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Abstract
AIM: To investigate the metabolic changes in skeletal 
muscle and/or adipose tissue in glucagon-like peptide-
1-induced improvement of nonalcoholic fatty liver dis-
ease (NAFLD).

METHODS: Male Wistar rats were fed either a control 
diet (control group) or a high-fat diet (HFD). After 4 
wk, the HFD-fed rats were subdivided into two groups; 
one group was injected with exenatide [HFD-Ex(+) 
group] and the other with saline [HFD-Ex(-) group] 
every day for 12 wk. The control group received saline 
and were fed a control diet. Changes in weight gain, 
energy intake, and oxygen consumption were ana-
lyzed. Glucose tolerance tests were performed after 8 

wk of treatment. Histological assessments were per-
formed in liver and adipose tissue. RNA expression lev-
els of lipid metabolism related genes were evaluated in 
liver, skeletal muscle, and adipose tissue.

RESULTS: Exenatide attenuated weight gain [HFD-
Ex(-) vs  HFD-Ex(+)] and reduced energy intake, which 
was accompanied by an increase in oxygen consump-
tion and a decrease in the respiratory exchange ratio 
[HFD-Ex(-) vs  HFD-Ex(+)]. However, exenatide did 
not affect glucose tolerance. Exenatide reduced lipid 
content in the liver and adipose tissue. Exenatide did 
not affect the expression of lipid metabolism-related 
genes in the liver or skeletal muscle. In adipose tis-
sue, exenatide significantly upregulated lipolytic genes, 
including hormone-sensitive lipase, carnitine palmito-
yltransferase-1, long-chain acyl-CoA dehydrogenase, 
and acyl-CoA oxidase 1 [HFD-Ex(-) vs  HFD-Ex(+)]. 
Exenatide also upregulated catalase and superoxide 
dismutase 2 [HFD-Ex(-) vs  HFD-Ex(+)].

CONCLUSION: In addition to reducing appetite, en-
hanced lipid use by exenatide in adipose tissue may 
reduce hepatic lipid content in NAFLD, most likely by 
decreasing lipid influx into the liver.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: Glucagon-like peptide-1 (GLP-1) is reported 
to improve nonalcoholic fatty liver disease (NAFLD), 
mainly via  direct action on the liver. However, organs 
other than the liver may also be involved in regula-
tion of hepatic lipid contents. In this study, we found 
significant upregulation of lipolytic genes in adipose 
tissue in exenatide-treated NAFLD rats. Up-regulation 
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of catalase, superoxide dismutase and mitochondrial 
morphological regulators was observed in adipose tis-
sue. These metabolic changes were accompanied by 
increased oxygen consumption and decreased respira-
tory exchange ratio. Taken together, enhanced lipid 
use by GLP-1 in adipose tissue may play an important 
role in the improvement of NAFLD.
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INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is considered 
a hepatic manifestation of  metabolic syndrome. The 
significant increase in the prevalence of  NAFLD in the 
general population indicates that NAFLD is a burgeon-
ing problem[1]. NAFLD is a chronic liver disease that is 
characterized by steatosis that is histologically similar to 
that in alcoholic liver injury, without excessive alcoholic 
intake or hepatitis viral infection[2,3]. Nonalcoholic steato-
hepatitis, a severe stage of  NAFLD, frequently progress-
es into liver cirrhosis and hepatocellular carcinoma[4-6]. 
Body weight reduction and control of  complicated 
diabetes are essential to improve NAFLD[7,8]. However, 
the attempts to restrict food intake and increase physical 
exercise are often insufficient to treat NAFLD[9]. 

Glucagon-like peptide-1 (GLP-1), an incretin hormone 
produced by intestinal L cells, is an effective therapeutic 
agent for type 2 diabetes mellitus[10,11]. GLP-1 regulates 
plasma glucose levels by promoting insulin secretion and 
inhibiting glucagon secretion in a glucose-dependent 
manner[12,13]. Exenatide is a GLP-1 receptor agonist, 
sharing 53% sequence homology with GLP-1[14,15]. Ex-
enatide has a longer half-life and enhanced potency 
compared with GLP-1 because it is less susceptible to 
degradation by dipeptidyl pepdidase-4[16].

