed, generally within a Bayesian framework. In
particular, Beaumont and Balding (2004) proposed decom-
posing Fst into locus-, population-, and locus-by-population
components in a hierarchical model. Their model offered
a new way to formulate the problem of inferring which loci
are targets of selection. This framework was further ex-
tended by Riebler et al. (2008), Foll and Gaggiotti (2008),
Guo et al. (2009), and Gompert and Buerkle (2011). Yet,
these approaches (as most Fst-based methods aimed at look-
ing for locus-specific effects on Fgp estimates; see Beaumont
and Nichols 1996) are typically not designed to identify
population-specific selection. Furthermore, many species
have a hierarchical structure, where a subset of populations
share a recent ancestry, or exchange more migrants, relative
to the full species range. For such complex structures, exten-
sions of the Beaumont and Nichols (1996) test or the clas-
sical Lewontin and Krakauer (1973) test have been proposed
(see Excoffier et al. 2009; Bonhomme et al. 2010, respectively).
As an alternative to models based on the Dirichlet-multinomial
distribution of gene frequencies, Coop et al. (2010) developed
an extension to the truncated Gaussian model proposed by
Nicholson et al. (2002), which accounts for the pattern of co-
variance in allele frequencies between populations (see also
Frichot et al. 2013; Giinther and Coop 2013; Guillot et al.
2014). The resulting multivariate normal distribution of gene
frequencies allows testing a linear effect of some environmen-
tal variable on the allele frequency at some loci (Hancock et al.
2010, 2011; Frichot et al. 2013).

A major limitation of the methods based on comparisons
among populations, however, is that they do not quantify
selection. Rather, they are constructed as tests of departure
from selective neutrality (Gautier et al. 2010). One excep-
tion, though, lies in Bazin et al. (2010), where the effective
migration rate at a marker locus is expressed as a function of
the selection coefficient at a positively selected locus and the
recombination rate between the two (see Petry 1983). While
neutrality is a convenient null hypothesis, a proper interpre-
tation of the observed patterns of variability, in particular the
extent to which the neutral model is applicable, requires



methods that rely on nonneutral models (see, e.g., Donnelly
et al. 2001). Furthermore, proper tests of selection should
provide estimates of the parameters of interest, i.e., the
strength and the type of selection acting on segregating
polymorphisms.

Here, we provide a new method, called SelEstim, to
distinguish neutral from selected polymorphisms and esti-
mate the intensity of selection at the latter. Our model
accounts explicitly for positive selection, and we suppose
that all marker loci in the data set are responding to
selection, to some extent. The method is based on a diffusion
approximation for the distribution of allele frequency in a
population subdivided in a number of demes that exchange
migrants (i.e., an island model; see Wright 1931). The
framework for statistical inference from this model consists
in a hierarchical Bayesian model (see Gelman et al. 2004).
We use a componentwise Markov chain Monte Carlo
(MCMC) algorithm to sample from the joint posterior dis-
tribution of the model parameters. We then evaluate the
performance of SelEstim, by means of stochastic simula-
tions. Last, we reanalyze a subset of SNP data from the
Centre d’Etude du Polymorphisme Humain (CEPH) Human
Genome Diversity Panel (HGDP) (Cann et al. 2003) to illus-
trate the applicability of SelEstim on real data.

Model
Assumptions

We consider an infinite island model where the ith deme
consists of N; diploid individuals and receives immigrants
from the whole population at rate m;. We define the scaled
migration parameter in the ith deme as M; = 4N;m;. We
consider biallelic markers, i.e., that only two alleles (denoted
by A and a) may occur at a given locus. We denote by p;; the
frequency of allele A in deme i at locus j and by ; the fre-
quency of allele A at the jth locus in the whole population.
Since we consider that the population as a whole is made of
an infinite number of islands, 7r; gives the frequency of allele
A in the pool of migrant individuals. The following notations
are used hereafter: the vector of allele frequencies in deme i
at locus j is p; = (py, 1 — py), and the vector of allele fre-
quencies at locus j among migrants is ; = (7, 1 — ;). We
consider a simple genic model of selection where, at each
locus, the allele A provides a selective advantage. The homo-
zygote individuals AA and the heterozygotes Aa have a rela-
tive increase of fitness of 1 + s; and 1 + s;;/2, respectively, as
compared to the aa homozygotes. We define the scaled co-
efficient of selection in deme i at locus j as o;; = 2N;s;. We
define the indicator variable ;;, which takes the value k; =
0 if allele A is selected for, and k; = 1 if allele a is selected for.
Therefore, the frequency of the selected allele in deme i at
locus j reads p; = (1 — py) + (1 — ky)py-

The data consist of individuals collected in a set of ng
demes and genotyped at L loci. We denote by n;; the total
number of genes sampled in the ith deme at the jth locus,

out of which x; have allelic state A. The vector of allele
counts in deme i at locus j therefore reads n;; = (x;, n;; — x;).

Given the frequencies p; of allele A, the conditional dis-
tribution of allele counts n; in population i at locus j is
binomial:

ﬁ(pij;nij) = ( )pi;“(lfplj)nij—x’j. )

In the limit of large deme size, as N; — o, and assuming
that selection and random genetic drift are of comparable
strength (i.e., that M; and o; have a finite limit as N; — o),
the distribution of the p; may be approximated by the sta-
tionary density of a diffusion process, which has the form

_ - Mimi—1 M,(l*‘n'v)fl
‘//<Pij§Mi70'ij7Kij7'“j) =C 16XP<0ijPij>Pij o (1—Pij) J

2

(Wright 1949; Barton and Turelli 1987; Ethier and Nagylaki
1988; Biirger 2000). In Equation 2, C is the constant that
ensures that the distribution integrates to 1. This constant
can be evaluated as

MﬂTJ

M;(1-m)
C= |exp al]pu le )

(1o

7 M, i(1—
= 1F1 (Mi'n'ij;Mi;O'i]) w’

3

where 1F; (g; b; 2) is the confluent hypergeometric, or Kummer’s,
function (see, e.g., Abramowitz and Stegun 1965, p. 504), and
’7~Tij = Klj(l - 7Tj) + (1 - Kl'j)7Tj.

Given the model specified in Equations 1 and 2, we are

interested in evaluating the parameters of interest
M= (Mi,...,.M;,....Myp,), w = (m, ..., m, ..., 7L),
05(0'117-~-70'ij7~--»0'ndL); and KE(Kll,...,Kij,...,KndL),

from the observed allele counts n over all sampled demes and
loci. The directed acyclic graph (DAG) for this hierarchical-
Bayesian model is shown in Figure 1.

We assume a Bernoulli prior distribution for the param-
eters k;;, i.e., k;; ~ Ber(0.5), and a uniform prior for the /s,
that is m; ~ Beta(1, 1). We further assume a log-uniform
prior for the M;’s with support from 0.001 to 10,000; i.e., the
priors of the M;’s are uniform in log scale: log(M;) ~ U(log
(1073), log(10%). The prior distributions for the selection
coefficients oy; (at each locus, in each deme) are modeled
hierarchically (see, e.g., Gelman et al. 2004, pp. 124-125).
In particular, we assume that o; has an exponential prior
distribution f (U'ij‘ﬁj) ~ exp (Sj_l) that depends upon the locus-
specific hyperparameter §;, which represents the average
effect of selection at locus j (over all demes). We further
assume that this hyperparameter §; has an exponential prior
distribution f(8;|A) ~ exp(A~1) that depends, in turn, upon the
hyperparameter A, which represents the genome-wide effect of
selection over all demes and loci. Last, we assume that the
prior distribution of A is f(A) ~ exp(A~1), with A = 1.0, in
what follows. Assuming independence of allele frequencies
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Figure 1 Directed acyclic graph (DAG) of the hierarchical Bayesian
model.

among loci and populations, the posterior distribution of the
parameters f(M, m, o, K, 8, A| n), ie., the conditional distri-
bution of the parameters M, , k, &, 8, and A given the data n,
depends upon the prior distributions of the parameters and the
data as

ng L
f(Maﬂa K:O-787/\‘n) * H H £(pl]7nl])¢’(pljaMlaﬂ]7Kl]70-l])
i=1 j=1
X fM)f (w)f (k)f (o [D)f (BJA)f (A).
4)

Although in Equation 4 the likelihood from Equation 1
can be integrated analytically over the distribution of
unknown population frequencies given by Equations 2 and
3, we found that it increases the computational burden
significantly. This is so because additional gamma and
confluent hypergeometric functions are then introduced in
the likelihood function £'(M;, mj, ki, 0, Ny).

We implemented a single-component Metropolis—-Hastings
(or Metropolis within Gibbs) algorithm (see, e.g., Ntzoufras
2009) to sample from the joint posterior distribution of f(M,
T, K, 0, 8, A| n), which is specified by Equation 4. In practice,
we therefore update one parameter at each time, iteratively,
as detailed in Supporting Information, File S1. The proposal
distributions for each of the M, =, k, o, 8, and A parameters
are adjusted by means of 25 short pilot runs of 1000 itera-
tions to obtain acceptance rates between 0.25 and 0.40 (see,
e.g., Gilks et al. 1996).

The software package implementing the model de-
scribed here, called SelEstim, is available at http://www1.
montpellier.inra.fr/CBGP/software/selestim. All the postpro-
cessing statistical analyses were performed using the R software
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environment for statistical computing, v. 3.0.1 (R Core Team
2013).

Identifying loci under selection from the MCMC outputs

Because the model assumes that each and every locus in
a data set is selected to a certain extent, we are particularly
interested in the posterior densities of the locus-specific
hyperparameters §;: we expect the density to be shifted to-
ward zero for neutral markers and to positive values for
(presumably) selected loci (see Figure 2). Yet, given the
hierarchical structure of our model, it would not be suffi-
cient to simply test whether, at a particular locus, the pos-
terior distribution of §; departs from zero. This approach
would neglect the genome-wide effects of selection. Since
we assume in our model that the §/s are drawn indepen-
dently from a common hyperdistribution with parameter A
(which represents the genome-wide effect of selection), it is
indeed more appropriate to compare the posterior distribu-
tions of the locus-specific coefficients of selection with the
“centering” distribution derived from the hyperdistribution
of the genome-wide effect of selection. This centering distri-
bution is a good choice, rather than, for example, a point
mass at zero, because it leads to consistent estimates (the
hyperprior will shrink toward zero with more data). Further-
more, as becomes apparent, it provides some, albeit very
weak, power to identify loci under balancing selection.

Following Guo et al. (2009), we consider the following
steps to detect outlier loci in a data set: (i) approximate the
posterior distributions of the locus-specific selection hyper-
parameters (8;); (ii) compare each of these distributions to
a “centering” distribution derived from the hyperdistribution
with parameter A that describes the among-locus variation
in the locus-specific effect of selection; and last (iii) measure
the mean of the posterior distributions of o; for outlier loci
over sampled populations to summarize the distribution of
selection effects across sampling locations.

