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The evolution of conspicuous sexually selected traits, such as horns or antlers,

has fascinated biologists for more than a century. Elaborate traits can only

evolve if they substantially increase reproduction, because they probably

incur survival costs to the bearer. Total selection on these traits, however,

includes sexual selection on sires and viability selection on offspring and can

be influenced by changes in each of these components. Non-random associ-

ations between paternal phenotype and offspring viability may thus affect

total selection on sexually selected traits. Long-term data on wild bighorn

sheep (Ovis canadensis) provide the first evidence in nature that association

between paternal phenotype and lamb viability strengthens total selection on

horn size of adult rams, a sexually selected trait. The association of paternal

horn length and offspring viability was sexually antagonistic: long-horned

males sired sons with high viability but daughters of low viability. These results

shed new light on the evolutionary dynamics of an iconic sexually selected trait

and have important implications for sustainable wildlife management.

1. Introduction
Fitness, the currency of evolution, can be empirically measured by the number

of sexually mature offspring produced. Offspring survival to recruitment is

therefore a critical component of parental fitness. Selection on offspring viabi-

lity could strengthen sexual selection if offspring of males with more

elaborated sexually selected traits had above-average survival. Conversely,

decreased offspring viability as a function of paternal sexually selected traits

could counterbalance sexual selection. Father–offspring phenotypic resem-

blance through genetic or non-genetic inheritance [1] may influence offspring

fitness [2]. Identifying how paternal phenotype may be related to offspring via-

bility is thus critical to understand the evolutionary dynamics of sexually

selected traits. This is further underlined by a recent debate on how total selec-

tion on sexually selected traits in the wild may respond to ecological factors for

example predation on offspring [3].

To investigate how the relationship between paternal phenotype and offspring

viability influenced total selection on sexually selected traits, we used long-term

data from wild bighorn sheep on Ram Mountain, Canada. In this polygynous

mammal, rams with large horns achieve high rates of paternity. We used

regression-based selection analyses to examine how successive selective events on

mating success and offspring viability affected sexual and total selection [4] on

paternal horn length and body mass. We had three objectives. First, we tested the

hypothesis that offspring viability varied with paternal horn length and body
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mass. Second, we investigated whether the association between

paternal phenotype and offspring viability varied according to

offspring sex. Finally, to assess how viability selection affected

total selection, we quantified selection on paternal traits over suc-

cessive selective episodes by considering the number of lambs

produced, weaned and recruited to 1 year.
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Figure 1. Bighorn lamb survival from September to May and paternal standar-
dized horn length at Ram Mountain, Canada, 1988 – 1992 and 1996 – 2011. The
grey and black solid lines are predictions of the model in table 1, respectively,
for female and male lambs. Grey dots and black diamonds are data points for
female and male offspring, respectively.
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2. Material and methods
(a) Animals and population
Bighorn sheep displays strong sexual size dimorphism and males

are under sexual selection [5]. Sheep on Ram Mountain have

been monitored since 1971 and caught in a corral trap baited

with salt. Body mass (kg) and horn length (cm) were measured

at each capture. Most sheep are first caught as lambs and their

exact age is known [6]. Lamb tissue samples are genotyped to

assess male reproductive success. Paternities of lambs that die

before capture are unknown. Lamb survival is evaluated via

repeated censuses from May to September. We considered that

a lamb survived to weaning if it was alive in September, and

to 1 year if it was seen the following May. As the resighting prob-

ability is nearly one [6], survival estimates are very accurate. The

main survival selective event for lambs occurred during winter

[7]. We used 21 years of data from 1988 to 1992 and 1996 to

2011, when DNA samples were collected and paternity assigned.

(b) Paternity assignment
Samples genotyped at 26 microsatellite loci [8] resolved 229

paternities among 61 candidate fathers aged 2 years and older,

assigned with 95% confidence in CERVUS [9]. We excluded

lambs conceived from 1993 to 1995 because samples were not

collected in 1994–1996.

(c) Selection analyses
We estimated standardized selection differentials i on both horn

length and body mass following [4] as : i ¼ cov(trait,fitness),

where trait was annually standardized to zero mean and unit

variance, and fitness was the relative annual fitness obtained by

dividing individual absolute fitness by annual mean fitness.

The strength of linear selection was estimated by selection differ-

entials obtained by regressing standardized phenotypic traits

against relative fitness [4]. We used three proxies of fitness:

(i) breeding success, the number of offspring sampled; (ii) weaning

success, the number of offspring surviving to late September and

(iii) recruitment, the number of offspring that survived to 1 year.

We pooled all years to estimate the selection differentials on horn

length and body mass for each fitness proxy. The standardization

of individual horn length and body mass allowed a comparison

of selection differentials. We performed a Z-test for each compari-

son of selection differentials. Z-scores were calculated as

Z ¼ (bi � bj)/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s.e.2i + s.e.2j

q
, where b and s.e. were, respectively,

the selection differential and their associated standard errors

calculated for two different fitness proxies. A Z-score higher than

1.96 indicates a significant difference in a two-tailed test ( p ,

0.05). According to [10], the contribution of offspring viability to

total selection was calculated as (ir � ibs or ws)/ir, where the selec-

tion differential i was calculated via breeding success (ibs) or

weaning success (iws) and recruitment (ir).

