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2MicroMar, Mer Molécules Santé, EA 2160, IUML FR – 3473 – CNRS, University of Le Mans,
Avenue Olivier Messiaen, Le Mans Cedex 9 72085, France
3Le Cnam – SITI – CASER – MST – Microorganisms, Metals and Toxicity, BP 324, Cherbourg Cedex 50103,
France
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Diatoms are especially important microorganisms because they constitute

the larger group of microalgae. To survive the constant variations of the

light environment, diatoms have developed mechanisms aiming at the dis-

sipation of excess energy, such as the xanthophyll cycle and the non-

photochemical chlorophyll (Chl) fluorescence quenching. This contribution

is dedicated to the relaxation of the latter process when the adverse con-

ditions cease. An original nonlinear regression analysis of the relaxation of

non-photochemical Chl fluorescence quenching, qN, in diatoms is presented.

It was used to obtain experimental evidence for the existence of three time-

resolved components in the diatom Phaeodactylum tricornutum: qNf, qNi and

qNs. qNf (s time-scale) and qNs (h time-scale) are exponential in shape. By

contrast, qNi (min time-scale) is of sigmoidal nature and is dominant among

the three components. The application of metabolic inhibitors (dithiothreitol,

ammonium chloride, cadmium and diphenyleneiodonium chloride) allowed

the identification of the mechanisms on which each component mostly relies.

qNi is linked to the relaxation of the DpH gradient and the reversal of the

xanthophyll cycle. qNs quantifies the stage of photoinhibition caused by

the high light exposure, qNf seems to reflect fast conformational changes

within thylakoid membranes in the vicinity of the photosystem II complexes.
1. Introduction
Diatoms constitute the most dominant group of eukaryotic organisms in marine

waters [1]. In marine ecosystems, diatoms play crucial roles in several biogeo-

chemical cycles, including that of carbon [2]. It is estimated that diatom

photosynthesis is responsible for up to 20% of the global primary production

[3] and up to 40% of the carbon sequestered in the oceans [2]. This makes diatoms

a major feeding source for other living organisms [2]. Thus, diatoms render tre-

mendous ecological services, any of which is efficiently performed only when

diatom fitness is preserved.

In marine ecosystems, the intensity of the environmental constraints is con-

stantly modified [4,5]. For instance, turbulent water movements regularly expose

microalgae to stresses such as high light (HL) conditions [6]. Regardless of their

origin, stress conditions usually trigger a change in the equilibrium between the

absorbed light energy and energy utilization [7], which ultimately results in lower-

ing of primary productivity [8–11]. To minimize HL effects, microalgae have

developed short- and long-term mechanisms to tune the balance between energy
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utilization and dissipation. Carotenoids play crucial roles in

these processes. Besides their protective function consisting

of de-excitation of the chlorophyll (Chl) triplet state in the

light-harvesting complex (LHC) antenna, the epoxidized

xanthophylls, diadinoxanthin (Ddx) in diatoms, is involved in

a dynamic, light-intensity-dependent short-term process of

dissipation of excessive excitation energy into heat in the

LHC, the xanthophyll cycle [7,12–14]. The de-epoxidation

step is catalysed by lumen-localized enzymes, the so called

Ddx de-epoxidases (DDEs) [13,14]. DDE binding to the thyla-

koid membranes is activated by the acidification of the

thylakoid lumen, resulting from the establishment of the

trans-thylakoidal pH gradient (DpH) under HL [15,16]. When

the HL condition disappears, the stroma-located diatoxanthin

(Dtx) epoxidase (DTE) catalyses Dtx expoxidation to Ddx

[13,14]. Ascorbate and reduced nicotinamide adenine dinucleo-

tide phosphate (NADPH) are the essential cofactors for

de-epoxidase and epoxidase, respectively [13,14] (see electronic

supplementary material, Data S1).