Our preliminary analyses suggested that the posterior
distribution of the parameters §; is unimodal. Furthermore,
its support is on [0, =), by definition of §;. For subsequent
analyses, we approximate the posterior distributions of the
87s by a gamma distribution with the same mean and vari-
ance as estimated from the MCMC sample. In doing so, we
assume that slight discrepancies in higher-order moments
will not affect the comparison of these distributions with
their centering distribution. In the following, we therefore
consider that the posterior distribution of 8; is I" (ko, 6) with
ko = 3_c§j /sg and 6y = sgj /Xs,, where X5, and sgj are the mean
and the variance, respectively, of the posterior distribution of
8;, as estimated from the MCMC outputs. Since we assumed
an exponential prior distribution for the hyperparameters §;,
ie., f(8) ~ exp(A~1), or equivalently f6) ~ T, A), we
defined the centering distribution of §; as I'(1, 6,), where
01 =X, is the posterior mean of A, as estimated from the
MCMC outputs. We expect that the stronger the intensity of
selection at locus j, the larger the departure of the posterior
distribution of §; from the centering distribution. We use the
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Figure 2 Examples of posterior densities of the locus-specific hyperpara-
meter &; for neutral markers (in gray) and positively selected loci (in red).
The “centering” distribution (dashed line) is derived from the hyperdis-
tribution of the genome-wide effect of selection, A, and is defined as an
exponential distribution ~ exp(X; '), where X, is the posterior mean of A,
as estimated from the MCMC.

Kullback-Leibler divergence (KLD) to measure the distance
of the posterior distribution of §; from the centering distri-
bution. The KLD of a distribution with density f(x) from
a distribution with density g(x) is defined as

)lIg(x) / flx log{ f{ﬂ (5)

With a little algebra, one can show that the KLD of a gamma
distribution with shape and scale parameters (kq, 6y) from
a gamma distribution with shape and scale parameters (1,
01) is given by

KLD[f(x

KLDIF (Ko, 60) (ks 60)] = log | |+ kot

+(ko — 1)[log(6o) + F(ko)],
(6)

where F(x)=1I"(x)/I'(x) is the digamma function. Note that
as an alternative to these computations, one might use other
KLD estimators, such as those based on nearest neighbors
(see, e.g., Pérez-Cruz 2008).

To provide a decision criterion for discriminating be-
tween neutral and selected markers, we calibrate the KLD
using simulations from a predictive distribution based on the
observed data set. The motivation here is to generate a set of
loci equivalent to those that we observe in their levels of
diversity and genetic variation. Note that generating a full
posterior predictive distribution for KLD is unhelpful here
because extreme P-values would indicate poor model fit

rather than give evidence of selection per se. A key require-
ment in our calibration is that we generate a distribution of
KLD under a null model in which the §; for each locus are
drawn from their centering distribution. For this reason we
cannot use a strictly neutral model (i.e., the beta-binomial
parameterized by M;). A further assumption that we make,
for otherwise the approach would be computationally in-
tractable, is that the loci are exchangeable. Thus the KLD
computed for each locus in our data set is compared to the
simulated distribution of KLD among all the loci generated
from the predictive distribution. As described in File S2, we
parameterize our predictive distribution using the estimated
posterior means for M;, ;, k;;, and A. We show below that,
although the method is somewhat conservative, the calibra-
tion based on these posterior means is generally good. Thus,
in practice, for each data set and each analysis, we use the
algorithm detailed in File S2 to generate pseudo-observed
data (POD). We then analyze that POD, using the same
MCMC parameters (number and length of pilot runs,
burn-in, chain length, etc.) as for the analysis of the original
data set. The KLD values computed for each simulated locus
are then combined to obtain an empirical distribution. The
quantiles of this empirical distribution are computed and are
used to calibrate the KLD observed for each locus in the
original data: e.g., the 99% quantile of the KLD distribution
from the POD analysis provides a 1% threshold KLD value,
which is then used as a decision criterion to discriminate
between selection and neutrality.

Materials and Methods
Simulation study

We evaluated the performance of the method by simulating
artificial data sets for fixed parameter values. The simula-
tions were performed according to an island model with 50
demes, each consisting of N = 250 diploid individuals. Fol-
lowing Beaumont and Balding (2004), we simulated allele
counts data from a Wright-Fisher model with migration and
selection.

Initialization was achieved by means of a Pdlya urn
scheme simulation of the coalescent (Donnelly and Tavaré
1995) with scaled mutation parameter § = 4Ny = 1. This
amounts to considering selection acting on standing varia-
tion and makes this simulation model similar in spirit to the
models considered by Innan and Kim (2004) and Przeworsky
et al. (2005). At each generation (generations were discrete
and nonoverlapping), each individual produced a random
number of offspring drawn from a Poisson distribution with
mean 100. Mutations then occurred at rate 2 X 107>, Dis-
persal of the (diploid) offspring then occurred at rate m, with
dispersing individuals reaching necessarily a distinct deme.
Selection of the offspring surviving to adulthood was then
achieved, according to the scheme detailed below. A number
N of adults was drawn from among the offspring, except if the
number of offspring in a deme was <N, in which case all
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offspring survived. This life cycle was repeated for 25,000
generations. Samples were then taken, but only if the mini-
mum allele frequency (the frequency of the least frequent
allele) was >0.01. All loci were considered as independent,
so that each multilocus data set was made of independent
realizations of that process.

To account for the possibility of positive selection to local
environmental conditions, the demes were arbitrarily pro-
vided with attributes (blue, red, or uncolored), which were
assigned at random, independently for each selected locus.
For positively selected loci, one allele B was considered as
advantageous in a blue deme (and neutral in a red deme),
while the other allele R was considered as advantageous in
a red deme (and neutral in a blue deme). Both alleles were
considered as neutral in uncolored demes. Therefore, BB
homozygotes had fitness (1 + s) in blue demes and 1 in
red and uncolored demes; RR homozygotes had fitness
(1 + s) in red demes and 1 in blue and uncolored demes;
BR heterozygotes had fitness 1 + s/2 in red and blue demes
and 1 in uncolored demes. For loci under balancing selec-
tion, only the heterozygote genotypes were selected for in
the blue and red demes, with relative fitness (1 + s). Ho-
mozygote genotypes were neutral (relative fitness 1) in all
demes, as were the heterozygote genotypes in uncolored
demes.

A total of 18 data sets were generated using the Wright—
Fisher model described above (see Table 1). For each locus,
50 diploid individuals (100 genes) per deme were sampled.
The details that distinguish the different data sets are given
in Table 1. For example, for data sets 1-9, the samples were
taken in 6 demes: 2 blue demes, 2 red demes, and 2 un-
colored demes, and each simulated data set consisted in
10,000 SNPs, with 8000 neutral markers, 1000 positively
selected loci, and 1000 loci under balancing selection. For
data sets with selected loci (data sets 1-11), we assumed
that 30% of all demes were blue demes, 30% were red
demes, and 40% were uncolored demes. For data sets with
neutral markers only (data sets 12-18), 50,000 SNPs were
simulated and all demes were uncolored. Table 1 further
gives the combinations of Fgt and o values used for the
simulations.

An additional set of four simulations was performed to
test for the robustness to departure from the island model
assumptions. To that end, a classical island model, a hierar-
chical island model (see, e.g., Excoffier et al. 2009), a step-
ping-stone model in one dimension, and a pure drift model
(whereby nine populations diverge sequentially) were sim-
ulated (see Figure S1). The sample characteristics (number
of individuals, number of sampled demes) were the same for
all simulations, and the model parameters were tuned to
achieve an overall realized Fgy of ~ 0.24.

For each of these 22 data sets the MCMC algorithm
was run to sample from the joint posterior distribution of
the model parameters. For each Markov chain, 100,000
updating steps were completed after 25 short pilot runs
of 1000 iteration and a burn-in of 25,000 steps. Samples

804 R. Vitalis et al.

were collected for all the model parameters every 25
steps (thinning) to reduce autocorrelations, yielding 4000
observations.

The data sets 1-11 (see Table 1) were analyzed using
BayeScan v. 2.1 (Foll and Gaggiotti 2008) with default op-
tion values (except for the MCMC parameters, see below).
BayeScan is based on the Dirichlet-multinomial model for
allele frequencies in an island model of population structure.
At each locus, the distribution of allele frequency in each
subpopulation depends on the allele frequency in the com-
mon pool of migrants and a subpopulation-specific F¢; pa-
rameter. In BayeScan, as in Beaumont and Balding’s model
(Beaumont and Balding 2004), the logit of FlslT is decom-
posed additively into a locus-specific component («;) shared
by all populations, and a population-specific component (3;)
shared by all loci. Significantly positive (resp., negative)
values of «; are taken as evidence of positive (resp., balanc-
ing) selection. BayeScan is based on a reversible-jump
MCMC algorithm, which estimates the posterior probabili-
ties of two alternative models, a purely neutral one («; = 0),
and one including selection (a; # 0). Each Markov chain
was run for 100,000 updating steps, after 25 short pilot runs
of 1000 iteration each and a burn-in of 25,000 steps. Sam-
ples were collected every 25 steps (thinning), yielding 4000
observations. For each output, we computed the Bayes fac-
tor (BF) for the model including selection (a; # 0), assum-
ing prior odds of 10 for the neutral model (o; = 0).

The comparison of the relative efficiency of the two
methods was achieved by means of receiver operating
characteristic (ROC) analysis (see, e.g., Fawcett 2006, for
further information), using the R software environment for
statistical computing, v. 3.0.1 (R Core Team 2013).

Application to human data

We applied SelEstim on the Stanford HGDP-CEPH Human
Genome Diversity Cell Line Panel (Cann et al. 2003) SNP
genotyping data, which consist of genotypes at more than
650,000 SNPs (ftp://ftp.cephb.fr/hgdp suppl). Because we
were interested, for illustrative purpose, in measuring the
genetic signature of selection in the lactase gene, we con-
sidered only the 53,765 SNPs mapping to chromosome 2
(HSA2) and incorporated the genotyping data of the two
SNPs reported to be tightly associated with lactase persis-
tence (—13910C — T and —22018G — A) as published by
Bersaglieri et al. (2004). All the populations with <15 gen-
otyped individuals were discarded from the data set. Fur-
thermore, we removed seven populations from Oceania and
Southern America, as well as three populations from Sub-
Saharan Africa (the Biaka Pygmies, Mbuti Pygmies, and the
Mandenka) that were absent from Bersaglieri et al.’s data set
(Bersaglieri et al. 2004). The two Bantu populations (from
Kenya and South Africa) were merged, as in Bersaglieri et al.
(2004). Finally, we discarded all the SNPs with a minimum
allele frequency (MAF) below 0.01 across the populations
retained. The final data set consisted in 52,633 SNPs char-
acterized in 23 populations from Africa and Eurasia.
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Table 1 Parameters of simulated data sets

Markers Sampled demes
Data set N M = 4Nm Fst s o = 2Ns Pos. Bal. Neut. No. Categories
1 250 18.067 0.05 0.02 10 1,000 1,000 8,000 6 (2,2,2)
2 250 18.067 0.05 0.05 25 1,000 1,000 8,000 6 (2,2,2)
3 250 18.067 0.05 0.10 50 1,000 1,000 8,000 6 (2,2,2)
4 250 8.664 0.10 0.02 10 1,000 1,000 8,000 6 (2,2,2)
5 250 8.664 0.10 0.05 25 1,000 1,000 8,000 6 (2,2,2)
6 250 8.664 0.10 0.10 50 1,000 1,000 8,000 6 (2,2,2)
7 250 3.858 0.20 0.02 10 1,000 1,000 8,000 6 (2,2,2)
8 250 3.858 0.20 0.05 25 1,000 1,000 8,000 6 (2,2,2)
9 250 3.858 0.20 0.10 50 1,000 1,000 8,000 6 (2,2,2)
10 250 8.664 0.10 0.05 25 1,000 1,000 8,000 3 (1,1,1)
11 250 8.664 0.10 0.05 25 1,000 1,000 8,000 12 (4,4,4)
12 250 84.604 0.01 - - 0 0 50,000 6 (0,0,6)
13 250 44.619 0.02 - - 0 0 50,000 6 (0,0,6)
14 250 18.067 0.05 - - 0 0 50,000 6 (0,0,6)
15 250 8.664 0.10 - - 0 0 50,000 6 (0,0,6)
16 250 5.468 0.15 - - 0 0 50,000 6 (0,0,6)
17 250 3.858 0.20 - - 0 0 50,000 6 (0,0,6)
18 250 2.888 0.25 - - 0 0 50,000 6 (0,0,6)

All the simulations were performed according to an island model with ng = 50 demes, each made of N = 250 diploid individuals (500 genes). Fifty diploid individuals (100
genes) were sampled per deme. The migration rate m was fixed to achieve the desired value of Fst, using Equation 6 in Rousset (1996). The number of loci simulated under
positive selection (Pos.), balancing selection (Bal.) and neutrality (Neut.) is indicated. The total number of sampled demes is also given, together with the composition of the
sample: (2,2,2) indicates that the sample of six demes consisted of two blue demes, two red demes, and two uncolored demes.