GLP-1 may also be able to treat obesity by controlling 
gastrointestinal motility, which may suppress appetite 
and promote satiety[17,18]. GLP-1 was also reported to re-
duce hepatic steatosis in animal models of  NAFLD[19-22]. 
Although the mechanism underlying this effect of  
GLP-1 is not completely understood, earlier studies 
suggested that GLP-1 had direct effects on the liver by 
improving hepatic insulin sensitivity[19,20] and enhancing 
lipid hydrolysis and oxidation[21-23]. Because the GLP-1 
receptor is expressed in many organs, including the 
brain, heart, kidney, stomach, liver, muscle, and adipose 
tissue[12,24], GLP-1 may reduce hepatic lipid accumulation 
via extrahepatic pathways. In particular, skeletal muscle 
and adipose tissue are potential targets for GLP-1. Fatty 
acid influx into the liver is affected by the extent of  fatty 

acid oxidation in skeletal muscle, as well as triglyceride 
storage and hydrolysis in adipose tissue. Therefore, 
changes in lipid metabolic activities in these tissues 
should reduce hepatic lipid content.

We hypothesized that GLP-1 would affect lipid me-
tabolism in skeletal muscle and/or adipose tissue, leading 
to the reduction of  lipid influx into the liver, resulting 
in the suppression of  hepatic lipid accumulation. In the 
present study, we show that exenatide enhanced triglyc-
eride hydrolysis and fatty acid oxidation in adipose tissue 
during the improvement of  hepatic steatosis in a high-fat 
diet (HFD)-induced rat model of  NAFLD. Additionally, 
upregulation of  mitochondrial morphologic regulators 
was observed in adipose tissue. Exenatide increased the 
systemic energy expenditure and decreased the respira-
tory exchange ratio (RER). Collectively, the enhancing 
effects of  exenatide (and hence GLP-1) on lipid use in 
adipose tissue may play a role in the improvement of  he-
patic steatosis in NAFLD.

MATERIALS AND METHODS
Animals
Four-week-old male Wistar rats weighing 80 g were pur-
chased from Japan SLC (Hamamatsu, Japan). Rats were 
maintained under standard conditions with a 12-h light/
dark cycle. All studies were performed in accordance 
with the Guide for the Care and Use of  Laboratory Ani-
mals (National Institutes of  Health) and were approved 
by the Animal Care Committee of  Kyushu University. 
The rats were divided into two groups and fed a control 
diet (n = 8; control group) or an HFD diet (n = 16). The 
control diet (3.73 kcal/g) comprised 20.8% protein, 4.8% 
fat, and 58.2% carbohydrate. The HFD (5.06 kcal/g) 
comprised 18.2% protein, 62.2% fat, and 19.6% carbo-
hydrate. Following 4 wk of  feeding, HFD-fed rats were 
subdivided into two groups (n = 8 per group) and intra-
peritoneally injected with either 10 μg/kg body weight 
exenatide [Eli Lilly, Indianapolis, IN, United States; 
HFD-Ex(+) group] or saline [HFD-Ex(-) group] every 
day for 12 wk. Rats in the control group were injected 
with saline and fed a control diet. Body weight was mea-
sured every 4 wk. Starting from week 6 of  feeding (week 
2 of  exenatide/saline injection), daily food consumption 
in each cage (2 rats) was measured every 2 wk for 6 wk 
and averaged levels of  energy intakes were calculated. 
At week 16 of  feeding (week 12 of  injections), rats were 
sacrificed after an overnight fast, and the liver, gastroc-
nemius muscle, and epididymal white adipose tissues 
were removed.

Indirect calorimetry
At week 12 of  feeding (week 8 of  injections), oxygen 
consumption (VO2, mL/kg/h) and RER were deter-
mined in the HFD-Ex(-) group and HFD-Ex(+) group 
(n = 4 per group) using an Oxymax indirect calorimeter 
(Columbus Instrument, Columbus, OH, United States). 
After 3 d of  acclimation, VO2 and RER were measured 
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every 4 min for 24 h. The rats were kept in a stable en-
vironment with a temperature of  25 ℃, 12-h light/dark 
cycle, and airflow of  2 L/min. RER was calculated as the 
ratio of  the volume of  CO2 produced to O2 consumed.

Histological analysis
The liver and epididymal adipose tissue samples were 
fixed in 10% formalin and embedded in paraffin. Se-
rial sections (5 μm thick) were cut from each block. 
Histological features were evaluated after staining sec-
tions with hematoxylin and eosin. The numbers of  lipid 
droplets in liver tissue sections and the diameters of  
adipocytes in adipose tissue sections were determined 
using BIOREVO BZ9000 and BZ Ⅱ (Keyence, Osaka, 
Japan). The numbers of  hepatic lipid droplets per unit 
area (/mm2) and the diameters in 100 adipocytes were 
evaluated in five animals from each group.

