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It is commonly believed that information spreads between individuals like a pathogen, with each exposure
by an informed friend potentially resulting in a naive individual becoming infected. However, empirical
studies of social media suggest that individual response to repeated exposure to information is far more
complex. As a proxy for intervention experiments, we compare user responses to multiple exposures on two
different social media sites, Twitter and Digg. We show that the position of exposing messages on the
user-interface strongly affects social contagion. Accounting for this visibility significantly simplifies the
dynamics of social contagion. The likelihood an individual will spread information increases monotonically
with exposure, while explicit feedback about how many friends have previously spread it increases the
likelihood of a response. We provide a framework for unifying information visibility, divided attention, and
explicit social feedback to predict the temporal dynamics of user behavior.

S
ocial media has revolutionized how people create and consume information. Unlike the broadcasts of
traditional media, which are passively consumed, social media depends on users to deliberately propagate
the information they receive to their social contacts. This process, called social contagion, can amplify the

spread of information in a social network. Understanding the mechanics of social contagion is crucial to many
applications: creating viral marketing campaigns, evaluating the quality of information, and predicting how far it
will spread. While the spread of information is often likened to an infectious disease1–4, social contagion differs in
that social media users actively seek out information and consciously decide to propagate it. Because of the
constraints of available time and cognitive resources, the ease of discovery will significantly affect information’s
propensity to go viral5,6. The enormous flux of available social media content often saturates user’s ability to
process information. In most studies of information propagation on networks, users are considered exposed if
they received a message, regardless of whether they see it or not, which can lead to counterintuitive results
suggesting that additional exposures inhibit response7,8. In reality, of a user seeing a message depends on how
the website arranges content, the flux of incoming information, and the effort the user is willing to expend in
discovering information. By accounting for these factors, we demonstrate that social contagion is quite simple and
people’s responses can be accurately predicted.

From a theoretical perspective, one of the simplest and most widely studied models of social contagion is the
independent cascade model (ICM)1–4,9,10. The ICM-class of models assume that each exposure of a healthy (naive)
person by an infected (informed) friend leads to an independent chance of information transmission. Therefore,
the probability that a healthy individual becomes infected increases monotonically with the number of exposures,
potentially causing a global epidemic involving a substantial fraction of the population11,12. However, studies of
information spread in social media have identified social behaviors that qualitatively differ from predictions of the
ICM. For example, when measuring how people respond to their friends’ use of certain memes or recommenda-
tions for news articles, repeated exposure initially increases infection probability, but eventually exposure appears
to be inhibitory7,8, violating the central assumptions of the ICM. A number of explanations have been offered for
this aberration, including complex contagion13–15. In complex contagion, the probability to adopt a behavior, or
an idea, varies with the extent of exposure, suggesting that social phenomena may drive response and interact
non-trivially with network structure16–18. An alternative explanation invokes the linear threshold model, in which
the proportion of friends (past a certain threshold) adopting a behavior determines contagion2,19,20. Among other
factors thought to affect social contagion are the novelty21 or persistence7 of information, and competition with
other information6. The role of cognitive constraints in online social interactions has not been widely examined,
although one study of Twitter demonstrated that people limit themselves to approximately 150 conversation
partners22, a number similar to the bound on human social group size23.

To compare how visibility and social factors contribute to contagion, we collected data from two online social
networks: Digg and Twitter. The microblogging service Twitter allows registered users to broadcast short mes-
sages, called tweets, to their followers. A message may contain a URL to external web content. In addition to
posting a new message, a user can also retweet an existing message, analogous to forwarding an email. Twitter
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users create social links by following other users. Each link is direc-
ted: we refer to the followed user as the friend, and the following user
as the follower. Upon visiting Twitter, a user is presented with a list
containing tweets made by friends, with the most recent tweet (or
retweet) at the top.