Results
Evaluating the performance of SelEstim:

To asses the KLD calibration procedure, we first evaluate the
method using simulated data sets made of neutral markers
only (data sets 12-18; see Table 1). Figure 3A shows the
false-positive rate, i.e., the proportion of markers that are
incorrectly classified as under selection, as a function of
various KLD thresholds. For each data set, KLD thresholds
based on the quantiles of the KLD distributions from the
POD analyses were computed and used as a decision crite-
rion for discriminating between neutral and selected
markers. Figure 3B represents the false-positive rate as
a function of the quantile probability (comprised between
0 and 1). Figure 3B shows that, for the data sets considered
here, the false-positive rate at any KLD threshold is always
less than the corresponding quantile probability. This sug-
gests that our calibration procedure is “conservative,” at
least for the range of Fgr values considered here (ranging
from 0.01 to 0.25).

Figure 4 shows the performance of the method on data
set 5 (see Table 1), which corresponds to Fst = 0.10 and
o = 2Ns = 25. Figure S2, Figure S3, Figure S4, Figure S5,
Figure S6, Figure S7, Figure S8, Figure S9, Figure S10, and
Figure S11 provide the same outputs for simulated data sets
1-4 and 6-11. Figure 4A shows that the distribution of KLD
measures for positively selected loci departs from that of the
neutral markers and the loci under balancing selection. This
is essentially true for the data sets for which Fgr = 0.05 and
o = 25, as can be seen from Figure S2, Figure S3, Figure S4,
Figure S5, Figure S6, Figure S7, Figure S8, and Figure S9.

Not surprisingly, large KLD values correspond to large Fsr
estimates (Figure 4B). This is so because for positively se-
lected loci, one allele is selected for in blue populations and
the other in red populations, which tends to exacerbate dif-
ferentiation. A close examination of Figure 4C further shows
that the false-positive rate (the proportion of neutral
markers that exhibit a signature of selection) at any KLD
threshold is always less than the corresponding KLD quan-
tile probability (as in Figure 3B). This strengthens the notion
that the KLD thresholds should not be interpreted as fre-
quentist P-values. All else being equal, increasing the num-
ber of sampled demes improves the discrimination of neutral
and positively selected markers (compare Figure 4, Figure
S10, and Figure S11). Last, Figure 4 shows that SelEstim has
some weak statistical power to identify loci under balancing
selection. This arises because markers with very low diver-
gence will tend to have posteriors for § that are pushed
further toward zero in comparison with the centering distri-
bution and, hence, will also have a higher KLD. Yet, al-
though the KLD for loci under balancing selection is
indeed slightly higher, on average, than for neutral markers
(Figure 4, Figure S2, Figure S3, Figure S4, Figure S5, Figure
S6, Figure S7, Figure S8, Figure S9, Figure S10 and Figure
S11), it remains very low. This result is not surprising,
though, since the selection scheme considered in our model
of inference accounts only for positive genic selection. Fur-
thermore, previous simulation studies have also shown that,
in the absence of an explicit model of selection, similar
methods generally lack power to detect balancing selection
(Beaumont and Balding 2004; Foll and Gaggiotti 2008; Riebler
et al. 2008).
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Figure 3 (A) False-positive rate
(neutral loci detected as outliers)
as a function of the Kullback—

Leibler divergence (KLD) threshold,
for data sets 12-18. (B) False-
positive rate, as a function of the
quantile probability. For each data
set analysis, pseudo-observed data
(POD) are generated from the in-
ference model with hyperpara-
meters A, 7, and M set to their
respective posterior means, using
a rejection-sampling  algorithm
(see File S2). The POD is then an-
alyzed, using the same MCMC
parameters (number and length
of pilot runs, burn-in, chain length,
etc.) as for the analysis of the orig-
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Comparison with BayeScan:

Figure 4D shows the relationship between BayeScan BF and
the KLD for each and every locus from data set 5. According
to Jeffreys’ rule (Jeffreys 1961; Kass and Raftery 1995),
a BF >10 (log,o(BF) = 1) provides “strong” evidence for
selection, and for a BF >100 (log;o(BF) = 2) the evidence is
“decisive.” However, it should be noted that, by definition,
the BF depends on the prior odds for the neutral model. For
this set of simulated data, there is a good agreement between
BayeScan BF criterion and the KLD, since markers with high
KLD show decisive evidence of selection from BayeScan BF
criterion. For BayeScan analyses, whenever the posterior
probability of the model including selection («; # 0) was
equal to 1, we arbitrarily defined the log;q(posterior odd)
as 10g10(3999.5/4000) — log;0(0.5/4000) to account for
the chain length (4000 iterations). By construction, the max-
imum value that the BF can take (log,o(BF) = 4.857; see
Figure 4D) therefore depends on the MCMC length and the
prior odds for the neutral model (here equal to 10).

The ROC analysis (Figure 5) further shows a slight
power gain of SelEstim over BayeScan (Foll and Gaggiotti
2008). In the ROC analysis, the proportion of false pos-
itives and true positives is computed for each possible
value of the threshold that is used to classify a locus under
selection (see, e.g., Fawcett 2006, for further informa-
tion). For SelEstim, the classifying variable was the KLD
of the posterior distribution of the locus-specific coeffi-
cient of selection §; from its centering distribution, while
in the case of BayeScan it was the Bayes factor. The ROC
analysis yields a monotonic curve with no positives (true
or false) at one end and all positives at the other. If
a method has no classification power, the curve should
be linear with slope 1, and the area under the ROC curve
(AUC) should be 0.5. If a method has perfect classification
power, the curve should perfectly superimpose to the left-hand
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defines a KLD threshold, which is
used as a decision criterion for dis-
criminating between neutral and
selected markers.
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and top sides of the unit square, and the AUC should be 1.
Considering positively selected loci first, the area under the
ROC curve for SelEstim is slightly larger, and closer to 1,
than that obtained for BayeScan (see Figure 5). In partic-
ular SelEstim appears to have progressively improved rel-
ative performance with decreasing values of ¢. As for loci
under balancing selection, SelEstim seems slightly better
than BayeScan based on the ROC analysis, although both
methods lack statistical power in these sets of simulated
data.

The analysis of data sets 1-11 (see Table 1) took 12,175
sec on average per data set (SD = 6921) with BayeScan and
12,633 sec (SD = 6149) with SelEstim. SelEstim is therefore
3.85% slower than BayeScan, based on the same MCMC
parameters (number and length of pilot runs, burn-in, chain
length, etc.) and using the same number of processor cores.
Note, however, that the KLD calibration procedure of SelEstim
comes at the cost of up to a doubled computing time, due to
the additional analysis of the POD.

Robustness to model misspecification

We analyzed simulated data departing from the island
model assumptions (see Figure S1). The rate of false positives
detected by SelEstim at a given threshold was higher for data
simulated from a hierarchical island model or a stepping-
stone model, as compared to data simulated from a nonhier-
archical model with the same overall Fsr (Figure S12). However,
for all scenarios considered, the false-positive rate at any
KLD threshold was less than or nearly equal to the corre-
sponding quantile probability (Figure S12F), which suggests
that our calibration procedure is “conservative,” even for
strong departures from the island model assumptions. Fur-
thermore, the rates of false positives for these scenarios were
much lower as compared to BayeScan analyses of the same
data (Figure S13).
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Figure 4 Analysis of the allele
count data from data set 5. (A)
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Inference of selection coefficients

For data set 5 (see Table 1), we examined the distributions
of the posterior means of the parameters k; (which indicate
which allele is selected for), for the 1000 positively selected
loci. Here, from the hypotheses of our simulation model,
k; = 0 indicates that the blue allele is selected for, and
ki = 1 indicates that the red allele is selected for. Figure
6A shows the distributions of the posterior means of «;; in
each sampled deme. Consistent with our expectation, it is ap-
parent from Figure 6A that the posterior means of k;; in demes
1 and 2 (blue demes) are shifted toward zero and that the
posterior means of k; in demes 3 and 4 (red demes) are
shifted toward one. Alleles of the right color are therefore
selected for in the right deme. It is also reassuring to see that
in demes 5 and 6 (uncolored demes), the posterior means of
k;; are centered around 0.5, which is consistent with the fact
that neither allele should be selected for in these demes.
For the same 1000 positively selected loci, we further
examined the posterior means of the scaled coefficients of
selection o;; = 2N;s;;, conditionally on k;. By doing so, we
estimate the coefficient of selection associated with the al-
lele being effectively targeted by selection. Figure 6B shows
that the posterior means of f(oy|k; = 0) in blue demes and
the posterior means of f(oj|k; = 1) in red demes are very

Kullback-Leibler divergence (KLD)

which correspond to strong, very
strong and decisive support fol-
lowing Jeffreys's (1961) scale of
evidence for selection, respectively.

T T T T
1 2 3 4

close to the simulated values (¢ = 2Ns =25 in data set 5;
see Table 1). By contrast, in uncolored demes, the posterior
means of o;; that were not conditioned upon «;;, are much
lower and closer to the prior distribution of the hyperpara-
meter A (which represents the genome-wide effect of selec-
tion over all demes and loci). Figure S14, Figure S15, Figure
S16, Figure S17, and Figure S18 reproduce the same out-
puts as in Figure 6 for data sets 1-4 and 6-11. The posterior
means of the scaled coefficients of selection o; conditionally
on k;; are very close to the simulated values, for Fsy = 0.05
and o = 25 (data sets 2-3, 5-6, and 8-9) and Fgr = 0.2 and
o = 10 (data set 7). All else being equal, increasing the
number of sampled demes improves the estimation of the
scaled coefficients of selection o; conditionally on «;; (com-
pare Figures 6 and Figure S18).