Reverse transcription-polymerase chain reaction
Total RNA was prepared from all tissues using TRIzol 
reagent (Invitrogen, Carlsbad, CA, United States) and 
cDNA was synthesized from 1.0 μg of  RNA by Gene-
Amp RNA polymerase chain reaction (PCR) (Applied 
Biosystems, Hammonton, NJ, United States) with ran-
dom hexamers. Real-time PCR was performed using 
LightCycler FastStart DNA Master SYBR Green Ⅰ  
(Roche, Basel, Switzerland). The reaction mixture (20 μL) 
contained Master SYBR Green Ⅰ, 4 mmol/L MgCl2, 0.5 
μmol/L of  the upstream and downstream PCR primers, 
and 2 μL of  first-strand cDNA as a template. To control 
for variations in reactions, all PCR data were normal-
ized against glyceraldehyde 3-phosphate dehydrogenase 
expression. The primer sequences used in this study are 
listed in Table 1.

Glucose tolerance test
At week 12 of  feeding (week 8 of  injections), intraperi-
toneal glucose tolerance tests (IPGTTs) were performed 
in the HFD-Ex(-) group and HFD-Ex(+) group. After 
a 14-h fast, the rats were injected with glucose solution 
(2 g/kg body weight) and serum glucose levels were 
measured before (0 min) and at 15, 30, 60, 90, and 120 
min after glucose injection using a portable glucometer 
(Lifescan, Bucks, United Kingdom).

Immunoblotting
Adipose tissue samples (250 mg) were homogenized 
in 1 mL of  lysis buffer (25 mmol/L Tris-HCl pH 7.6, 
150 mmol/L NaCl, 1% NP-40, 1% sodium deoxycho-
late, 0.1% sodium dodecyl sulfate). The lysates were 
centrifuged at 8050 g for 20 min. The upper lipid phase 
was discarded and the lower aqueous phase was re-
centrifuged under the same conditions. The supernatant 
was collected and loaded onto Mini-Protean TGX gels 
(Bio-Rad, Hercules, CA, United States) and transferred 
onto polyvinylidene difluoride membranes. After block-
ing the membranes with 5% albumin, immunoblotting 
analyses were performed using antibodies raised against 
AMP-activated protein kinase (AMPK), phosphorylated 
AMPK (P-AMPK; Cell Signaling Technology, Beverly, 
MA, United States), and β-actin (Santa Cruz Biotechnol-
ogy, Dallas, TX, United States).

Statistical analysis
All results are expressed as the means ± SD. Statistical 
analyses were performed using JMP v. 8.01 (SAS Insti-
tute, Cary, NC, United States). The differences of  means 
were tested by Tukey-Kramer test (among 3 groups) or 
Kruskal-Wallis test (between 2 groups) to identify signifi-
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Table 1  Primer sequences

Gene Forward Reverse

SREBP1c GGAGCCATGGATTGCACATT AGGAAGGCTTCCAGAGAGGA
FAS CTAGGTGGCTTTGGCCTGGA CGAACGTGCTTGGCTTGGTA
ACC1 GTTCTGTTGGACAACGCCTTCA GTCGCAGAAGCAGCCCATTAC
LPL GTGACCAGGGACATGTGACTTTG CTTGTACTTCGTTGTGGTGGGACTA
HSL TTGCCTACTGCTGGGCTGTC GACACGGTGATGCAGAGGTTC
ApoB TAGCATGCTTGCTGACATAAATGGA ATGGAGCTGCCGGAGGTAATC
CPT-1 CTGCCAGTTCCATTAAGCCACA CAGCTATGCAGCCTTTGACTACCA
LCAD AAGGCCTGCTTGGCATCAAC CAGGGCCTGTGCAATTTGAGTA
ACOX1 GGCCGCTATGATGGAAATGTG GGGCTTCAAGTGCTTGTGGTAA
Catalase GAACATTGCCAACCACCTGAAAG GTAGTCAGGGTGGACGTCAGTGAA
SOD2 GACTAGGCCACAGGGCATTCA ACTCAGAAACCCGTTTGCCTCTAC
TNF TGGCCCAGACCCTCACACTC CTCCTGGTATGAAGTGGCAAATC
MCP1 TCACCAGCAGCAGGTGTCCCAAAGA ACAGAAGTGCTTGAGGTGGTTGTGG
Mfn1 CCTTGTACATCGATTCCTGGGTTC CCTGGGCTGCATTATCTGGTG
Mfn2 TCAGCCCGAGTACACCTACAGAGA TGAGGGCCAAATGCAAGACA
Opa1 ATGCTCGCTATCACTGCCAAC CGTTTGCCAGTAAGCAATTTAACC
Dnm1 ATGCCTGTGGGCTAATGAACAA GTCTCGCGATACAGCGGAAG
GAPDH GGCACAGTCAAGGCTGAGAATG ATGGTGGTGAAGACGCCAGTA