Social news aggregator Digg leverages opinions of its users to help
people discover interesting news stories. Users submit URLs to news
stories and vote for, or digg, stories submitted by others. Users can
follow the activity of others. The social user-interface on Digg shows
a user a stream of stories his or her friends recently submitted or
voted for. The stream is ordered chronologically by time of earliest
recommendation (submission or vote) by a friend, with the most
recent newly-recommended story at the top. When a user votes for
a story, the recommendation is broadcast to a user’s followers.
However, additional recommendations do not change the story’s
relative position in the user’s default social stream. Instead, a badge
appears next to the story showing how many friends have recom-
mended it. When the story receives enough votes, Digg promotes it to
its front page. However, before promotion, it can be found through
friends’ recommendations or on the newly submitted stories list,
which at the time of data collection was receiving tens of thousands
of new submissions daily.

We use techniques, originating from non-equilibrium statistical
physics, to analyze user behavior on these sites. Our approach
enables us to separate the factors of social contagion that are attrib-
utable to the visibility of information (i.e., how easily it can be dis-
covered in the user interface of each site) from the factors attributable
to social influence. After accounting for these factors, social con-
tagion becomes quite simple: each exposure increases the likelihood
of a response, and social signals about the number of friends who
have previously adopted the information (when such signals are
provided by the web site) further amplify response. We demonstrate
that we are able to accurately forecast an individual’s behavior in real-
time on both sites.

Results
Using URLs as markers, we study the spread of information through
the follower graphs of Digg and Twitter. A user may be exposed
multiple times by friends to a URL. The exposure response function
gives the probability of an infection as a function of the number of
such exposures. An exposure is defined to occur when a message
containing the URL arrives in the user’s stream, even if the user does
not consciously see it. When aggregated over all users, both Twitter
and Digg exposure response functions suggest complex contagion7:
while initial exposures increase infection probability, further expo-
sures appear to saturate (Twitter) or suppress (Digg) further infec-
tion (Fig. 1a). Aggregated exposure response obscures heterogeneous
behavior, because it conflates the response of users with different

cognitive loads, i.e., different quantities of information in their
stream. A large volume of incoming information, which scales with
the number of friends a user follows as n1:14

f , reduces the user’s ability
to find any specific message24,25. The likelihood a user will find a
message containing the URL depends on nf, denoted P nf

� �
5.

However, disaggregating only partially ameliorates complications
due to underlying heterogeneity; although plotting infection as a
function of the fraction of friends adopting the URL on Twitter dis-
plays remarkable consistence between user groups (Fig. 2 in5), a
similar plot using Digg data (Fig. 1b) suggests the contradictory
and confusing result that even small increases in exposure dramat-
ically suppress infection. Although a linear threshold model may be
consistent with Fig. 1a, neither the ICM nor linear threshold model
can simultaneously account for observed trends on Twitter and Digg.

To resolve this contradiction, consider the process of infection on
each site. To become infected, a user must first discover at least one
message containing the URL. The likelihood the user will see a spe-
cific message depends on its position in the user’s stream. We use
‘visibility’ to refer to this quantity. A new message starts at the top of
the queue, where it is more likely to be seen because users usually start
browsing from the top of a page26. With time, newer messages push it
down the queue, where a user is less likely to see it27,28. We approx-
imate a message’s dynamic visibility using the time response function,
T Dt, nf

� �
, the probability that a user with nf friends retweets or votes

at a time Dt after the exposure5. We plot T Dt, nf
� �

for Digg and
Twitter in Fig. 2a and 2b, respectively, demonstrating that the visibil-
ity of a new message decays rapidly in time. Digg stories were only
followed until promotion, which occurs at most 24 hours after
appearing on Digg. The data are smoothed using progressively wider
smoothing windows, as in5.

A model describing user response to multiple exposures must
consider the visibility of each exposure. In addition, a website’s use
of any social signals — for example, displaying the number of friends
who recommended the URL — may alter user response, given that
they have found the URL. The probability that a user with nf friends
will be infected after ne exposures is

P t; ne, nf
� �

~
Xne

n~1

F nð ÞVn t, t1, . . . , tnef g; nf
� �

, ð1Þ

where Vn() is the probability of finding n of the ne exposures occur-
ring at the times t1, . . . , tne , and F(n) is the social enhancement
factor accounting for the user observing that n of their friends have
recommended the story. Note that this formalism averages out con-
tent-specific factors and variable weights that a user may ascribe to
different friends.