Last, we examined the distributions of the posterior means
of k; for the 8000 neutral markers in data set 5. Figure 7A
shows that the posterior means of «;, which do not depend on
the color of the sampled demes, are all centered around 0.5.
This result is consistent with the fact that neither allele should
be selected for in these demes. Furthermore, the distributions
of the posterior means of «; for neutral markers are narrower,
as compared to the posterior means of k; for selected loci in
uncolored demes (see Figure 6A). The distributions of the
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Figure 5 Receiver operating characteristic (ROC) analysis for the data sets 1 (A), 2 (B), 3 (C), 4 (D), 5 (E), 6 (F), 7 (G), 8 (H) and 9 ()). In the ROC analysis,
the proportion of false positives and true positives is computed for each possible value of the threshold that is used to classify a locus under selection. For
SelEstim, the classifying variable was the KLD between the posterior distribution of the locus-specific coefficient of selection &; and its centering

distribution, while in the case of BayeScan it was the Bayes factor.

posterior means of k; for neutral markers are therefore closer
to their prior distribution. Yet, the distributions are still wider
than expected from the prior distribution, since the mean over
4000 independent samples (which corresponds to the MCMC
length) from a Ber(0.5) distribution should be approximately
normally distributed with mean 0.5 and standard deviation
0.008. This extra variance may be due to the hierarchical struc-
ture of the model, which produces a correlation between the
parameters. In addition, Figure S19A shows that, in the absence
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of selection (data set 16; see Table 1), the distribution of the
posterior means of k;; is centered around 0.5 and narrower
as compared to data sets that include positively selected loci
(compare with Figure 7A). Therefore, the higher variance of
the distributions of «;; for selected loci in uncolored demes
(as compared to neutral markers) certainly stems from the
influence of selection occurring for the same loci in blue and
red demes, through the prior on the locus-specific hyper-
parameter §;. The posterior means of o;; for neutral markers
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Figure 6 Analysis of the allele
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Boxplot representation of the
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conditional. The horizontal dashed line gives the true (simulated) value of o; = 25.

(unconditionally upon ;) are very low and close to the poste-
rior mean of the hyperparameter A. In the absence of selection
(data set 16), the posterior means of o; for neutral markers
(unconditionally upon k;) are also very low and not different
from the prior mean of the hyperparameter A (Figure S19B).
Implicitly, Figure 6 and Figure 7 demonstrate that SelEstim
is able to give accurate measures of the scaled coefficient of
selection at one locus in different demes and therefore to
provide evidence of local adaptation. This paves the way for
the inference of the distribution of selection strength across
populations in a landscape as is illustrated in the next section.
Last, we analyzed a set of 11 simulations using the same
parameters as for data set 5 (see Table 1), but varying the
proportion of selected loci from 10 to 5000 of 10,000
markers (hence, from 0.1 to 50%). Interestingly, we found
a strong correlation between the posterior mean of the ge-
nome-wide coefficient of selection A and the number of pos-
itively selected loci (see Figure S20). However, as the number
of positively selected loci increases, the performance of SelEstim

weakens (>20% of selected markers), although less markedly
than BayeScan (see Figure S21).

Application to human data

We ran three independent MCMC analyses on a subset of the
Stanford HGDP-CEPH Human Genome Diversity Cell Line
Panel (Cann et al. 2003) SNP Genotyping Data. The data
consisted in 52,631 SNPs from the HGDP-CEPH data, and
two SNPs (—13910C — T and —22018G — A) known to
be tightly associated with lactase persistence (Bersaglieri et al.
2004), genotyped in 23 populations from Africa and Eurasia.
After 25 pilot runs of 1000 iterations, each MCMC was run for
100,000 updating steps, after a burn-in period of 25,000
steps. Samples were collected from the Markov chains for
all the model parameters every 25 steps (thinning) to reduce
autocorrelations, yielding 4000 samples for each parameter.

Convergence was assessed by computing the multivar-
iate extension of Gelman-Rubin’s diagnostic (Brooks and
Gelman 1998) on the three independent Markov chains.
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Gelman-Rubin’s diagnostic is based on the computation of
the ratio of the pooled-chains variance over the within-chain
variance and was calculated using the coda package, v. 0.16-
1, (Plummer et al. 2006) as implemented for R (R Core
Team 2013). Gelman-Rubin’s diagnostic was equal to 1.09
for the hyperparameter A and to 1.07 for the parameters M;,
which indicates that the chains converge satisfactorily to the
target distribution. The following analyses are based on the
outputs from one of the three Markov chains.

To identify the genomic regions showing the strongest
signatures of selection in the HGDP-CEPH data, 1-Mb win-
dows were constructed for each marker by including all
markers that were =500 kb from that marker. The average
number of markers per window was ~248. Outstanding
regions were then defined as the windows containing at
least three SNPs above the critical KLD value of 3.924 (cor-
responding to the 99.9% quantile of the KLD distribution
from the POD analysis). Figure 8A shows the distribution
of the KLD for each SNP along HSA2. The two SNPs that are
tightly associated with lactase persistence (—13910C — T
and —22018G — A) are highlighted. These two SNPs have
the two largest KLD values. Furthermore, the nine SNPs
with the largest KLD values were located 3.7 kb and 1.0
Mb upstream of the LCT gene, at <805.2 kb from
—13910C — T and <813.4 kb from —22018G — A. Figure
8B represents the distribution of the posterior means of the
locus-specific selection parameter §;, along HSA2. This fig-
ure therefore represents the variation of the strength of se-
lection along the chromosome and depicts a very strong
signal of positive selection in the vicinity of the LCT gene
(located from base pair 136,545,414 to 136,594,749),
which encodes for the enzyme lactase—phlorizin hydrolase
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and is associated with adult-type hypolactasia. In addition to
the LCT region, we found four other outstanding genomic
regions, which are indicated by arrows in Figure 8B. The
closest gene from each region was determined from the
UCSC Genome Browser (http://genome.ucsc.edu/), using
the Genome Reference Consortium GRCh37 assembly
(hg19). Table 2 provides the list of these genes, along with
their functions.

Figure 9 shows the distribution of the scaled coefficients
of selection o; (conditionally on k; indicating allele
—13910C — T to be targeted by selection) across African
and Eurasian populations. The map from Figure 9 was ex-
trapolated by kriging using the R package fields (Fields De-
velopment Core Team 2006), v. 6.8. It is obvious from
Figure 9 that the intensity of selection is very strong in
Europe and around the Indus valley and attains similar lev-
els in both geographic regions.

Discussion

We developed a hierarchical Bayesian model that considers
explicitly the effect of genic selection on the distribution of
allele frequencies at SNP loci. SelEstim extends previous
methods based on the Dirichlet-multinomial distribution
of allele frequencies (which reduces to the beta-binomial
distribution for SNP data) that arises as the diffusion
approximation of genetic drift in the migration-drift equi-
librium island model (see, e.g., Beaumont and Balding 2004;
Riebler et al. 2008; Foll and Gaggiotti 2008; Guo et al. 2009;
Gautier et al. 2010). The beta-binomial model has been
argued to be robust to the vagaries of demographic history
(Beaumont and Nichols 1996; Beaumont 2005) because in
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Table 2 List of the four genomic regions from chromosome 2 (besides the LCT region) showing the strongest signatures of selection

Region SNP ID Position KLD Closest gene (position) Function
1 rs7355461 17,538,316 4.148 RAD51AP2 (chr2:17,691,986-17,699,706) Unknown function?
2 rs1177279 61,295,122 4.269 KIAA1841 (chr2:61,293,006-61,316,639) Unknown function
3 rs1256991 97,669,386 5.023 FAM178B (chr2:97,541,619-97,652,301) Unknown function
4 rs1519662 101,143,618 4.636 NMS (chr2:101,086,944-101,099,742) Neuropeptide signaling pathway

To identify these regions (indicated by arrows in Figure 8B), 1-Mb windows were constructed for each marker by including all markers that were =500 kb from that marker.
Outstanding regions were then defined as the windows containing at least three SNPs above the critical KLD value of 3.924 (corresponding to the 99.9% quantile of the KLD
distribution from the POD analysis). For each region, the SNP with the highest KLD value is indicated, along with its position. The closest gene from each SNP, determined
from the University of California—Santa Cruz Genome Browser (http:/genome.ucsc.edu/) using the Genome Reference Consortium GRCh37 assembly (hg19), is provided

along with its function.

? Close to VSNLT (chr2:17,720,393-17,838,285) in Pickrell et al. (2009) (top 10 XP-EHH signal).

many situations, the genealogy of genes in a metapopulation
divides into a scattering phase, which represents the recent
genealogy of each deme, and a collecting phase, which rep-
resents the ancestral genealogy of the whole metapopula-
tion (Nordborg 1997; Wakeley 2004). With this separation
of timescales, there are no mutations in the scattering phase
and the distribution of gene frequencies in each deme
depends upon the frequencies in the pool of migrants (i.e.,
the collecting phase) and the deme-specific Fsr. However,
the assumption that each deme receives migrants from
a unique migrant pool may not hold if populations share
a history of successive divergences (Gaggiotti and Foll
2010). In that case indeed, gene frequencies may be corre-
lated among closely related populations, which violates the
assumption that populations are independent (Robertson
1975; Excoffier et al. 2009; Bonhomme et al. 2010; Gompert
and Buerkle 2011). SelEstim should therefore be used with
caution on populations that are known to be hierarchically
structured (but see Figure S12). To conclude on a more
positive note, we would argue that although violations from
the island model assumptions certainly inflate the overall
variance of the M; parameters, it should not generate artifi-
cially correlated signals across closely linked SNPs as ob-
served, e.g., in Figure 8. From a practical point of view,
using sliding windows to identify genomic regions of inter-
est may therefore constitute a valuable approach (see, e.g.,
Gautier et al. 2009). Accounting explicitly for the correlation
of gene frequencies across populations due to shared history
and gene flow might be achieved by considering the multi-
variate generalization of the Gaussian approximation of the
gene frequency distribution (Coop et al. 2010; Giinther and
Coop 2013), which was recently extended to infer popula-
tion splits and mixtures (Pickrell and Pritchard 2012). A
Gaussian approximation for the distribution of allele fre-
quencies (as suggested by Nicholson et al. 2002) can be
justified whenever the deterministic equilibrium is located
away from the boundaries (fixation of any one of the
alleles). However, it is a poor approximation when the de-
terministic equilibrium is close to one of the boundaries
(Barton and Rouhani 1987; Gautier and Vitalis 2013).

Our model introduces two major improvements over the
methods based on the Dirichlet-multinomial or the beta-
binomial distribution of gene frequencies. First, instead of

being conceived as tests of departure from a neutral model
(see, e.g., Gautier et al. 2010), SelEstim incorporates an
explicit selection model, which allows selection strength to
be inferred among a set of markers. Second, SelEstim pro-
vides the distribution of selection strength across popula-
tions, which allows identifying the local population(s)
where selection is acting. This is so because the hierarchical
structure of our model improves the estimation of locus- and
population-specific coefficients of selection (o;;) by borrow-
ing strength across multiple populations.