SREBP1c: Sterol regulatory element-binding protein-1; FAS: Fatty acid synthase; ACC1: Acetyl-CoA carboxylase 1; LPL: Lipoprotein lipase; HSL: Hormone-
sensitive lipase; ApoB: Apolipoprotein B; CPT1: Carnitine palmitoyltransferase-1; LCAD: Long-chain acyl-CoA dehydrogenase; ACOX1: Acyl-CoA oxi-
dase-1; SOD2: Superoxide dismutase 2; TNF: Tumor necrosis factor; MCP1: Monocyte chemotactic protein-1; Mfn1: Mitofusin 1; Mfn2: Mitofusin 2; Opa1: 
Optic atrophy-1; Dnm1: Dynamin-1; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase.
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cance. Values of  P < 0.05 were considered statistically 
significant.

RESULTS
Exenatide attenuated weight gain and increased oxygen 
consumption
No apparent differences in weight gain were observed 
among the three groups after 4 wk of  feeding the exper-
imental diets. After this time, body weight gain was gen-
erally suppressed in rats treated with exenatide, whereas 
the body weight of  rats in the control and HFD-Ex(-) 
groups continued to increase. At 16 wk, the body weight 
of  rats in the HFD-Ex(+) group was significantly lower 
than that of  the control and HFD-Ex(-) group (376 ± 
36 g vs 587 ± 27 g and 376 ± 36 g vs 655 ± 81 g, respec-
tively, P < 0.05) (Figure 1A). To assess the effects of  ex-
enatide on food intake, we measured energy intake (kcal/
day per body) between weeks 6 and 12 of  the feeding 
protocol. Energy intake was lower in the HFD-Ex(+) 
group than in the other groups throughout this time 
(Figure 1B). Using indirect calorimetry, we determined 
systemic energy consumption and RER in the HFD-
Ex(-) and HFD-Ex(+) groups at week 12 of  feeding. In-
direct calorimetry revealed that oxygen consumption was 
significantly greater in the HFD-Ex(+) group than in the 
HFD-Ex(-) group (1269 ± 67 mL/kg/h vs 1114 ± 97 
mL/kg/h, P < 0.05), and this increase was predominant 
during the dark cycle (Figure 2A). RER was significantly 
lower in the HFD-Ex(+) group than in the HFD-Ex(-) 
group (0.748 ± 0.02 vs 0.791 ± 0.01, P < 0.05) (Figure 
2B). These findings indicate that exenatide enhanced sys-
temic energy consumption by increasing lipid oxidation.

Exenatide reduced lipid accumulation in the liver and 
adipose tissue
Lipid accumulation in the liver and epididymal white 
adipose tissue was histologically analyzed at week 16 of  
feeding. Although marked accumulation of  lipid drop-
lets was observed in the livers of  the HFD-Ex(-) group, 
the number of  hepatic lipid droplets was significantly 

decreased in the HFD-Ex(+) group compared with the 
HFD-Ex(-) group (Figure 3A, C). In adipose tissue, the 
adipocytes were frequently enlarged in the HFD-Ex(-) 
group, reflecting lipid accumulation. However, enlarged 
adipocytes were not observed in the HFD-Ex(+) or con-
trol groups (Figure 3B). Furthermore, the mean diameter 
of  adipocytes in the HFD-Ex(+) group was similar to 
that in the control group and was significantly smaller in 
both groups than in the HFD-Ex(-) group (Figure 3D).