The dynamic dissipation as heat of the energy absorbed in

excess is reflected in the quenching of Chl fluorescence and

is referred as to non-photochemical quenching (NPQ) of

Chl fluorescence [17,18], the intensity of which has been

recently taken as a functional trait of the diversity of algae

[13]. Very recently, the level of the specific LHC stress-related

protein family, namely Lhcx, has been reported to be

involved in NPQ [19]. In the diatom Cyclotella meneghiniana,

NPQ comprises three components: (i) a rapid component

(time-frame of tens of seconds) activated upon the transition

from darkness to HL exposure, the intensity of which may be

correlated with the amount of Dtx formed during the HL

period; (ii) a medium component, major in amplitude,

caused by the Dtx molecules formed through the xanthophyll

cycle during HL treatment and (iii) a DpH-dependent and

light-intensity-dependent slow component (several min

time-frame), the intensity of which could be modulated by

the Dtx amount present before HL treatment [20,21]. When

the excessive incoming photon flux ceases, NPQ relaxes to

its minimum [22]. Many reports have been dedicated to the

kinetics of NPQ, whereas almost nothing is known about

the processes involved in its relaxation.

In this contribution, an original method of nonlinear

regression analysis of NPQ of the maximum variable

Chl fluorescence yield (qN) relaxation kinetics is presented

and used to elucidate the mechanisms on which the qN

relaxation process relies. Metabolic inhibitors, such as dithio-

threitol (DTT), ammonium chloride (NH4Cl), cadmium (Cd)

and diphenyleneiodonium chloride (DPI) were used to

resolve the number of components, their kinetics and the

mechanism on which they depend in the diatom Phaeodacty-
lum tricornutum. A deep knowledge of the dissipation

mechanisms of excess energy is of crucial importance for

the understanding of diatom ecology and can certainly

contribute to better exploitation of their capacity to produce

high-value metabolites, the synthesis of which is enhanced

under stress [23–25].
2. Material and methods
(a) Growth conditions
Phaeodactylum tricornutum UTEX 646 was grown in f/2

medium under a 16 L : 8 D regime and at 24+18C. Two other
P. tricornutum strains: CCMP632 and NCC340, and Odontella
aurita NCC86, Entomoneis paludosa NCC18.2, Skeletonemacostatum
NCC60, Thalassiosira pseudonana CCMP1335 and T. weissflogii
NCC133 were cultured in artificial seawater [26] under the

same light regime and at 16+18C. The different species were

grown under cool-white fluorescent tubes (Philips TL-D 90,

36 W; photon flux density 300 mmol photons PAR m22 s21)

until the cultures reached the exponential growth phase, i.e. 4

days [27]. The irradiance was measured with a 4p waterproof

probe (Walz, Germany) connected to a Li-Cor 189 quantum

meter. Cell density was estimated either using the absorbance

at 750 nm or by direct numbering using a Malassez haemoto-

cytometer (microscope magnification 400�). Growth rate was

calculated as r¼ (ln Nt 2 ln N0)/Dt, where N0 and Nt represent

the cell density at time t ¼ 0 and t¼ t, respectively, and Dt is

the age of the culture (days).
(b) Chlorophyll fluorescence yield measurements
Chl fluorescence yield was monitored at the growth tempera-

ture after a dark-adaptation period (15 min). F0 was recorded

under a weak modulated light (less than 15 mmol PAR m22 s21,

800 Hz). NPQ was induced during a 7 min non-saturating white

actinic radiation (photon flux density 800 mmol PAR m22 s21,

KL 1500; H. Walz, Germany). At the end of the actinic illumina-

tion, the dark relaxation of the Chl fluorescence yield was

recorded in order to allow quenching analysis. For each

sample, the minimum ðF0, F00, F000Þ; maximum ðFM, F0M, F00MÞ and

maximum variable ðFV, F0V, F00VÞ Chl fluorescence yields in a

dark-adapted state, in a light-adapted state and during the

dark relaxation were measured, respectively [22] (see figure 1a
for a representative recording). The slow Chl fluorescence

induction kinetics were recorded using either a PAM 101–103

fluorometer (H. Walz, Germany) or an FMS1-modulated

fluorometer (Hansatech Instruments, UK) [28].