Detecting selection among a set of markers

At a given SNP, j, the locus- and population-specific param-
eters of selection o;; depend upon a locus-specific hyperpara-
meter §; that gives the population-wide effect of selection at
a particular locus. It is therefore natural to use the posterior
distribution of the hyperparameters §; as a means to discrim-
inate between neutral and selected markers. We indeed ex-
pect the posterior density of §; to be shifted toward zero if
the jth marker is neutral and toward positive values if the jth
marker is targeted by selection. To operate this classifica-
tion, it would have been possible to follow Beaumont and
Balding (2004) and adopt a simple informal criterion assum-
ing that §; is significantly different from zero at some critical
level P whenever its equal-tailed 100(1 — P)% credible in-
terval excludes zero. Yet, this approach would neglect the
genome-wide effect of selection, which in our model is
driven by the hyperparameter A. We therefore proposed
comparing the posterior distributions of the locus-specific
coefficients of selection §; with the centering distribution
derived from the hyperdistribution with parameter A. To
that end, we used the KLD to measure the divergence be-
tween these two distributions. We calibrated this measure
using simulations from a predictive distribution based on the
observed data set. We found that the false-positive rate at
any KLD threshold is always less than the corresponding
quantile probability (Figure 3, Figure 4, Figure S1, Figure
S2, Figure S3, Figure S4, Figure S5, Figure S6, Figure S7,
Figure S8, Figure S9, and Figure S10), which suggests that
such calibration is conservative, even for strong departures
from the island model assumptions (Figure S12F).
McCulloch (1989), Peng and Dey (1995), and Guo et al.
(2009) proposed an alternative calibration, based on the
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Figure 9 Extrapolated spatial distribution of the selection coefficient o
at locus —13910C — T, conditionally on allele —13910T being selected
for, across African and Eurasian populations.

following argument: consider flipping a “fair” coin with
equal probability 0.5 for heads and tails vs. flipping a biased
coin with probability » for heads. Then the KLD between
these two Bernoulli distributions denoted by Ber(0.5) and
Ber(v), respectively, can be computed and used as a thresh-
old for any value of ». In our case, however, we must divide
v in half, since we look for only unusually large KLD values.
Therefore, the KLD threshold can be defined as KLD[Ber(0.5),
Ber(»)] = —log[v(2 — v)]/2. For example, the KLD between
two Bernoulli distributions corresponding to flipping a fair
coin and a biased coin that gives heads or tails with proba-
bility 0.05 (resp. 0.01) is equal to 1.164 (resp. 1.959). How-
ever, we found that this calibration procedure was overly
conservative (see Table S1 and Table S2).

Last, we used ROC analyses, as in Riebler et al. (2008), to
compare our model with BayeScan (Foll and Gaggiotti 2008).
We found that SelEstim performed slightly better than BayeScan
(Figure 5). Since BayeScan was shown to outperform Beaumont
and Balding’s approach (Beaumont and Balding 2004), as well
as some other popular moment-based methods using domi-
nant markers (Pérez-Figueroa et al. 2010), we may therefore
conclude that SelEstim represents an appreciable improve-
ment to the population genomicist’s toolbox.

As an alternative to the KLD, it could have been possible to
implement Bayesian model selection using, e.g., Bayes factors
to discriminate between neutral and selected loci. Foll and
Gaggiotti (2008) proposed using reversible-jump MCMC to
estimate, for each marker, the posterior probabilities of two
alternative models: a purely neutral one and one including
selection. Riebler et al. (2008) also proposed an elegant rep-
arameterization of Beaumont and Balding’s model (Beaumont
and Balding 2004), by introducing a Bernoulli-distributed
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auxiliary variable to indicate whether a locus is targeted
by selection. This parameterization was later shown to facil-
itate the computation of Bayes factors (Gautier et al. 2009).
Both approaches (reversible-jump MCMC and auxiliary
variable) are actually straightforward to implement in our
hierarchical-Bayesian model (not shown). Nevertheless, the
KLD has the practical advantage that, provided the MCMC
sampler converges and a large enough sample is drawn from
the 8; and the A posterior distributions, its computation does
not depend upon the length of the MCMC. As an illustration
example, we ran a BayeScan analysis of the 52,633 SNPs from
the HGDP-CEPH data, using the same MCMC parameters
(number and length of pilot runs, burn-in, chain length, etc.)
as with SelEstim, assuming prior odds of 1000 for the neutral
model (Figure S22A). It is clear from this figure that a substan-
tial number of markers for which the Kullback-Leibler diver-
gence provides no evidence of selection have log;o(BF) = 2
(Figure S22, B and C). This number increases with decreasing
prior odds (not shown). Furthermore, since the maximum
value that the BF can take is bounded by the MCMC length,
we may observe a “saturation” effect with many of the outliers
sharing the same evidence of selection (see Figure S22A).
From a practical point of view, this may prevent the visual
identification of genomic regions potentially targeted by selec-
tion (as, e.g., in Figure 8), unless very long MCMC are per-
formed (to achieve an effective sample size of the order of the
number of markers). In addition, we found that the outputs of
BayeScan vary with the prior odds, which depend on the user’s
prior belief for the proportion of presumably neutral SNPs. Our
results therefore argue in favor of using KL.D in empirical stud-
ies since it allows ranking the SNPs in order of the divergence
between locus-specific and genome-wide selection strength,
which indicates the degree of evidence that a locus is under
selection. However, we concur with Coop et al. (2010) that
making statements about the statistical significance of outlier
loci might be hazardous. In particular, we refrained from de-
fining P-values from KLD measures.

Inferring selection strength across populations

In an early analysis of population differentiation using the
HapMap data set, Weir et al. (2005) already showed the
utility of estimating population-specific Fgr values (Weir
and Hill 2002). In particular, concentrating their analyses
on chromosome 2, they did not find any outstanding peak
of population average Fsy around the LCT gene, although
there was a clear elevation of the population-specific Fsr
values for Caucasians of European descent and European
Americans. Yet, in Weir et al’s study (Weir et al. 2005),
the characterization of “exceptional regions” was based on
the greatest difference between population-specific Fsr val-
ues (averaged over 5-Mb windows) being larger than 3 SD,
which does not provide a definitive statistical criterion to
decide which loci are outliers of the empirical, genome-wide
distribution of Fgr.

Like Beaumont and Balding (2004), Riebler et al. (2008),
Foll and Gaggiotti (2008), and Guo et al. (2009), who considered
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population-specific effects on Fsr, we considered in our model
that the distribution of allele frequency depends upon popu-
lation-specific parameters (M;). Since we defined a parameter
that indicates which allele is selected for, the selected allele
need not to be the same in all the sampled demes. Further-
more, the strength of selection need not to be the same in all
demes. SelEstim therefore accounts for situations where se-
lection is acting in some populations, but not all, possibly in
opposite direction (with alternative alleles being selected for
in different environments). It is therefore particularly rele-
vant to detect the signatures of local adaptation in subdivided
populations.

Not surprisingly, we found that SelEstim has weak statis-
tical power to identify loci under balancing selection (see Fig-
ure 5). Since our genic selection model allows for only positive
selection, this was somewhat expected, but by using a center-
ing distribution we are able, in principle, to identify loci with
support for unusually low values of 6. Beaumont and Balding
(2004) concluded from simulations that their method could
not easily identify loci under balancing selection, even for very
strong selection. Although Foll and Gaggiotti (2008) showed
that microsatellites could be used to detect balancing selec-
tion, especially with data sets containing a large number of
sampled populations, they needed 10 populations with SNPs
to achieve the same rate of detection (Foll and Gaggiotti
2008). In principle, however, it should be possible to scan
for SNPs targeted by balancing selection using a modified
version of our model, in particular Equation 2, that would
account for overdominance with population-specific selec-
tion pressures (see, e.g., Equation 13.60 in Wright 1969,
p. 371). This strategy could be valuable for improving sta-
tistical power to identify loci under balancing selection.

Because our model accounts explicitly for positive selec-
tion, it cannot only be used to detect the genomic signatures
of selection, but also to measure the strength of selection
along the genome. As mentioned above, contrary to pre-
vious approaches that approximated selection as a locus-
specific effect in a logistic regression model (Beaumont and
Balding 2004) or a reduction in effective migration rate
(see, e.g., Bazin et al. 2010), we introduced explicitly
a scaled coefficient of selection ¢;; = 2N;s; for locus j in
deme i, where s; represents the relative gain in fitness
brought by a positively selected allele. We found that the
posterior means of the scaled coefficients of selection o
(conditionally on k;) were close to the simulated value for
positively selected loci, although slightly overestimated (Fig-
ure 6, Figure S14, Figure S15, Figure S16, Figure S17, and
Figure S18). We also found that the variation of ; across
populations with different selection regimes was remarkably
well inferred, with selected loci exhibiting large coefficients
of selection in the colored demes and small coefficients of
selection in uncolored demes (Figure 6, Figure S14, Figure
S15, Figure S16, Figure S17, and Figure S18).

The strong correlation between the posterior mean of the
genome-wide coefficient of selection A and the number of
positively selected loci (Figure S20) would tend to suggest

that the parameter A provides some information about the
extent of selection acting on the genome. This must be nu-
anced, however, at least for two reasons. First, as the number
of positively selected loci increases, the performance of SelEstim
weakens (see Figure S21). Second, we have observed that
the parameter A also depends on demography, and particu-
larly on departures from the island model assumptions (not
shown). This identifiability problem therefore prevents the
comparison of A estimates (to infer the overall effect of selec-
tion) across species with different population structures. We
note that this identifiability problem is somewhat avoided in
BayeScan with the Gaussian prior (zero mean and standard
deviation of 1) put on the locus-specific component «; (which,
therefore, provides no information whatsoever on the extent of
selection acting on the genome).

Application example at the LCT gene

To illustrate how the inference of selection strength may
provide new insights into the characterization of local
adaptation, we investigated the well-studied and clear-cut
example of the evolution of lactase persistence in humans
(see Gerbault et al. 2011, for a review). The region around
the LCT gene that allows lactose tolerance to persist into
adulthood is indeed a very-well-known example of selection
in humans (Sabeti et al. 2006). The first causative polymor-
phism described was the —13910C — T mutation (Enattah
et al. 2002), which lies in the cis-acting regulatory element
located in the 13th intron of a neighboring gene, MCM®6.
Although this single mutation of purported western Eur-
asian origin accounts for much of observed lactase persis-
tence outside Africa, multiple independent mutations in the
same region upstream of the LCT gene have been associated
with this trait in pastoralists from Saudi Arabia (Enattah
et al. 2008) and Africa (Tishkoff et al. 2007). The lactase
persistence allele at the LCT locus lies on a haplotype that is
common in Europeans but that extends largely undisrupted
for >1 Mb, much farther than is typical for an allele of that
frequency (Bersaglieri et al. 2004). More recently, Romero
et al. (2012) found that the —13910C — T mutation also
explains a substantial proportion of lactase persistence in
the Indian subcontinent. Most interestingly, they showed
that the —13910C — T mutation in India is identical by
descent to the European allele and is associated with the
same extended haplotype in both populations, which
strongly suggests that the origin of the —13910C — T mu-
tation is shared in Europe and India. These results are con-
sistent with the high levels of present-day milk consumption
in India and with archeological and genetic evidence for the
independent domestication of cattle in the Indus valley ca.
7000 years ago (Romero et al. 2012).