Effects of exenatide on the expressions of genes 
involved in lipid metabolism in the liver and skeletal 
muscle
Because exenatide increased oxygen consumption, de-
creased RER, and decreased lipid accumulation in the 
liver and adipose tissue, we hypothesized that exenatide 
altered lipid metabolic activities, including triglyceride 
hydrolysis and lipid oxidation. To confirm this hypoth-
esis, we determined the expression of  lipid metabolism-
associated genes in the liver, skeletal muscle, and adipose 
tissue. In liver, we found that the expression levels of  
sterol regulatory element-binding protein-1c (SREBP1c), 
fatty acid synthase (FAS), acetyl-CoA carboxylase-1 
(ACC1), hormone-sensitive lipase (HSL), and apolipo-
protein B (ApoB) were not significantly different among 
the three groups [HFD-Ex(-) vs HFD-Ex(+); 2.20 ± 1.29 
vs 0.91 ± 0.57, 1.37 ± 0.51 vs 1.15 ± 0.68, 1.03 ± 0.29 vs 
1.03 ± 0.29, 1.61 ± 0.69 vs 1.27 ± 0.21, and 0.99 ± 0.29 
vs 0.89 ± 0.15, respectively, P > 0.05] (Figure 4A). Addi-
tionally, exenatide did not affect the expression of  carni-
tine palmitoyltransferase-1 (CPT1), long-chain acyl-CoA 
dehydrogenase (LCAD), or acyl-CoA oxidase 1 (ACOX1) 
[HFD-Ex(-) vs HFD-Ex(+); 1.06 ± 0.50 vs 0.95 ± 0.39, 
1.11 ± 0.41 vs 0.83 ± 0.21, and 0.85 ± 0.14 vs 0.74 ± 0.25, 
respectively, P > 0.05]. In skeletal muscle, the expression 
of  lipoprotein lipase (LPL) was significantly increased 
in the HFD-Ex(+) group compared with the control 
group [control vs HFD-Ex(+); 1 ± 0.60 vs 5.48 ± 4.47, 
P < 0.05] but not compared with the HFD-Ex(-) group 
[HFD-Ex(-) vs HFD-Ex(+); 3.24 ± 2.19 vs 5.48 ± 4.47, 
P > 0.05]. As in the liver, exenatide did not affect the 
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expression of  HSL, CPT1, LCAD, or ACOX1 in skeletal 
muscle [HFD-Ex(-) vs HFD-Ex(+); 1.44 ± 0.65 vs 1.87 
± 0.88, 1.26 ± 0.51 vs 1.53 ± 0.63, 2.15 ± 0.78 vs 1.88 ± 
0.77, and 1.40 ± 0.33 vs 1.32 ± 0.61, respectively, P > 0.05] 
(Figure 4B). These results imply that exenatide improves 
hepatic steatosis without affecting lipid metabolism in 
the liver or skeletal muscle, except for a potential in-
crease in triglyceride hydrolysis in skeletal muscle.

Exenatide upregulated genes involved in triglyceride 
hydrolysis and fatty acid oxidation in adipose tissue
In adipose tissue, exenatide significantly increased the 
expression of  HSL in the HFD-Ex(+) group compared 
with the control and HFD-Ex(-) groups [HFD-Ex(-) 
vs HFD-Ex(+); 0.98 ± 0.37 vs 1.61 ± 0.42, P < 0.05] 
(Figure 5A). The expression of  LPL was also increased 
in the HFD-Ex(+) group, albeit not significantly. In 
terms of  genes involved in mitochondrial β oxidation 
of  fatty acids, the expression levels of  CPT1, LCAD, 
and ACOX1 were significantly increased in the HFD-
Ex(+) group compared with the control and HFD-Ex(-) 
groups [HFD-Ex(-) vs HFD-Ex(+); 1.04 ± 0.27 vs 1.88 
± 0.97, 1.26 ± 0.23 vs 2.52 ± 1.00, and 1.58 ± 0.45 vs 2.41 
± 0.85, respectively, P < 0.05], suggesting that exenatide 
enhanced lipid oxidation in adipose tissue.

Enhanced lipid oxidation results in the accumulation 
of  intracellular reactive oxygen species (ROS), which 
induces the cellular response to eliminate this harmful 

by-product[25-27]. Therefore, we determined the adipose 
tissue expression levels of  catalase and superoxide dis-
mutase (SOD)2 and found that they were significantly 
greater in the HFD-Ex(+) group than in the control and 
HFD-Ex(-) groups [HFD-Ex(-) vs HFD-Ex(+); 1.12 ± 
0.29 vs 2.37 ± 0.66 and 0.99 ± 0.21 vs 1.49 ± 0.23, re-
spectively, P < 0.05] (Figure 5B).

Because macrophage infiltration into adipose tissue 
plays an important role in the development of  insulin 
resistance[28-30], we determined the expression levels of  
tumor necrosis factor and monocyte chemotactic pro-
tein 1. However, the expression levels of  these genes 
were not significantly different among the three groups 
[HFD-Ex(-) vs HFD-Ex(+); 1.01 ± 0.40 vs 1.27 ± 0.30 
and 0.90 ± 0.41 vs 0.76 ± 0.49, respectively, P > 0.05], 
which suggests that the metabolic changes in adipose 
tissues induced by exenatide did not involve macrophage 
activation (Figure 5B).