DTT (final, 200 mM/stock, 20 mM), NH4Cl (5 mM/1 M)

and DPI (0.1–5 mM/2 mM) were diluted in distilled water

or DMSO (DPI). For assays, the algae were incubated with

the metabolic inhibitors 15 min before Chl fluorescence

measurements (i.e. during the dark incubation) except for

Cd (20 mg l21) that was present during the foregoing 24 h,

as indicated in [27].

The intracellular Cd amount was determined as explained

in the electronic supplementary material, Data S2.

To avoid CO2 shortage during measurements, the cul-

tures were provided with NaHCO3 (final, 4 mM/stock,

0.2 M) [29]. Because the light intensity experienced by cells

depends on cell density [30], the fluorescence measurements

were performed using sample containing similar Chl amount

as estimated by the absorbance at 665 nm (not shown).
(c) Pigment extraction and analysis
Pigment extraction and analysis by HPLC were performed as

indicated in [31]. The de-epoxidation ratio (DER) was calculated

as DER (%) ¼ 100 [Dtx]/([Dtx] þ 0.5[Ddx]).
(d) Oxygen evolution
Oxygen evolution measurements were performed as in [28].

Briefly, the oxygen was determined using a thermostated

chamber equipped with a Clark-type oxygen electrode

(DW2, Hansatech Instruments, UK). Oxygen evolution was



light relaxation phase relaxation phaselight

1.0
FM

FM
¢

Fv

FV
¢

F0
¢ F0

¢

F0
¢¢(t)

FM
¢¢  (t)

FM
¢¢  (tr)

FM
¢

FM
¢

F0
¢¢ (tr)

FV
¢¢ (tr)

control

F0 F0
F(t)

0.8

0.6

0.4

0.2

0
0 4 8 12

recording time t (min)

no
rm

al
iz

ed
 C

hl
 f

lu
or

es
ce

nc
e 

yi
el

d 
F

(t
)

relaxation time tr (min)
16 20 0 4 8 12 16 2024 28 32

(b)(a)

Figure 1. Slow fluorescence induction kinetics and input data for regression analysis. The representative slow Chl a fluorescence induction kinetics recorded on the
control (non-treated) sample of P. tricornutum (a), and time courses of corresponding basic Chl fluorescence levels (b) used for resolution of components of the non-
photochemical quenching of maximum variable Chl fluorescence yield (qN). Creation of qN takes place during an HL induction period (light) coming after the
verification of the primary dark-adapted state (FM, F0). qN relaxation processes start from the light-adapted state ðF 0M; F 00Þ after switching the actinic light
(800 mmol m22 s21) off (vertical dashed line in b) and result in the course of dark-relaxation phase in renewal of the dark-adapted state. F 00V ðtrÞ means the
difference between F 00MðtrÞ and F 000 ðtrÞ fluorescence levels for given time of dark relaxation (tr). All data are normalized to FM. For demonstration of stress influence
on fluorescence induction kinetics, see the electronic supplementary material, figure S4-1. (Online version in colour.)
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measured under actinic irradiance ranging from 0 to

2200 mmol photons PAR m22 s21.

(e) Mathematical verification: statistics
The identical recording and processing of slow Chl fluorescence

induction kinetics were assured by means of user-defined pro-

cedures. Data extracted from records were processed by the

graphic software SIGMAPLOT 2000 for Windows (v. 6.10, SPSS,

USA). Statistical verifications of calculations carried out by non-

linear regression (fitting) procedures were evaluated by

parameters R2 and Norm. R, the coefficient of determination,

measures how well a regression model describes the fitted

data. ‘Norm’ stays for the square root of the sum of squares of

the residuals. An R2 value close to unity indicates that the relation

between the independent and dependent variables is very well

described by an entered regression equation. When the change

in Norm value between two subsequent iterations is less than a

given tolerance, the solution is considered to have been found.