In agreement with these studies, our analyses pointed to
a very strong signal of positive selection between 3.7 kb and
1.0 Mb upstream of the LCT gene (Figure 8). The strongest
evidence of selection (in terms of KLD) was found for the
two SNPs that are tightly associated with lactase persistence
(—13910C — T and —22018G — A). Building on the fact
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that our model is able to give accurate measures of the
scaled coefficient of selection at each locus in different
demes, we further examined the distribution of the strength
of positive selection at the —13910C — T SNP across the 23
populations analyzed. We found the strongest selection
coefficients in Europe and in the Indus Valley (Figure 9),
which matches the interpolated map of lactase persistence
phenotype frequencies in the Old World (Itan et al. 2010).
More precisely, we found that the coefficients of selection
(o = 2Ns) at the —13910T allele ranged from 8.73 (Sardi-
nians) to 101.66 (Orcadians) in Europe and from 4.94
(Kalash) to 77.50 (Balochi) in Central/South Asia. There
have been previous attempts to measure the strength of
selection acting at the LCT gene, although most of them
relied on strong assumptions on the demographic and adap-
tive history of the studied populations. For example, Aoki
(1986) predicted that a selection coefficient s > 5% would
be necessary to explain the observed allele frequency of the
—13910T allele, assuming that this mutation appeared 6000
years ago in a population of effective size 500, which would
give o = 2Ns = 50. Bersaglieri et al. (2004) estimated the
coefficient of selection s to be 1-15% for a new mutation
arising in a population of effective size of 500-5000. More
recently, Tishkoff et al. (2007) estimated selection intensity
by matching simulated data under a coalescent framework
to the observed centimorgan span and the observed fre-
quency of the allele targeted by selection. They found ex-
tremely recent and strong positive selection in many African
populations (o = 2Ns ranging from 800 to 1940 assuming
an effective population size N of 10,000). Modeling a geo-
graphical structuring of selection pressure by latitude, Gerbault
et al. (2009) found selection coefficients in the range be-
tween 0.8 and 1.8% (Gerbault et al. 2011), also assuming
a carrying capacity of 10,000. However, assuming an effec-
tive population size N of 10,000 may largely overestimate
o = 2Ns (see Tenesa et al. 2007, for more accurate estimates
of effective size based on measures of linkage disequilib-
rium). Last, using a spatially explicit model and approximate
Bayesian computation (Beaumont et al. 2002), Itan et al.
(2009) estimated coefficients of selection to lie in the range
of 5.2-15.9%. The difficulty in comparing these values is
that strong hypotheses about the effective population size
need to be made. It is clear from the stationary density of the
diffusion process in Equation 2 that the two parameters s
and N are not identifiable. Estimating s therefore requires
informative priors on N. Furthermore, the population size
considered in our model is the local effective size of a deme,
not the effective size of the total population. Therefore, con-
sidering the scaled coefficient of selection (o0 = 2Ns) might
be more appropriate for interpreting the variation of the
strength of selection exerted at different loci or at one locus
in different populations.

Perspectives

SelEstim provides a new tool with which to detect signa-
tures of selection from genome-wide scan studies and,
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perhaps most importantly, to infer the intensity of selection
across loci and populations. However, as most Fgr-based
methods aimed at looking for locus-specific effects on Fgr
estimates, SelEstim assumes that molecular markers are in-
dependent from each other. There are few exceptions,
though. For example Guo et al. (2009) introduced a condi-
tional autoregressive model to incorporate the local correla-
tion among SNPs. Gompert and Buerkle (2011) proposed an
extension of the models developed by Beaumont and Balding
(2004), Riebler et al. (2008), and Foll and Gaggiotti (2008),
which incorporates genetic distances among haplotypes
(¢-statistics; see Excoffier et al. 1992) in measures of genetic
differentiation. More recently, Fariello et al. (2013) devel-
oped a haplotype-based method, which uses a multipoint
linkage disequilibrium model (Scheet and Stephens 2006)
that regroups individual chromosomes into local haplotype
clusters. The reconstructed haplotypes are then used to mea-
sure differentiation between populations (see also Browning
and Weir 2010). Handling conditional dependencies of markers
along the genome would therefore be an essential step for-
ward in future developments of SelEstim. In the meantime,
we recommend potential users to view this method as a first
step toward identify genomic regions of interest, which
should then be characterized more specifically in further
studies.
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A. Island model B. Hierarchical island model

C. Stepping-stone model D. Pure drift model

cone JUN

Figure S1 (A) Schematic representation of an island model. The actual data were
simulated with ng = 100 demes, each made of N = 250 diploid individuals (500
genes). Fifty diploid individuals (100 genes) were sampled per deme, in 9 demes. The
migration rate (m = 0.003, plain arrows) was fixed to achieve the desired value of

Fst = 0.24, using equation 6 in Rousset (1996). (B) Schematic representation of a
hierarchical island model. The actual data were simulated with 10 groups of 10
demes, each made of N = 250 diploid individuals (500 genes). Fifty diploid individuals
(100 genes) were sampled per deme, in 3 groups of 3 demes. The migration rate
within (m = 0.017, plain arrows) and among groups (m = 0.0003, dashed arrows)
were fixed to achieve the desired values of Fsc = 0.05, Fcr = 0.05 and Fst = 0.24,
using equations A8—A10 in Excoffier et al. (2009). (C) Schematic representation of a
stepping-stone model. The actual data were simulated with nqy = 100 demes, each
made of N = 250 diploid individuals (500 genes). Fifty diploid individuals (100 genes)
were sampled per deme, in 9 demes.The migration rate was fixed (m = 0.028, plain
arrows), by trial and error, to achieve the desired value of Fst = 0.24. (D) Schematic
representation of a pure drift model. The actual data were simulated with 9 demes,
diverging sequentially as depicted. The sample characteristics (number of individuals,
number of sampled demes) were the same as in (A—C), and the divergence time (24
generations) between any two successive splits was tuned in order to achieve an
overall Fst of = 0.24. In (A-D) 10,000 neutral markers were simulated.
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Figure S2  Analysis of the allele count data from dataset 1. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 1 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 1. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S3  Analysis of the allele count data from dataset 2. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 2 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 2. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S4 Analysis of the allele count data from dataset 3. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 3 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 3. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S5 Analysis of the allele count data from dataset 4. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 4 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 4. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S6 Analysis of the allele count data from dataset 6. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 6 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 6. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S7 Analysis of the allele count data from dataset 7. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 7 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 7. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S8 Analysis of the allele count data from dataset 8. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 8 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 8. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S9 Analysis of the allele count data from dataset 9. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 9 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 9. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S10 Analysis of the allele count data from dataset 10. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 10 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 10. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S11  Analysis of the allele count data from dataset 11. (A) Kullback—Leibler
divergence (KLD) measure between the posterior of §; and its centering distribution
for all simulated loci. Loci under positive selection are depicted in red, loci under
balancing selection in blue, and neutral markers are in grey. (B) Fsr as a function of
the KLD measure for all loci. (C) False positive (neutral loci detected as outliers) and
false negative (selected loci not detected as outliers) rates as a function of the KLD
measure. (D) Relationship between the Bayes factor log;(BF) from the BAYESCAN
analysis of dataset 11 and the KLD. The horizontal lines in (A) and the vertical lines in
(B-D) indicate the KLD thresholds corresponding to the 95%-, the 99%- and the
99.9%-quantile of the of the KLD distribution from the pod analysis of dataset 11. In
(D), the horizontal lines indicate the log;,(BF) = 1, log,,(BF) = 1.5 and log,,(BF) = 2
thresholds, which correspond to “strong”, “very strong”” and “decisive” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S12 (A-D) SELESTIM analysis of the datasets from Figure S1. (E) False positive
rate (neutral loci detected as outliers) as a function of the Kullback—Leibler divergence
(KLD) threshold, for the datasets analyzed in (A—D). (F) False positive rate, as a
function of the quantile probability. For each dataset analysis, pseudo-observed data
(pod) are generated from the joint posterior distribution of the model parameters,
using a rejection-sampling algorithm (see File S2). The pod is then analyzed, using the
same MCMC parameters (number and length of pilot runs, burn-in, chain length,
etc.) as for the analysis of the original data. Each quantile probability defines a KLD
threshold, which is used for model choice between selection and neutrality.

R. Vitalis et al. 13 Sl



A Island model B Hierarchical island model

o | o
2 3
o _| @
3 3
o | e |
- © [
5 5
w < w <
o 7 o 7
o ~
3 3
e | e |
3 ; 3 ;
T f T T T T f T T T
0 1 2 3 4 0 1 2 3 4
logyo(Bayes factor) logyo(Bayes factor)
C Stepping—stone model D Pure drift model
e e
3 3
© o
3 3
© _| o |
= © = ©
% 5
w < w <
o 7 <4
~ ~ |
S 3
o | c |
3 ; 3 ;
T f T T T T f T T T
) 1 2 3 4 0 1 2 3 4
logso(Bayes factor) log;o(Bayes factor)
8
37 — Island model
- — Hierarchical island model
o o —— Stepping-stone model
5] ‘:} 4 ——  Pure drift model
g
N
2
D T ;
g 3 :
g3 :
g = ‘
g :
P ;
ki T T T T T

log;o(Bayes factor)

Figure S13  (A-D) BAYESCAN analyses of the datasets from Figure S1, using prior
odds of 10 for the neutral model. (E) False positive rate as a function of the log;,(BF)
threshold. Vertical lines indicate the log;(BF) = 1, log,4(BF) = 1.5 and log,,(BF) = 2

thresholds, which correspond to “strong”, “very strong”” and ““decisive’” support,
respectively, following Jeffreys’ (1961) scale of evidence.
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Figure S14  Analysis of the allele count data from datasets 1 and 2. (A) Boxplot
representation of the posterior means of the parameters «;; (that indicate which
allele is selected for) for the 1,000 positively selected loci in “blue” demes (1-2),
“red” demes (3—4) and “uncolored’” demes (5-6) in dataset 1. (B) Boxplot
representation of the posterior means of the selection coefficients gj; for positively
selected loci in dataset 1. For “blue” demes, the posterior means of the selection
coefficients o; are conditional upon the “blue” allele being selected for (k; = 0). For
“red” demes, the posterior means of the selection coefficients o are conditional
upon the “red” allele being selected for («; = 1). The horizontal dotted lines indicate
the true value of g;; = 2Nsj; (top) and the prior mean gj; = 1 (bottom). For
“uncolored” demes, the posterior means of the selection coefficients oj; are
unconditional. (C) Idem as (A) for dataset 2. (D) Idem as (B) for dataset 2.
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Figure S15 Analysis of the allele count data from datasets 3 and 4. (A) Boxplot
representation of the posterior means of the parameters «;; (that indicate which
allele is selected for) for the 1,000 positively selected loci in “blue” demes (1-2),
“red” demes (3—4) and “uncolored’” demes (5-6) in dataset 3. (B) Boxplot
representation of the posterior means of the selection coefficients gj; for positively
selected loci in dataset 3. For “blue” demes, the posterior means of the selection
coefficients o; are conditional upon the “blue” allele being selected for (k; = 0). For
“red” demes, the posterior means of the selection coefficients o are conditional
upon the “red” allele being selected for («; = 1). The horizontal dotted lines indicate
the true value of g;; = 2Nsj; (top) and the prior mean gj; = 1 (bottom). For
“uncolored” demes, the posterior means of the selection coefficients oj; are
unconditional. (C) Idem as (A) for dataset 4. (D) Idem as (B) for dataset 4.