The particular functional form of Vn depends on details of the
website user-interface. On Twitter, all messages start at the top of

Figure 1 | The exposure response functions for Twitter and Digg, (a) as a function of total number of votes for the URL a user receives in their
information stream, and (b) as a function of the fraction of friends adopting story, for Digg only. The equivalent results for Twitter can be found in5.
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the stream. By scanning the stream, a user can discover each message
independently, so any of the exposures can result in an infection.
This behavior is well approximated by the probability of becoming
infected by at least one exposure (see Supplement), given by

PTw t; nf , ne
� �

~P0F neð Þ 1{P
ne

i~1
1{P nf

� �
T Dti, nf
� �� �� �

zvmin,ð2Þ

where vmin is the effective minimum visibility of a message in the
Twitter interface, the proportionality P0 is fitted by minimizing
weighted mean absolute percent (WMAP), as described in the
Methods, and ne is the number of exposures to the URL at time t.
Underlying activity rates and cultural norms vary from site to site, so
P0 can be interpreted as a task-specific scale factor. The constant vmin

is due to the ability to discover the URL outside the social media site
or via other interfaces.

We calculate P nf

� �
by measuring the average probability of

retweeting the URL for users who were exposed only once. The
average is taken over all users with nf friends, as described in5,25.
The time response function T Dt,nf

� �
describes the visibility after

Dt seconds since exposure. Specifically, it is the probability that a user
with nf friends retweets/votes at the indicated interval Dt after a
URL’s arrival, given that the user votes on that URL.

The Digg user-interface differs from Twitter in that messages are
by default ordered by the time of their first appearance in the user’s
stream. Additional votes do not alter its position but are reflected in a
badge next to the URL showing the number of friends, ne, who voted
for the URL. The badge provides a social signal, which may alter user
response. Because of the user-interface, Eq. (1) reduces to

PDigg t; nf ,ne
� �

~F’ neð Þ P’0P’ nf
� �
T ’ Dt,nf
� �

zv’min
� �

, ð3Þ

where Dt is the time elapsed from the first vote by a friend, and the
primes indicate Digg specific values for each quantity. We empir-
ically determined F9(ne) using a maximum likelihood estimate,
described in the Methods. Social feedback in Digg results in large
amplification of the probability of infection, shown in Fig. 3c. This
could have multiple origins, including endorsement by friends29, or
from the increased visibility of the URL via alternative ways of dis-
covering it on Digg, such as sorting URLs by popularity.

To validate the proposed model of social contagion, we forecast
user activity and compare it to observed activity. Specifically, we
calculate the observed frequency that a user with nf friends
retweeted a URL in our Twitter dataset or voted for one in the
Digg dataset in the subsequent 30 seconds. Then, using Eq. (2) or
Eq. (3), we calculate the theoretical probability that a user with
that many friends would act in those 30 seconds, given the same
exposures. Data were divided into a test set and training set.
Parameters were estimated on the training set. Results are shown

from the test set. Plotting the predicted versus observed probabil-
ities allows us to graphically assess the accuracy of the contagion
model. Unbiased forecasts lie along the unit-slope line. The fore-
casted responses on Twitter (Fig. 4b) and Digg (Fig. 4d) have a
WMAP error of 0.5% and 1.5%, respectively. Ignoring social
enhancement, and thereby utilizing ICM, produces systematically
biased results, shown in Figs. 4a and 4c. Without this social
enhancement, Twitter and Digg have WMAP error of 0.7% and
12.2%, respectively. Although we do not know the specific cause
of this difference, we may surmise that it is due primarily to the
explicit social feedback present on Digg but absent on Twitter. It
appears users on Twitter adopted content based primarily on ease
of discovery (visibility). Additionally, a model not incorporating
visibility decay could not account for variations in user-interface,
i.e., Eqs. (2) and (3).