Statistical significance of differences between correspond-

ing pairs of data shown in graphs was found on the basis of

the standard Student’s t-test applied to individual unpaired

or paired column data. The t-test determines whether the

mean values of two data columns are significantly different

by testing the hypothesis that the corresponding means are

equal. The statistical significance ( p , 0.05) is labelled by an

asterisk. Results for p . 0.05 are not marked in graphs and

are considered as statistically non-significant.
3. Results and discussion
(a) Phaeodactylum tricornutum is able to fully relax

non-photochemical quenching
Figure 1a displays a typical slow Chl fluorescence induction

kinetics recorded using non-treated P. tricornutum. Values
of the maximum quantum yield of photosystem II (PSII)

photochemistry (fPo) are close [27,28,32–34] or below the

values reported in earlier studies [35]. The reasons for this

discrepancy are not clear at present: it could result from the

presence of a small pool of Dtx measured in the dark-adapted

samples (data not shown, max 5%).

The high but non-saturating irradiation activated non-

photochemical quenching as indicated by the low maximum

Chl fluorescence yield reached at the end of the light phase

ðF0MÞ: As reported by Ruban et al. [36], the quenching inten-

sity is three to five times larger (table 1) than that with

higher plants [22]. As is frequently observed [27], F00 reached

its minimum after approx. 3–5 min of actinic light exposure

(figure 1a). The F00 value is lower than the F0 level indicating

that the processes involved in NPQ also affect the fluor-

escence yield of ‘open’ PSII reaction centres (figure 1a,b).

Here, the real values of F00 can be slightly lower than the

indicated values because of the presence of some remaining

QA
� at the beginning of the relaxation phase [36]. After

switching the actinic light off, NPQ relaxes (half-life more

than 20 min; figure 1b). Similar values for the half-life of

relaxation have been reported [33,37].

During this relaxation period, the fluorescence peaks

result from a temporary closure of PSII reaction centres by

short (0.8 s) saturation pulses applied to probe the maximum

fluorescence yield ðF00MÞ in the absence of photochemical fluor-

escence quenching. During the relaxation period, the actual

quantum yield of PSII photochemistry (fP) (for equations, see

the electronic supplementary material, Data S3) increased

regularly compared with the initial value of FPo (figure 1b).

(b) qN relaxation kinetics in Phaeodactylum tricornutum
are composed of three components

To characterize the components causing the dark-relaxation

kinetics of qN, the nonlinear regression analysis proposed



Table 1. Effect of xenobiotics on the basic set of Chl fluorescence parameters, components of NPQ of Chl fluorescence (qN, qN1) and DER. Statistical significance
of resulted values found for given treatments compared with ‘control’ is *p , 0.05, **p , 0.01 and ***p , 0.001. Means and corresponding standard
deviations are the results of three to five samplings. For definitions and explanation of parameters summarized in this table, see the electronic supplementary
material, Data S3 and S4.