Effects of exenatide on mitochondrial morphologic 
regulators in adipose tissue
In response to changes in the nutritional environment, 
mitochondria can change their morphology through 
two coordinated processes, fusion and fission, which are 
transcriptionally regulated by a group of  genes[31,32]. In 
this group, mitofusin-1 (Mfn1) and mitofusin-2 (Mfn2) 
regulate mitochondrial fusion of  the outer membrane 
and are believed to play a role in intracellular lipid con-

2657 March 14, 2014|Volume 20|Issue 10|WJG|www.wjgnet.com

HFD-Ex(-)

HFD-Ex(+)

0.90

0.85

0.80

0.75

0.70

0.65

0.60

Re
sp

ira
to

ry
 e

xc
ha

ng
e 

ra
tio

 (
R
ER

)

11   13   15   17   19    21   23    1   3    5     7

Dark cycle

1800

1600

1400

1200

1000

800

600

O
xy

ge
n 

co
ns

um
pt

io
n 

(m
L/

kg
 p

er
 h

ou
r)

11  13   15  17   19  21  23    1    3    5    7

Dark cycle

1400

1350

1300

1250

1200

1150

1100

1050

1000

O
xy

ge
n 

co
ns

um
pt

io
n 

(m
L/

kg
 p

er
 h

ou
r)

HFD-Ex(-) HFD-Ex(+)

a

0.81
0.80
0.79
0.78
0.77
0.76
0.75
0.74
0.73
0.72

HFD-Ex(-) HFD-Ex(+)

a

Re
sp

ira
to

ry
 e

xc
ha

ng
e 

ra
tio

 
(R

ER
)

A

B

Figure 2  Oxygen consumption and respiratory exchange ratio evaluated by indirect calorimetry in the high-fat diet-Ex(+) and high-fat diet-Ex(-) groups at 
week 12 of feeding. A: Oxygen consumption was significantly greater in the high-fat diet (HFD)-Ex(+) group than in the HFD-Ex(-) group, particularly during the dark 
cycle; B: Respiratory exchange ratio (RER) was significantly lower in the HFD-Ex(+) group than in the HFD-Ex(-) group. n = 4. aP < 0.05 between groups.

t /d

t /d

Tanaka K et al . Lipolysis by GLP-1 improves NAFLD

HFD-Ex(-)

HFD-Ex(+)



sumption[33]. In addition, optic atrophy-1 (Opa1) regu-
lates the fusion of  the inner membrane while dynamin-1 
(Dnm1) regulates mitochondrial fission and is involved 
in intracellular lipid accumulation[33]. Therefore, to deter-
mine whether the induction of  lipid oxidation in adipose 
tissue is accompanied by changes in mitochondrial mor-
phologic regulation, we determined the expression levels 
of  these regulators. Notably, the expression levels of  
Mfn1, Mfn2, and Opa1 were significantly greater in the 
HFD-Ex(+) group than in the control and HFD-Ex(-) 
group [HFD-Ex(-) vs HFD-Ex(+); 1.13 ± 0.17 vs 2.08 ± 
0.40, 0.99 ± 0.28 vs 1.76 ± 0.50, and 1.08 ± 0.19 vs 1.76 
± 0.30, respectively, P < 0.05] (Figure 6). Additionally, 
the expression of  Dnm1 was significantly greater in the 

HFD-Ex(+) group than in the control group [control 
vs HFD-Ex(+); 1 ± 0.50 vs 1.58 ± 0.27, P < 0.05], but 
was not significantly greater than that in the HFD-Ex(-) 
group [HFD-Ex(-) vs HFD-Ex(+); 1.28 ± 0.23 vs 1.58 
± 0.27, P > 0.05]. These findings indicate that exenatide 
not only induces lipid consumption or accumulation, but 
also that it might regulate mitochondrial reorganization 
of  adipose tissue, most likely reflecting increased use of  
intracellular lipid.

Exenatide had limited effects on glucose tolerance
This NAFLD model was based on nondiabetic, wild-
type rats to minimize the effects of  exenatide on diabe-
tes control. However, improvement in hepatic lipid accu-
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Figure 3  Histological evaluation of lipid accumulation in the liver and adipose tissue. A: Numerous hepatocytes containing lipid droplets were observed in the 
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Tanaka K et al . Lipolysis by GLP-1 improves NAFLD



mulation might be due to an improvement in glucose in-
tolerance, which occasionally develops in obese animals. 
Thus, we performed IPGTTs in rats in the HFD-Ex(-) 
and HFD-Ex(+) groups. Interestingly, fasting plasma 
glucose levels were slightly higher in the HFD-Ex(-) 
group than in the HFD-Ex(+) group, but no significant 
differences were observed at 15, 30, 60, 90, or 120 min 
after glucose injection (Figure 7). The nondiabetic pro-
files and the similar responses in both groups suggest 
that the effects of  exenatide on lipid metabolism are un-
likely to be due to improvements in glucose intolerance.

Adipose tissue AMPK is not activated by exenatide
Following an increase in intracellular AMP, AMPK plays 
an essential role in the consumption of  intracellular 
lipid by suppressing fatty acid synthesis and stimulating 
fatty acid oxidation[34]. To determine whether AMPK 
activation was involved in the effects of  exenatide, we 
determined the protein expression of  total AMPK and 
P-AMPK in adipose tissue. As shown in Figure 8, there 
were no obvious differences in AMPK or P-AMPK lev-
els among the three groups.