16 SI R. Vitalis et al.



3 — T g4 ¢
TT . 1 N ° H °
- @ Do 5 3 :
5 °7 . gl b 40
s o | N I S L | :
) oS © ' ' \ \
€ e 84 ! , : 3
g < | g - X ! ! ' § 8
1] 8 - % o |
8 g_‘i‘_i_ : : & 0 1 ' ' : lj—
b B —— ]
O ] e e -, o 4
e T T T T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6
Sampled demes Sampled demes
C D
o o
S - — — - rs) o o
< 8- -- i s 94 & 3 P, s
s s 3 ' ! s H § °
c ° j °
s o_lg ! ' s 9 1 e 3
] (=} ! o _‘_ o ]
€ £ ' ' ' '
s = | 'LTT s g4 , , ' !
g ° S 3 N N l
gm0 | EEEEC
° N P =]
o B [ e pr
2 I o o 4
e T T T T T T T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6

Sampled demes Sampled demes

Figure S16 Analysis of the allele count data from datasets 6 and 7. (A) Boxplot
representation of the posterior means of the parameters «;; (that indicate which
allele is selected for) for the 1,000 positively selected loci in “blue” demes (1-2),
“red” demes (3—4) and “uncolored’” demes (5-6) in dataset 6. (B) Boxplot
representation of the posterior means of the selection coefficients gj; for positively
selected loci in dataset 6. For “blue” demes, the posterior means of the selection
coefficients o; are conditional upon the “blue” allele being selected for (k; = 0). For
“red” demes, the posterior means of the selection coefficients o are conditional
upon the “red” allele being selected for («; = 1). The horizontal dotted lines indicate
the true value of g;; = 2Nsj; (top) and the prior mean gj; = 1 (bottom). For
“uncolored” demes, the posterior means of the selection coefficients oj; are
unconditional. (C) Idem as (A) for dataset 7. (D) Idem as (B) for dataset 7.
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Figure S17  Analysis of the allele count data from datasets 8 and 9. (A) Boxplot
representation of the posterior means of the parameters «;; (that indicate which
allele is selected for) for the 1,000 positively selected loci in “blue” demes (1-2),
“red” demes (3—4) and “uncolored” demes (5-6) in dataset 8. (B) Boxplot
representation of the posterior means of the selection coefficients gj; for positively
selected loci in dataset 8. For “blue” demes, the posterior means of the selection
coefficients o; are conditional upon the “blue” allele being selected for (k; = 0). For
“red” demes, the posterior means of the selection coefficients o are conditional
upon the “red” allele being selected for («; = 1). The horizontal dotted lines indicate
the true value of g;; = 2Nsj; (top) and the prior mean gj; = 1 (bottom). For
“uncolored” demes, the posterior means of the selection coefficients oj; are
unconditional. (C) Idem as (A) for dataset 9. (D) Idem as (B) for dataset 9.
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Figure S18 Analysis of the allele count data from datasets 10 and 11. (A) Boxplot
representation of the posterior means of the parameters «;; (that indicate which
allele is selected for) for the 1,000 positively selected loci in “blue” demes (1-2),
“red” demes (3—4) and “uncolored’” demes (5-6) in dataset 10. (B) Boxplot
representation of the posterior means of the selection coefficients gj; for positively
selected loci in dataset 10. For “blue”” demes, the posterior means of the selection
coefficients o; are conditional upon the “blue” allele being selected for (k; = 0). For
“red” demes, the posterior means of the selection coefficients o are conditional
upon the “red” allele being selected for («; = 1). The horizontal dotted lines indicate
the true value of g;; = 2Nsj; (top) and the prior mean gj; = 1 (bottom). For
“uncolored” demes, the posterior means of the selection coefficients oj; are
unconditional. (C) Idem as (A) for dataset 11. (D) Idem as (B) for dataset 11.

R. Vitalis et al. 19 SI



e o
- o
o o
g . .
o |
© N
S 7 °
& S
° o | : : : : : S 49 o °
§ o© : : : : : : & 8 .
5} 5} 8 o 8 8
c HEEEEE| N T B B
2 T v I 0 T 0 S o ] ® o
5 34 0 b g 27 | B
@ . . . . . 1 7]
o [=]
o o
S w0 o
:
H . 8 ] S 8
e ° ° ——
o |
T T T T T T e T T T T T T
1 2 3 4 5 6 1 2 3 4 5 6

Sampled demes Sampled demes

Figure S19 Analysis of the allele count data from a simulation of 50,000 neutral
markers. The simulation was performed according to an island model with ny = 50
“uncolored” demes, each made of N = 250 diploid individuals (500 genes). Samples
were collected in six demes (50 individuals per deme). The migration rate was chosen
to achieve the expected value of Fst = 0.15, using equation 6 in Rousset (1996). The
realized value was Fst = 0.153 (multilocus estimate). (A) Boxplot representation of
the posterior means of the parameters kj; (that indicate which allele is selected for)
for the 50,000 neutral markers in “‘uncolored” demes (1-6). (B) Boxplot
representation of the posterior means of the selection coefficients gj; for the 50,000
neutral markers (unconditional on k;;). The horizontal dotted line indicates the prior
mean g; =1
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Figure S20 Posterior distributions (violin plot representation) of the genome-wide
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Figure S21 Receiver operating characteristic (ROC) analysis for the same datasets as
in Figure S17 (from left to right, top to bottom). In the ROC analysis, the proportion
of false positives and true positives is computed for each possible value of the
threshold that is used to classify a locus under selection. For SELESTIM, the classifying
variable was the KLD between the posterior distribution of the locus-specific
coefficient of selection §; and its centering distribution, while in the case of BAYESCAN
it was the Bayes factor.
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Figure S22 (A) BAYESCAN Bayes factor for the CEPH dataset analyses, along
chromosome 2. The alleles -13910T and -22018A associated with lactase persistence
are indicated in red. (B) Joint distribution of BAYESCAN Bayes factor and the
Kullback-Leibler divergence (KLD) measure for all loci in the dataset. Markers in
green have KLD > 3.924, which corresponds to the 99.9%-quantile of the of the KLD
distribution from the pod analysis; markers in blue have KLD > 2.772, which
corresponds to the 99.5%-quantile of the of the KLD distribution from the pod
analysis; markers in red have KLD = 2.324, which corresponds to the 99%-quantile of
the of the KLD distribution from the pod analysis. (C) Joint distribution Fst and
BAYESCAN Bayes factor for all loci in the dataset.
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Table S1 False positive rates using two calibration methods

False positive rate (KLD)

Using McCulloch’s (1989) calibration

Using pseudo-observed data

Dataset o =5% a=1% a=0.1% a=5% a=1% a=0.1%
12 0.002 (1.164) 0.000 (1.959) 0.000 (3.108) 2.764 (0.011) 0.374(0.045) 0.026 (0.211)
13 0.000 (1.164) 0.000 (1.959) 0.000 (3.108) 1.226 (0.016) 0.076 (0.076) 0.004 (0.349)
14 0.016 (1.164) 0.010(1.959) 0.002 (3.108) 3.308 (0.035) 0.514(0.174) 0.048 (0.801)
15 0.008 (1.164) 0.000 (1.959) 0.000 (3.108) 1.880(0.091) 0.164 (0.434) 0.002 (1.520)
16 0.068 (1.164) 0.008 (1.959) 0.000 (3.108) 1.722 (0.247) 0.194 (0.853) 0.008 (2.019)
17 0.140 (1.164) 0.020(1.959) 0.000 (3.108) 1.712 (0.374) 0.186 (1.047) 0.022 (1.942)
18 0.182(1.164) 0.010(1.959) 0.000 (3.108) 1.478 (0.521) 0.178(1.179) 0.010 (1.948)

SelEstim analyses of datasets 12—18. Left-hand side: proportion (%) of markers that were classified as outliers, using the threshold KLD = 1.164, 1.959
and 3.108, which equal the KLD between two Bernoulli distributions corresponding to flipping a fair coin and a biased coin that gives a head with
probability 0.05, 0.01 and 0.001, respectively. Right-hand side: proportion (%) of markers that were classified as outliers, using the calibration based
on pseudo-observed data (pod). For each dataset and each analysis, a rejection sampling algorithm (see File S2) is used to generate a pod from the
joint posterior distribution of the model parameters. The quantiles of the KLD distribution from the pod analysis are then used to calibrate the KLD:
the (1 - a)%-quantile of the KLD distribution from the pod analysis provides a a%-threshold KLD value, which is then used for model choice between
selection and neutrality.

R. Vitalis et al.
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File S1
Details on the componentwise Markov chain Monte Carlo algorithm

Here we provide the computational details for the componentwise Markov chain Monte
Carlo updates. Our aimis to sample from the joint posterior distribution of f(M, 7, k, 0, §, A|n),
which is specified by equation (4) and by the directed acyclic graph (DAG) in Figure 1.
To do so, we use a combination of the Metropolis—Hastings algorithm and the Gibbs
sampler for generating observations from f(M, 7, k, 0,0, A|n) using outputs from a

Markov chain (see, e.g., Gelman et al. 2004).

Each Markov chain is initialized with random values of the parameters drawn from
their prior densities, except for the parameters p, ;, for which the observed frequencies
are used, and the parameters ;S for which the Laplace values are calculated from the
dataset frequencies. The updating sequence is as follows: (i) all Ln; parameters p, ;;
(i) all n 4 parameters M; (iii) all L parameters 7 ;; (iv) the hyperparameter A; (v) all L

hyperparameters 6 (vi) all Ln g parameters o, ;; (vii) all Ln, parameters r, ;. Since

1]1
the full posterior distribution of the model can be decomposed as a product over loci
and over populations (see equation 4), each update only requires the re-computation
of the relevant terms of the distribution f(M, 7, k, 0, 4, A|n). This improves the com-

putational efficiency of the algorithm considerably.

The confluent hypergeometric, or Kummer’s, functions | F (a; b; z) (see, e.g., Abramowitz
and Stegun 1965, p. 504) were computed following a procedure proposed by Pearson

(Pearson 2009), which is based on the power series definition of the function:

‘ N

LFy(a;b; 2) Z (Z— (51.1)

J=0
h_\,—/

J

b

where, for some parameter p, the Pochhammer symbol (p) ; is defined as:

Po=1, (),;=pp+1)(p+j—1), forj=1,2,... (S1.2)

The computation of the terms of the power series in equation (S1.1) can then be car-
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ried out using the following procedure:

Ay =5,=1,
A a+j =z

— A S1.3
J+1 Jb+jj+17 ( )

SJ+1:S]+AJ+17 forj:1,2,...

where Aj represents the (j+ 1)th term of the power series in equation (S1.1), and Sj
represents the sum of the first (j+1) terms. The computation was stopped when both
|[AnI/ISn_1] < 10712 and [An, 1|/|Sn| < 10712, This criterion is equivalent to
truncating the series in equation (S1.1), and requires that two consecutive terms to be

small compared to the sum already computed.

Updating p; ;: The parameters p, ; are updated iteratively in each deme, one locus at
a time. In the ith deme, at locus j, one allele is chosen at random from a Bernoulli
trial with probability 0.5. The new allele frequency p;j is chosen as a random variable

drawn from a uniform distribution around the current value p, ;:
Pij ~ Ulpij —Dpipij +1,). (51.4)

The size of the interval Ap is a constant, which is adjusted during 25 short pilot runs
of 1,000 iterations, in order to get acceptance rates between 0.25 and 0.40 (see, e.g.,
Gilks et al. 1996). Since p, ; is a frequency comprised between 0 and 1, ifpgj is outside
the interval [0, 1], the excess is reflected back into the interval; that is, if p; ; < 0 then
p;; is reset to its absolute value |p;;|, and if p;; > 1 then p;, is reset to 2 — p;..
This proposal is symmetric (Yang 2005). The updated allele frequency pgj is therefore

accepted according to the appropriate Metropolis probability, which reads:

‘(P;JG nij)’(/}(p;j; M;, T Fv'ij»Uz‘j)
0'.