parameter control 1DTT 1NH4Cl 1Cd 1Cd1DTT

FPo 0.57+ 0.01 0.56+ 0.03 0.52+ 0.01** 0.58+ 0.03 0.53+ 0.02*

qP 0.39+ 0.05 0.35+ 0.05 0.25+ 0.04** 0.37+ 0.08 0.28+ 0.03*

qN 0.93+ 0.02 0.89+ 0.02* 0.75+ 0.09** 0.93+ 0.02 0.71+ 0.07**

qN1 0.95+ 0.01a 0.91+ 0.02* 0.95+ 0.02 0.96+ 0.01 0.85+ 0.04**

q0 0.68+ 0.04 0.58+ 0.04* 20.15+ 0.04*** 0.65+ 0.09 20.0+ 0.1***

FII 0.08+ 0.01 0.09+ 0.01 0.05+ 0.02* 0.07+ 0.01* 0.07+ 0.001**

NPQ 4.63+ 0.73 3.12+ 0.67* 0.47+ 0.12*** 4.67+ 1.60 0.62+ 0.28***

qNf 0.02+ 0.01 0.04+ 0.01* 0.30+ 0.08*** 0.04+ 0.02 0.31+ 0.07***

tf
1=2 (s) 8.1+ 3.1 23+ 21 65+ 38* 14.8+ 2.6** 20.0+ 4.5**

qNi 0.75+ 0.09 0.67+ 0.04 — 0.47+ 0.09** 0.34+ 0.20*

x1
0 (min) 8.9+ 2.1 6.61+ 0.35 — 17.0+ 3.7** 4.25+ 0.32*

qNs 0.18+ 0.09b 0.20+ 0.06 0.18+ 0.03 — 0.20+ 0.11

— — 0.47+ 0.07c 0.45+ 0.10 —

ts
1=2 (min) 77+ 31 58+ 54 24+ 16* — 390+ 490d

DER 62% 4.6% 5.1% 58% 5.2%
aqN1 ¼ qNf þ qNi þ qNs.
bThe relaxing part of qNs.
cThe non-relaxing (‘permanent’) part of qNs.
dA too large spread in values of ts

1=2.
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by Roháček [22] for higher plants was adapted to the case of

diatoms. Owing to space limitations in this contribution, the

mathematical reasoning is presented in the electronic sup-

plementary material, Data S4. The procedure allows the

fitting of the qN relaxation kinetics with three components

(figure 2). This finding agrees with Grouneva et al. [20,38]

who found that establishment of non-photochemical quench-

ing consists of three components. The three components

described here differ in their shape, half-life of relaxation

and amplitude (table 1). The slow (qNs) and fast (qNf) com-

ponents have exponential shapes while the intermediate and

major component (qNi) is of sigmoidal shape (figure 2).

This shape can be explained by the difference in the rate

of Dtx epoxidation and NPQ relaxation kinetics during the

relaxation period (C. meneghiniana [39]; P. tricornutum [40]).

Indeed, a sigmoidal relationship was found between the

two parameters only in P. tricornutum [40]. The sigmoidal

shape of the qNi component is not a peculiarity of P. tricornu-
tum but has been found in each diatom species tested so far

(see electronic supplementary material, Data S5).

(c) qNi relies on dissipation of the proton gradient and
reversal of the xanthophyll cycle

The three components described in §3b reflect the pathways

used by the photosynthetic apparatus to relax non-

photochemical quenching after HL treatment. Grouneva et al.
[20,38] found that the three components contribute to the estab-

lishment of NPQ. Therefore, we hypothesize that the three

components described in this paper could be the counterparts
of the pathways through which NPQ is established during acti-

nic illumination. To test this hypothesis, a pharmacological

approach was used to inhibit those pathways in the hope that

the inhibitors would selectively affect either component. To

this end, NH4Cl a dissipator ofDpH [41], was used. Representa-

tive kinetics obtained with each metabolic inhibitor are

presented in the electronic supplementary material, Data S6.

In the presence of NH4Cl, the FV/FM ratio (FPo) was sig-

nificantly reduced (table 1), confirming severe alterations of

PSII functioning were induced by NH4Cl [38], e.g. by inhibit-

ing the oxygen evolving centre [42]. NH4Cl slowed down the

establishment of qN and NPQ (see electronic supplementary

material, figure S6-1; table 1), but not that of qN1, in which

case the amplification of qNf compensated this effect, fol-

lowed concurrently by the lowering of q0 and the actual

photochemical capacity of PSII (qP). NH4Cl gave a very

clear answer, as this uncoupler fully inhibited the intermedi-

ate and major component qNi as well as of Dtx formation

(table 1). The Dtx found at the end of the light phase was

already present at the end of the dark phase (data not

shown). The absence of de novo Dtx formation was expected

because Ddx de-epoxidation requires acidification of the

thylakoid lumen, a phenomenon that NH4Cl abolishes [41].