DISCUSSION
The mechanism by which GLP-1 and its analogs im-
prove hepatic steatosis is still not fully understood, al-
though changes in hepatic lipid metabolism are thought 
to be involved in these effects[20-23]. Because hepatic lipid 
content is determined by intrahepatic lipogenesis and 
lipolysis, as well as the extent of  fatty acid influx into the 
liver, changes in lipid use in skeletal muscle and adipose 
tissue may contribute to hepatic lipid metabolism. Thus, 
we investigated the effects of  exenatide, a GLP-1 re-
ceptor agonist, on lipid metabolism in the liver, skeletal 
muscle, and adipose tissue. To minimize the effects of  
exenatide on glycemic control in the diabetic state, we 
used a nondiabetic, HFD-induced rat NAFLD model. 
Exenatide reduced lipid accumulation in the liver and in 
adipose tissue and decreased the size of  adipocytes. The 
reduction of  body weight gain by exenatide was accom-
panied by a significant reduction in food intake. Using 
indirect calorimetry, we showed that exenatide increased 
oxygen consumption and reduced the RER. These find-
ings suggest that reduced food intake and increased 
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Figure 4  Effects of glucagon-like peptide-1 on the expression levels of genes associated with lipid metabolism in the liver and skeletal muscle. A: In the 
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energy consumption, most likely through increased lipid 
use, contribute to the exenatide-induced reduction in 
systemic lipid accumulation. We then determined the ex-
pression levels of  lipid metabolism-related genes in the 
liver, skeletal muscle, and adipose tissue. Surprisingly, the 
hepatic expression levels of  lipogenic genes (SREBP1c, 
FAS, and ACC1) and lipolytic genes (HSL, CPT1, 
LCAD, and ACOX1) were unaffected by exenatide. The 
expression of  ApoB was also unaffected. These results 
are inconsistent with those of  previous reports, which 
revealed that GLP-1 and its analogs directly modulate 
hepatic lipid metabolism[20,23,35,36]. Because these findings 
were mainly observed in diabetic animals or in cultured 
hepatocytes, we speculated that organs other than the 
liver might be more sensitive to GLP-1 or its analogs 
in the nondiabetic state, resulting in the absence of  a 
hepatic response. In skeletal muscle, exenatide did not 
affect the expression levels of  HSL, CPT1, LCAD, or 
ACOX1, but LPL expression was significantly higher in 
the HFD-Ex(+) group compared with the control, but 
not compared with the HFD-Ex(-) group, which sug-
gests that lipid consumption is not increased in skeletal 
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muscle. However, lipolytic genes were upregulated by ex-
enatide in adipose tissue. Notably, the expression levels 
of  HSL, CPT1, LCAD, and ACOX1 were significantly 
greater in the HFD-Ex(+) group than in the control and 
HFD-Ex(-) groups. To evaluate whether these changes 
were associated with changes in nutrient oxidation, we 
analyzed the expression levels of  catalase and SOD2, 
which are responsible for eliminating ROS produced 
during oxidative phosphorylation[37,38]. We showed that 
exenatide significantly upregulated the expression of  
both enzymes. Therefore, exenatide seemed to promote 
nutrient oxidation, especially of  lipid, in adipose tis-
sue. To analyze the effects of  exenatide on lipid use, we 
determined the expression levels of  genes regulating 
mitochondrial morphology, which responds to changes 
in the nutritional environment[33,39,40]. In particular, intra-
cellular lipid content is greatly affected by the correlation 
between mitochondrial fusion and fission[31,32]. In this 
study, we showed that exenatide significantly upregulated 
the expression levels of  Mfn1, Mfn2, and Opa1, which 
regulate mitochondrial fusion and promote the con-
sumption of  intracellular lipid[31,32]. Taken together, our 
observations suggest that exenatide enhanced lipid use 
in adipose tissue, which contributed to the improvement 
in hepatic steatosis, most likely by reducing lipid influx 
into the liver.