The unbiased fidelity of the proposed model suggests that once
visibility of the exposures is taken into account, social contagion
operates as a simple contagion, i.e., with infection probability
increasing monotonically with the number of exposures. Complex
contagion, where ‘‘network effects,’’ appear to play a significant role
in the contagion process, may to a large extent be due to the com-
bined factors of visibility and direct social enhancement factors.
Moreover, by comparing two different websites with very different
user-interfaces, we have demonstrated that it is possible to isolate the
factors in social contagion due to social feedback and the user-inter-
face, without directly manipulating the underlying social network or
user-interface29,30.

Rapid visibility decay, combined with decreased susceptibility of
highly connected users, explains why information in social media
fails to spread as widely as predicted by the generic ICM8. Although
different types of information may spread according to slightly dif-
ferent patterns31,32 our analysis is content agnostic, so the reported
results are the population average. Explicit social feedback can sig-
nificantly magnify user response, albeit making it less useful for
popularizing high-quality content33. Unlike Digg, the Twitter user-
interface offered no explicit social feedback (beyond trending topics).
Users may remember seeing a friend’s recommendation of the URL,
a factor that could explain the slight social enhancement seen in
Twitter response in Fig. 3a. When explicit social feedback is available,
as in Digg, Fig. 3d shows that users appear to weigh their actions
based on the fraction of friends endorsing a URL instead of consider-
ing the absolute number.

Discussion
We show that there are important and surprising differences between
the diffusion of information and a disease stemming from cognitive
limitations for processing information. In pathogenic contagion34,
people with more incoming contacts are more likely to contract a

Figure 2 | The time response functions for (a) Digg and (b) Twitter for different user classes.
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disease, but in social contagion such people are less likely to become
infected: because the volume of information scales with the number
of friends a user follows, highly connected users are less likely to
notice a particular piece of information, and they require stronger
social signals to act (Fig. 3d), on average, than poorly connected
users5,25. These highly connected users dominate the high-exposure
portion of the average exposure response function (Fig. 1), giving the
false impression that more exposures may be counter-productive.
Granted, highly connected users tend to be infected earlier35 and also
to have more followers24, increasing their influence once they are
infected17,35. Users in a tightly connected core of friends may be
repeatedly exposed to information, and the present work demon-
strates how the combination of social enhancement and awareness
contribute to the observed behavior of users in high k-cores particip-
ating in larger cascades17.

By comparing the dynamics of two different websites, we have
demonstrated that it is possible to isolate factors in social contagion
due to social feedback and the user-interface, without manipulating
the underlying social network or user-interface16,29,30. Moreover, the

unbiased fidelity of our model suggests that once visibility of the
exposures is taken into account, social contagion operates as a simple
contagion, i.e., with infection probability increasing monotonically
with the number of exposures. Although our forecasts are only for
action within the subsequent 30 seconds, the present work shows that
this near-term likelihood can vary by over a factor of 10,000.
Although longer periods could be forecast, intervening events, such
as receiving additional messages, would invalidate the initial condi-
tions of the forecast. This could be corrected by utilizing higher-order
models accounting for the probability of additional messages being
received during the forecast window.

Our work highlights how cognitive constraints impact digital con-
tent sharing activities. Humans have developed large brains, partly to
handle the mental demands of social life36,37, but constraints imposed
by our brain’s finite information processing bandwidth affect social
behavior, for example, by limiting maximum group size23. Our pre-
sent results suggest cognitive constraints also affect how individuals
utilize information in their dynamic social media streams. Attentive
acts, such as browsing a website and reading tweets, require energy;

Figure 3 | The social enhancement factors for Twitter and Digg. (a,c) Averaged over all users, (b,d) Calculated for sub-populations based on nf. The

decay in the social enhancement factor for Twitter can be attributed to residual spam in the dataset.
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because the brain’s capacity for mental effort is limited by its energy
requirements, so is our attention38. This will reduce responsiveness
under conditions of high information load, making explicit social
feedback essential for determining the allocation of cognitive
resources. Thus, social contagion will be highly dependent on explicit
social feedback and the user-interface.