. (51.5)
L(pi i) Y(pizs My, w5, K45,055)
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Equation (S1.5) can be rewritten as

/,g?ij+M737rj_1(1 —p! ,)(nm_mij)qu'i'(l—ﬂ'j)_l
1= ij ij
1/\eXP [sz (ng ng)] miy+Mi7Tj_1(1 B )(nij—mij)Mi+(1—7Tj)—1 s (516)
ij Dij : : :

where p}; = k(1 —p};) + (1 — K;5)p} 5

Updating M, : The parameters M, are updated iteratively, one deme at a time. The
proposed value M is drawn from a lognormal distribution with median equal to the
current value M, i.e.:

q(M; — M;) =

1
My V2r P ( 202,
where v, is the standard deviation on the log scale. The standard deviation v, is
a constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order
to get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule
is asymmetric, a Metropolis—Hastings update is required in which the Metropolis ra-
tio is weighted by the ratio of the forward and reverse proposal densities (which is
sometimes referred to as the ““Hastings term”’: see, e.g., Gelman et al. 2004, p. 291).
This means that when some moves are more likely to happen (because of the asym-
metry of the proposal distribution), their probability of acceptance is decreased pro-
portionately. Here, the ratio ¢(M, — M,)/q(M; — M}) reduces to M /M,. In
order to avoid computational problems with excessively small or large M, values, all
moves falling outside the interval [0.0011, 000] are discarded (i.e., the chain is kept un-
changed). Otherwise, the proposed value M is accepted according to the appropriate
Metropolis—Hastings probability, which is:
12, Uiy M g i) | SO a(M; — 0)

T2 (o3 Moy, 05045)] SO (M — M3)

1A

(51.8)
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Equation (51.8) can be rewritten as

Mﬂ'

1/\[F(Mi)] L Hle F(Mﬂj)r(]\/[ (1—m; )) Fl(MﬂzjaM Uzg)P” (1 _Pij)M’/"(liﬁj)
/ . .
I(M7) Hle D(Mim)D(My(1 — 7)), Fy (M7, 53 M J”)p” (1 = py) M)

(51.9)

Updating 7;: The parameters 7; are updated iteratively, one locus at a time. In the ith
deme, at locus 7, one allele is chosen at random from a Bernoulli trial with probability
0.5. The proposed allele frequency 773. is chosen as a random variable drawn from a
uniform distribution around the current value 7 ;:

wh~U(my—Ap,mi+AL). (51.10)

7 g

The size of the interval A__is a constant, which is adjusted during 25 short pilot runs of
1,000 iterations, in order to get acceptance rates between 0.25 and 0.40. Since ; is
a frequency comprised between 0 and 1, if 779 is outside the interval [0, 1], the excess
is reflected back into the interval; that is, if ﬂ'J < 0 then 7r is reset to its absolute
value |7r9\, and if 7T;~ > 1 then 7r;- is reset to 2 — 773-. This proposal is symmetric, and
the updated allele frequency 7r;- is therefore accepted according to the appropriate

Metropolis probability, which reads:

17, 0pss Mis )i 05)] ()

1A .
{Hnd qu(ngvau'/TJaHzga ’LJ):| f(,/Tj)

(S1.11)

Equation (51.11) can be rewritten as

M,[ﬂ'; (1 — 7

1/\H 1P(M i T 5 )P(Mi(]- _Wj))lFl(Mz ”»M o; )pij 1 _Pij)M"(l 3
M, =, 1—n’

Hl_l (M T )F(Mi(lfﬁg‘)hFl(Mz ”»M 0, )pij J(lfpz‘j)Ml(l 2

(S1.12)

where 7} ; = £, (1 — %) + (1 — K, ;)7
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Updating \: The proposed value of the hyperparameter )\’ is drawn from a lognormal

distribution with median equal to the current value ), i.e.:

_ / 2
GV = — exp ( ln()‘2//\) > , (51.13)
)\/VA vV 2'IT 21/A

where v, is the standard deviation on the log scale. The standard deviation v, is a
constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to
get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is
asymmetric, a Metropolis—Hastings update is required in which the Metropolis ratio
is weighted by the ratio of the forward and reverse proposal densities. This means
that when some moves are more likely to happen (because of the asymmetry of the
proposal distribution), their probability of acceptance is decreased proportionately.
Here, the ratio g(\" — X)/g(A — X’) reduces to A’/X. In order to avoid compu-
tational problems with excessively small or large )\’ values, all moves falling outside
the interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the
proposed value )\ is accepted according to the appropriate Metropolis—Hastings prob-

ability, which is:

T2, 5, W)] SOV IA)a(Y — )

j=1

1A T . (S1.14)
[T, 76,10] FOA)a(x = )
Equation (S1.14) can be rewritten as
L
A L-1 P Zj:l 53' 1

Updating ¢,: The parameters ¢, are updated iteratively, one locus at a time. The
proposed value of the hyperparameters (5;- is drawn from a lognormal distribution with

median equal to the current value § , i.e.:

q(0; — (53)

(51.16)

1 —ln(é}/dj)Q
(S‘/jl/é\/ 271' 2”5
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where v is the standard deviation on the log scale. The standard deviation v is a
constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to
get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is
asymmetric, a Metropolis—Hastings update is required in which the Metropolis ratio
is weighted by the ratio of the forward and reverse proposal densities. This means
that when some moves are more likely to happen (because of the asymmetry of the
proposal distribution), their probability of acceptance is decreased proportionately.
Here, the ratio ¢(6; — 6,)/q(d; — d’;) reduces to &’ /d;. In order to avoid compu-
tational problems with excessively small or large 6j values, all moves falling outside
the interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the
proposed value 5;- is accepted according to the appropriate Metropolis—Hastings prob-

ability, which is:

17, flo03185)] £ INa(); — 6,)
I17, f(o516,)] £5,N)a(3, — o)

T

1A

(51.17)

Equation (51.17) can be rewritten as

ng—1
5\ ° Yooy 1
I = exp [(54 —6,) <1=1 J _ )] (51.18)
(5;) i 5,0 A

Updating 0,4t The parameters 0;;are updated iteratively in each deme, one locus at
atime. In the ith deme, at locus j, the proposed value of the parameters agj is drawn

from a lognormal distribution with median equal to the current value o, ., i.e.:

ij

Q(Uij - U;j) = (51.19)

1 _ln(a';;j/aij)2
s (55)
where v is the standard deviation on the log scale. The standard deviation v, is a
constant, which is adjusted during 25 short pilot runs of 1,000 iterations, in order to
get acceptance rates between 0.25 and 0.40. Because the lognormal jumping rule is
asymmetric, a Metropolis—Hastings update is required in which the Metropolis ratio is

weighted by the ratio of the forward and reverse proposal densities. This means that
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when some moves are more likely to happen (because of the asymmetry of the pro-
posal distribution), their probability of acceptance is decreased proportionately. Here,
the ratio ¢(o; — 0,;)/q(0;; — o7;) reduces to o} ; /0, ;. In order to avoid computa-
tional problems with excessively small or large 054 values, all moves falling outside the
interval [0, 500] are discarded (i.e., the chain is kept unchanged). Otherwise, the pro-

posed value agj is accepted according to the appropriate Metropolis—Hastings proba-

bility, which is:
V(p; M, 7TjaHijaglij)f(glijwj)q(o';j - O';ij). (51.20)
V(055 My, 75, 6,5,0,5) f(0,5105)q(0;; — Uij)

Equation (51.20) can be rewritten as
%4 e [(g/. —0.) (73. S 1)} LIy (M5 My 0) (s1.21)
Oij * “ Y 9, 1F1(Mi7~rij§Mi§U§j)

Updating K;jt The parameters K;j are updated iteratively in each deme, one locus

at a time. In the 7th deme, at locus j, the variable «, ;, which indicates which of the

ijr
two alleles is selected for, is updated using Gibbs sampling based on the conditional

posterior distribution:

f(’%ij|9[fnij]) o PPy 55 My iy K45, 055) f(Ki5), (51.22)

where 0{_ represents all the model parameters but , ;. Since x;; can only take

i
K 7}

two integer values (0 and 1), it can be shown that:

1 exp [0;p;,]
Pr(k;; =0|0;_, 1) < = 127 , (S1.23)
! (=i 2 |y (Mymys My o45)
and
1 exp [Gij(l _pij)]
Pr(k;,; =116;_, 1) x = . (51.24)
/ [=ris] 2 |1 Fy (M, (1 *Wj)§Mi§0ij)
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Therefore, the conditional posterior distribution of (Hij |9[ ) from equation (51.22)

—ﬂi,‘]

can be rewritten as
(Fvijw[—w) ~ Bernoulli (p) (51.25)

where

Pr("%’j = 0|9[—n”])

P =
Pr('%ij = 0|9[_NLJ]) + PI‘(K,I-]- = 1|6[_NLJ])
Fy (M7, : M;;0,)) -
I 11\ T 55 45 045 (1 =2p. . . (S1.26
" 1F1(Mi(1—Wij)?Mi;Uij)exp 735 pia) ( )
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File S2
Details on the algorithm to sample from the inference model

In order to provide a decision criterion for discriminating between neutral and selected
markers, we calibrate the Kullback-Leibler divergence (KLD) using simulations from
a predictive distribution based on the observed data set. To that end, we generate
pseudo-observed data as follows.

We set the hyperparameters M, ; and ) to their respective posterior means Mi,
; and )\, as estimated from the MCMC. Then we draw 6j from an exponential distri-
bution ~ exp(A~!) and we draw o, ; from an exponential distribution ~ exp (6;71).
Last, the parameter Ki;is drawn from a Bernoulli distribution (with parameter the
posterior mean £, ;).

We aim at sampling the allele frequency Pij from the distribution with density
f(p;;) defined by equations 2 and 3 in the main text. Because the cumulative dis-
tribution function of the distribution with density f(p;;) is not tractable, we use a

rejection-sampling algorithm. To that end, we define an instrumental distribution

9(p;;) ~ Beta(M;m;, M;(1 — 7)), with density:

_ L'(M;) Mimg—1
9(piz) = L(M;m;)T(M,; (1 — Wj))pij

(1—p;)Mi=m) =1 (s2.1)

We further need to define a constant v, such that f(p, ;) < [ug(p, ;)] over the support

[0, 1]. Noting that:

.. explo. D :
fpig) _ P(7iPi) (52.2)
g(pij) 1F1(Mz‘7rij§Mi§0ij)
then, if we define u = exp(0, ;) /1 Fy (M;7,;;; M;; 0, ;) we get:
f(pij)
LPis)  xp(o,y(ps; — 1)) (52.3)
UQ(Pij) I

Since 0 < p,; < land o;; > 0, by definition, we have exp(c,,;(p;; — 1)) < 1

and therefore f(p;;) < [ug(p;;)]- A straightforward algorithm to sample from the

distribution with density f(p, ;) is then:
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(1) Sample x from a beta distribution Beta(M, 7 ;, M, (1 —m;)) and y from 2/ (0,1)

(the uniform distribution over the unit interval).

(2) Check whether or not y < f(z)/[ug(x)] or equivalently (see equation $2.3) if

log(y) < 0;;(p;; — 1)
e If this holds, accept 2 and set p, ; = z;

e if not, reject the value of x and repeat the sampling step (1).
(3) Compute p,; = P;;(1 — k) + (1 — D)k,

Finally, we draw the allele counts n; ; in the ith deme at the jth locus by arandom draw
from the binomial distribution ~ B(n, ;, p; ;). We repeat this procedure for each locus
jin each demei.
This algorithm is computationally efficient, since it avoids computing ; Iy (M, 7, ;; M;; 0, ;)

(see equations 2 and 3 in the main text). However, the efficiency of the algorithm may
be very low for large values of o, ;. This is so because the expected number of iter-
ations required until an x is successfully generated is exactly the bounding constant
u = exp(0,;)/1F (M;7;;; M;;0,,;). Therefore, to avoid the algorithm getting stuck
in very long loops, we adopt an alternative strategy whenever u > 10%: in such case,
we draw z from a beta distribution Beta(c, ) with the same first two moments as

the target distribution (equations 2 and 3 in the main text). Little algebra shows that:

a=mq(my —my)/(m? —my)and 3= a(l/m; — 1), where

— 1y (M7, + 15 M + 15045) (52.4)
! * 1F1(Mz‘7~rij%Mi;Jij)
and
2 * M; +1 1F1(Miﬁ'ij§Mi§Uz’j)
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