The mechanisms by which GLP-1 modulates lipid 
use in adipose tissue are largely unknown. The GLP-1 
receptor has been detected in 3T3-L1 adipocytes and in 
human adipose tissue[24,41,42], and GLP-1 was reported to 
stimulate lipolysis in a receptor-dependent manner[42]. 
These findings suggest that exenatide enhances lipid 
use by signaling via the GLP-1 receptor in adipocytes. 
Another mechanism may involve activation of  the sym-
pathetic nervous system. It was reported that treatment 
with a dipeptidyl peptidase 4 inhibitor increased lipolysis 
in adipose tissues, and this was associated with elevated 
plasma norepinephrine levels[43]. Furthermore, intracere-
broventricular infusion of  GLP-1 decreased lipid storage 
in white adipose tissue in a manner that was partially 
mediated via sympathetic nerve activation[44]. These find-
ings are consistent with our observation that exenatide 
enhanced adipose tissue expression of  HSL, which is 
activated by the sympathetic nervous system via the 
cAMP-dependent pathway[45,46]. Not only white adipose 
tissue, but also brown adipose tissue might be involved 
in the actions of  GLP-1 observed in this study. Recently, 
Lockie et al[47] reported that intracerebroventricular injec-
tion of  GLP-1 induced thermogenesis in brown adipose 
tissue, accompanied with increased activity of  innervated 
sympathetic fibers. Taken together, we hypothesize that 
GLP-1 enhances lipid utility in both the adipose tis-
sues, lipolysis in white adipose tissue and thermogenesis 
in brown adipose tissue, leading to increased energy 
consumption, resulting in the improvement of  hepatic 
steatosis. However, the precise roles of  these adipose tis-
sues need further investigation.

In conclusion, this study showed that reduced food 

intake and enhanced lipid use by exenatide in adipose 
tissue contributed to an improvement in hepatic ste-
atosis in a rat model of  HFD-induced NAFLD. The 
mechanism by which exenatide (and therefore GLP-1) 
modulates lipid metabolism in adipose tissue should be 
investigated further.

COMMENTS
Background
Nonalcoholic fatty liver disease (NAFLD) is considered a hepatic manifestation 
of metabolic syndrome. Recently, with the prevalence of metabolic syndrome, 
NAFLD-patients are increasing. If untreated, NAFLD or nonalcoholic steato-
hepatitis (NASH), a severe stage of NAFLD, frequently progresses into liver 
cirrhosis and hepatocellular carcinoma. Body weight reduction and control of 
complicated diabetes are essential to improve NAFLD. However, attempts to 
restrict food intake and increase physical exercise are often insufficient to treat 
NAFLD.
Research frontiers
Glucagon-like peptide-1 (GLP-1) was reported to reduce hepatic steatosis in 
animal models of NAFLD. In addition to suppressing appetite, direct action of 
GLP-1 on the liver is reported to enhance hepatic lipolysis to prevent lipid accu-
mulation. Because GLP-1 receptor distributes widely in various tissues, authors 
supposed that organs other than the liver might also be involved in the regula-
tion of hepatic lipid contents. In this study using a rat model of NAFLD, authors 
evaluated the changes in lipid metabolism induced by GLP-1 treatment in liver, 
skeletal muscle, and adipose tissue.
Innovations and breakthrough
In the high-fat diet (HFD)-induced NAFLD model, GLP-1 treatment reduced lipid 
accumulations in liver and adipose tissues. Authors found that increased ex-
pressions of genes were involved in lipolysis and lipid oxidation in adipose tis-
sue, but not in the liver or skeletal muscle. In adipose tissue, GLP-1 significantly 
upregulated catalase, superoxide dismutase 2, and mitochondrial morphologi-
cal regulators. Because the improvement of hepatic steatosis by GLP-1 was 
accompanied with increased energy expenditure and decreased respiratory 
exchange ratio, enhanced lipid utility by GLP-1 in adipose tissue may reduce 
lipid influx into the liver, resulting in the reduction of hepatic lipid accumulation.
Application
In this study, authors show that GLP-1 improves hepatic steatosis in the HFD-
induced nondiabetic NAFLD model, which seems to be mediated by enhanced 
lipolysis with increased systemic energy expenditure. These actions of GLP-1 
would be ideal for the treatment of human disease of NAFLD, with or without 
diabetes.
Terminology
NAFLD is a chronic liver disease that is characterized by steatosis that is 
histologically similar to that in alcoholic liver injury, without excessive alcoholic 
intake or hepatitis viral infection. NASH, a severe stage of NAFLD, frequently 
progresses into liver cirrhosis and hepatocellular carcinoma. GLP-1, an incretin 
hormone produced by intestinal L cells, is an effective therapeutic agent for 
type 2 diabetes mellitus but is immediately degraded by dipeptidyl peptidase-4 
(DPP4). Exenatide, a GLP-1 receptor agonist, has a longer half-life and en-
hanced potency compared with GLP-1 because it is less susceptible to degra-
dation by DPP4.
Peer review
The authors focused on a different point, i.e., adipose tissue to elucidate the 
mechanism of improving NAFLD by GLP-1. This unique study related the 
enhanced lipid metabolism of adipose tissue by GLP-1 with improvement of 
NAFLD.
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