Implicit in our work is the utilization of Big Data as a microscope:
we uncover behavioral mechanisms and even the difference between
user interfaces. Regardless of the social synergy desired by the web-
site, information discovery costs appear to be an important factor in
determining accuracy of activity forecasts. The site’s design choice
regarding its visibility policy will largely determine the quality of the
user experience regarding information discovery and spread. Digg
does not refresh the position of information after each recommenda-
tion, and the social signals it uses do not compensate for the loss of
visibility it suffers over time. Although the current work provides
techniques for real-time forecasting of the average user behavior on a
specific website, understanding the emergence of globe-spanning
viral content will require accounting for the interaction of the

dynamic visibility and social synergy across a multitude of websites
and media outlets.

Methods
Data sources. We used Twitter’s Gardenhose API to collect tweets over three weeks in
Fall of 2010. We retained tweets containing a URL in the message body. We used
Twitter’s search API to retrieve all tweets containing those URLs, ensuring the
complete tweeting history of all URLs, resulting in 3 million tweets in total. We also
collected the friend and follower information for all tweeting users, resulting in a
social graph with almost 700 K nodes and over 36 M edges. We removed URLs whose
retweeting behavior exhibits patterns associated with spam or automatic activity39,
leaving us a data set containing 2 K distinct URL’s retweeted a total of 213 K times.
We use time stamps in tweet metadata combined with the follower graph to track
when users are exposed to URLs by a friend and when they retweet them. We define a
retweet to be anytime a user tweets a URL that had previously appeared in her Twitter
feed. We did not resolve link-shorteners, so different URLs might map to identical
content, but we considered each URL to be a unique marker of information. After
removing spam URLs, we only consider events where users received a particular URL
less than 30 times, to further eliminate likely spam URLs.

We used the Digg API to collect data about 3.5 K stories promoted to the front page
in June 2009 and the times at which 140 K distinct users voted for these stories. We
also collected information about voters’ friends, giving us a social graph with 280 K

Figure 4 | Forecasting accuracy for Twitter and Digg.
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users and 1.7 M links. For the present analysis, unless noted otherwise we consider
only the voting dynamics occurring before promotion to the front page, so the
primary means of information propagation is through the friends interface. Both
datasets were divided into training and test sets to rule-out over-fitting in determining
the correct interpretation of the data.

To calculate probabilities of response to multiple exposures, the data was broken
down into separate time series, each corresponding to the arrival of specific URL-
containing tweets or votes into a single user’s stream. For each series, at every one-
second interval we calculate the quantity we define as ‘visibility’ of the URL:

Vall t,nf
� �

~1{P
d

1{T t{ti,nf
� �� �

, or ð4Þ

Vfirst t,nf
� �

~T t{t0,nf
� �

, ð5Þ

where nf is the number of friends of the user, T Dt,nf
� �

is the time response function
for a user with nf friends. Vall is proportional to the probability of finding any one of
the received messages at time t, while Vfirst is proportional to the probability of finding
only the first message.

Data analysis. We calculate P nf
� �

by measuring the average probability of
retweeting the URL for users who were exposed once and only once to it. The average
is taken over all users with nf friends, as described in5,25. The time response function
T Dti,nf
� �

describes the visibility of a message since exposure at ti. This is given by
probability, shown in Fig. 2, that a user with nf friends will retweet a time Dti after the
exposure, given that retweeting occurred.

The time response function, T Dt,nf
� �

is produced by calculating, using the
observed data, the probability that a user retweets/votes at the indicated interval
Dt after a URL’s arrival, given that the user votes on that URL. For Twitter data we
calculate the time response function only for those events in which a user received
the URL once and only once. For Digg, this constraint is lifted, because there are
too few such events in the Digg data. The precise time response function depends
on nf, because users with many friends receive new messages at a higher rate,
causing the visibility of any specific message to decay more quickly5. We lack
sufficient data to precisely calculate the time response function for each nf.
Instead, we calculated the time response function for users with nf 5 1–2, nf 5