It is well established that Dtx formed through the

operation of the xanthophyll cycle (see electronic supple-

mentary material, Data S1) participates in process of non-

photochemical quenching. To determine the contribution of

the xanthophyll cycle to NPQ relaxation, the intensity of

the different qN components was estimated in DTT-treated

cells, DTT being an inhibitor of the Ddx de-epoxidase (see
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Figure 2. The relaxation kinetics of qN are composed of three components.
Resolution of three qN components in the control sample (cf. figure 1) of
P. tricornutum by the method of nonlinear regression analysis of experimental
data is presented. Time courses of the maximum variable Chl fluorescence yield
F 00V ðtrÞ and actual magnitudes of three qN components are results of the fit
according to equation S4-7 within the experimental data (black symbols).
The input values of FV, F 0V and F 00V ð1Þ-level (black dotted line) applied to
the fit procedure are highlighted together with the resulting numerical
values for magnitudes of the fast (qNf ), intermediate (qNi) and slow (qNs)
components of the actual maximum NPQ (qN1). The fit quality is demonstrated
by squared value of the coefficient of determination (R2). For experimental con-
ditions, stated symbols and more details on the regression analysis, see the
electronic supplementary material, Data S4. (Online version in colour.)
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electronic supplementary material, Data S1). In the presence

of DTT, the amplitude of qNi was ca 90% of the control

value (table 1), demonstrating that the qNi relaxation com-

ponent relies on dissipation of DpH and the reversal of the

xanthophyll cycle. Consequently, qNi should be considered

as the counterpart to the steady-state quenching component

found in C. meneghiniana [37] and of qE in green algae and

higher plants [43].

If the reasoning presented above is sound, the inhibition

of the reversal of the xanthophyll cycle, i.e. the conversion of

Dtx to Ddx, will affect the qN relaxation kinetics, especially

qNi. To test this hypothesis, qN relaxation kinetics were

recorded in the presence of Cd or DPI, two compounds

reported to interact negatively with the reversal of the

xanthophyll cycle (Cd [27]; DPI [44]).

Cd effects were similar to those reported in [27], i.e. (i) the

DER reached in Cd-treated cells was 55% higher than that in

control cells at the end of qN induction period (table 1)

and (ii) qN relaxation was slower in the presence of Cd

(table 1; electronic supplementary material, Data S6). In our

conditions, the intracellular Cd concentration was around

3 fg cell21 (see electronic supplementary material, Data S7).

Other works on P. tricornutum reported 10–30 fg cell21

[45–47]; for a review, see [4].

In the presence of Cd, the intensity of qNi was reduced to the

same extent as the DER (table 1) and was slowed down,

suggesting that Cd could directly interact with DTE (see

electronic supplementary material, Data S1). An indirect effect

of Cd could not be completely excluded, however, as Cd

has been reported to interact with biochemical reactions
generating NADPH, the cofactor of DTE [48–49] (see electronic

supplementary material, Data S1). To obtain more information

about the putative other target(s) of Cd, relaxation of NPQ was

studied in Cd-treated cells incubated with DTT, an inhibitor of

the forward reaction of the xanthophyll cycle and a chelator of

Cd [43]. A synergistic effect of Cd and DTT resulted in a very

similar impact on values of basic fluorescence parameters (see

the electronic supplementary material, Data S3), as found for

the NH4Cl treatment.