(d) Association between paternal phenotype
and offspring viability

To evaluate whether paternal traits affect offspring viability, we

modelled lamb survival to 1 year as a function of annually
standardized paternal horn length or body mass, using separate

generalized linear mixed effect models with a binomial error dis-

tribution and a logit link. These models also included the effects

of lamb sex and an interaction between lamb sex and annually

standardized paternal horn length or paternal body mass, lamb

mass in September, population density, father’s age, annually

standardized maternal mass gain during summer and mother’s

age. Lamb mass in September affects survival over winter [11].

Standardized maternal mass gain during summer was inter-

preted as the ability of mothers to cope with environmental

conditions and the energy costs of lactation. All continuous

explanatory variables were scaled to zero mean and unit var-

iance to allow comparison of their effect sizes. We also

included year of birth, and mother and father identity as

random variables to account for non-independence of offspring

born from the same mother, father or in the same year. We

used log-likelihood ratio test to assess the significance of

random effects and to ensure that model fit was not reduced at

each deletion step of the backward model simplification [10].

Inclusion of parental characteristics reduced the variance

explained by random effects to statistical non-significance. We

nevertheless retained these random effects to account for the

hierarchical structure of the data. All statistical analyses were

performed using R v. 2.14.1 [12], and generalized linear mixed

models were fitted using the ‘lme4’ library [13].
3. Results
We found a sexually antagonistic non-random association

between paternal phenotype and offspring viability (inter-

action paternal horn length—offspring sex: b¼ 1.189+
0.417 s.e., z ¼ 2.851, p ¼ 0.004, figure 1 and table 1). Survival

from September to May of male and female lambs, respect-

ively, increased by 15.4% and decreased by 11.4% per unit of

standard deviation of paternal horn length. In absolute terms,

survival of male and female lambs, respectively, increased by

1.12% and decreased by 0.83% per centimetre of paternal

horn length. Selection on horn length was stronger via lamb

recruitment (table 2) than via the number of lambs produced

(Zrecruitment2lamb production ¼ 12.111, p , 0.001) or weaned

(Zrecruitment2weaning¼ 11.015, p , 0.001). Viability selection on

offspring contributed 12.3% of the total selection on pat-

ernal horn length. Despite the strong correlation between



Table 1. Effect of paternal horn length interacting with lamb sex on survival to 1 year of bighorn lambs at Ram Mountain, Canada, 1988 – 1992 and 1996 –
2011. Estimates are from a generalized linear mixed model with a binomial error distribution that included mother and father identity and year of birth as
random effects. Female lambs were the sex of reference.

variable estimate s.e. z p

intercept 0.860 0.275 3.134 0.002

father horn length 20.594 0.308 21.928 0.054

lamb sex (male) 20.920 0.383 22.403 0.016

mother mass gain 0.657 0.202 3.245 0.001

offspring mass 0.419 0.205 2.047 0.041

father horn length � lamb sex (male) 1.189 0.417 2.851 0.004

Table 2. Linear selection differentials calculated via the number of lambs produced, weaned and recruited, on horn length and body mass of bighorn rams at
Ram Mountain, Canada, 1988 – 1992 and 1996 – 2011. Different superscripts indicate significant differences between selection differentials.

traits fitness proxy linear selection differential+++++ s.e. t p

horn length production 0.934+ 0.006a 9.675 ,0.001

horn length weaning 0.939+ 0.007a 9.403 ,0.001

horn length recruitment 1.065+ 0.009b 7.004 ,0.001

body mass production 0.853+ 0.007c 9.764 ,0.001

body mass weaning 0.844+ 0.008c 9.352 ,0.001

body mass recruitment 0.885+ 0.010d 7.188 ,0.001
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horn length and body mass (r¼ 0.93, t ¼ 50.744, d.f. ¼ 430,

p , 0.001), paternal mass did not affect lamb viability,

although it had a non-significant effect similar to that of horn

length (electronic supplementary material, table S1). The selec-

tion differential on paternal mass was stronger via lamb

recruitment than via lambs produced or weaned (table 2).

Population density or paternal age did not influence offspring

viability (all ps . 0.23; electronic supplementary material, table

S1). Horn length and body mass in males are genetically corre-

lated and heritable [14]. As our models controlled for offspring

body mass, which affects lamb winter survival [15], the

relationship between paternal phenotype and offspring viabi-

lity was not simply due to heavy and large-horned males

producing large sons and small daughters.
4. Discussion
Only a handful of studies of vertebrates have examined the

relationship between paternal phenotype and offspring viabi-

lity in nature [2,16] and none investigated whether this

relationship modifies selection on sexually selected traits.

Because rams with the longest horns were sexually selected,

sexual selection and offspring viability selection acted in con-

cert. Our investigation of successive selection events thus

revealed that a substantial part of total selection on paternal

horn length was due to viability selection on offspring.

Our results have important implications for evolutionary

biology, wildlife management and conservation. In long-

lived species, attention should be paid to how successive

selective episodes affect total selection, because selection on

quantitative traits can vary over the lifespan in changing
environments [17]. Evaluating how different fitness com-

ponents may influence the overall strength of selection is

critical for understanding the temporal dynamics of selection

on phenotypic traits. Given the potentially important role of

viability selection in total selection on sexually selected traits,

sexual selection analyses alone may not fully reveal the evol-

utionary dynamics of these traits. Predictions of evolutionary

changes in sexually selected traits should consider possible

correlations of these traits with other fitness components.

Finally, trophy hunting exerts strong artificial selection with

potentially undesirable evolutionary effects by selectively

removing large-horned males [14]. Our result suggests that

trophy hunting may also have sex-specific effects on juvenile

survival. Selective hunting may thus have indirect effects on

population sex ratio, an important factor for population

dynamics, recruitment and wildlife management [18].
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