9–11, and nf 5 90–110, producing T 1, T 10, and T 100, respectively, following the
procedure in5. To estimate the time response function for arbitrary nf, we inter-
polated as follows:

w1: nf {1
� �2

z10{6
� �{1

w10: nf {10
� �2

z10{6
� �{1

w100: nf {100
� �2

z10{6
� �{1

for Twitter, or

w100: nf {100
�� ��z10{6
� �{1

for Digg

T Dt,nf
� �

~
w1T 1 Dtð Þzw10T 10 Dtð Þzw100T 100 Dtð Þ

w1zw10zw100
:

ð6Þ

To produce the fits for vmin and P0, we plot the theoretical probability versus the
observed probability for an event observed in the data, i.e. forming a function
O(p), where p is the calculated probability. That is, no numerical simulations were
used, but event timings and the follower network were taken directly from the
observed data. We isolated the events corresponding to a receiving a single
message, leading to a subset of predictions denoted O1(p). We then minimize the
weighted mean absolute percent error (WMAP)40,

P0O1 pð Þzvmin{pj j=ph i ð7Þ

by searching over P0 and vmin. For Digg, we have P0 5 667, log(vmin) 5 219. An
analytical form for P nf

� �
was determined by fitting to minimize RMS error of the

empirically determined P nf
� �

5, giving Digg’s P’ nf
� �

~A
	

eBnf zC
� �

nf zD
� ��

nf zE
� �

Þ, where A 5 7.6 ? 1023, B 5 26.2 ? 1022, C 5 1.7 ? 1023, D 5 3.7, E 5

17.8. For Twitter we have P0 5 16.6 and log(vmin) 5 214, and we used

P nf
� �

~AnP
f

.
nf zB
� �

, where A 5 0.3, P 5 0.16, C 5 0.55. Note the E was

chosen by minimizing WMAP error simultaneously with fitting P0 and vmin on the
training data, i.e. E’s purpose is to correct for sparsity in the empirically calculated
P nf
� �

for Digg.
To calculate the social enhancement factors, we carry out the MLE for F(ne) in the

following manner. We take as axiomatic the true probability of a response given ne

exposures is F(ne)P(u), where u parameterizes the underlying visibility. Thus, given
N(u) observed events for a specific u, the likelihood, ,, of observing Nr(u) responses is

determined by the binomial distribution ‘ u,neð Þ~ N uð Þ
Nr uð Þ


 �
F neð ÞP uð Þð ÞNr uð Þ

1{F neð ÞP uð Þð ÞN uð Þ{Nr uð Þ. The total log-likelihood of observing the curve One uð Þ is
thus

L neð Þ~
X

u

log
N uð Þ

Nr uð Þ

 !

zNr uð Þ(log F neð Þzlog P uð ÞÞ

z N uð Þ{Nr uð Þð Þ log 1{F neð ÞP uð Þð Þ:

ð8Þ

For each value of ne, we find the value of F(ne) that maximizesL neð Þ. First, for ne 5 1,
we define F(1) 5 1, so we obtain the MLE for P(u) using

L
LP uð Þ L 1ð Þ~ Nr uð Þ

P uð Þ {
N uð Þ{Nr uð Þ

1{P uð Þ ~0, ð9Þ

giving P(u) 5 Nr(u)/N(u). Then, for ne . 1, we are left to find the likelihood max-
imizing F(ne) given P(u), leading to

L
LF neð Þ

L neð Þ~
X

u

Nr uð Þ
F neð Þ

{ N uð Þ{Nr uð Þð Þ P uð Þ
1{F neð ÞP uð Þ : ð10Þ

Numerically solving for
L

LF neð Þ
L neð Þ~0 provides the MLE for F(ne).

The minimum possible observed probability is bounded by the number of observed
events. In the forecasting predictions, the friend-cohort breakdown in Fig. 4 appears
to deviate from the observed probabilities at very high and low predicted probabilities.
However, this is due to the minimum probability floor rising beyond the predicted
5observed line, because events with high visibility and high social influence or very
low visibility are less common.
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