DPI has been described as an inhibitor of the zeaxanthin

epoxidase [44]. For very low DPI concentrations (less than

0.5 mM), qN remains unaffected (figure 3a,c). The progressive

inhibition of the reversal of the xanthophyll cycle blocked the

relaxation of qP, indicating that PSII reaction centres remained

mostly closed when the xanthophyll cycle could not be reversed

(data not shown). The amplitude of qNi progressively

decreased while the DPI dose increased, and for the highest

DPI concentration (5 mM) tested (figure 3b), the amplitude of

qNi reached the minimum level close to zero, demonstrating

the participation of the reversal of the xanthophyll cycle in

qN relaxation (figure 3c).

Regardless of DPI concentration, qNf remained unaf-

fected (figure 3c). As in Grouneva et al. [20,38], a small Dtx

pool was detected before HL treatment. If such a pool is

involved in the relaxation of qN, it is likely not available to

Dtx epoxidase, as the DER calculated before actinic illu-

mination and after the relaxation period were similar (data

not shown). The increasing amount of DPI triggered a

complementary increase in qNs to that of qNi; for a DPI

concentration of 5 mM, qNs reached the maximum

(figure 3c). The mechanism on which qNs relies remains

obscure. qNs could reflect DpH dissipation as it has been

shown that after Dtx has been activated, DpH is no longer

needed for efficient NPQ [50]. It is also possible that in

our conditions, diatoms may have experienced moderate

photoinhibition because the value for the irradiance corre-

sponding to the light saturating photosynthesis, Ek, was

around 250 mmol photons PAR m22 s21 (see electronic sup-

plementary material, Data S8). This value, however, is far

from the HL level determined by Ting & Owens [30] as being

fully photoinhibitory. More experiments have to be performed

to clarify this point because in the presence of NH4Cl, qNs was

as intense as in the control but significantly accelerated

(table 1). An interesting feature evidenced by the qN analyses

presented in this contribution is the possibility that qNs

becomes permanent (table 1 and figure 3e) i.e. its half-life

cannot be measured. This was observed when the xanthophyll

cycle was blocked by DTT and in the presence of Cd. The

reasons for such a phenomenon remain unclear at present

and may result from additional target(s) of DTT and Cd.
(d) The sigmoidicity of the qNi component is an
intrinsic characteristic of DpH gradient relaxation
in diatoms and reflects cooperative mechanisms

The results presented in this article establish that the com-

ponent qNi is of sigmoidal shape (figure 2; electronic

supplementary material, Data S5). In the presence of DTT,

the kinetics of qNi remained sigmoidal, suggesting that this

shape is linked to the establishment of DpH in diatoms.

This reasoning fits with NPQ kinetics obtained from cells

treated with N,N-dicyclohexylcarbodiimide (DCCD), an
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inhibitor of ATP synthase [51,52]. In the presence of this

chemical, protons were accumulated in the thylakoid

lumen, triggering an intense pH gradient even under low-

light illumination, which resulted in the development of

NPQ. The kinetics of NPQ development recorded in these

conditions are of sigmoidal shape [29]. Such a shape was

not observed in the DCCD-treated green alga Chlamydomonas
sp. ICE-L [53]. It has also been suggested that the activation

of the quenching capacity of Dtx requires the protonation of

special residues of the fucoxanthin chlorophyll proteins

(FCPs) [29,36], which would result in a conformational

change of the LHC. The quenching state of the LHC involves

the binding of Dtx into hydrophobic regions of the protein

and a dislocation of proton-binding domains, thereby estab-

lishing a stable NPQ that prevents fast relaxation of

quenching in the absence of a bulk proton gradient. In

higher plants, green algae and Prymnesiophyceae, the proto-

nation of special amino acid residues of the LHCII resulting

in LHCII aggregation could occur [54–56]. Aggregation of

FCP could also happen in diatoms as suggested in [13,50].

Thus, the sigmoidal shape of the relaxation kinetics of the

main component of NPQ would fit with a scenario starting

with the deaggregation of FCPs, followed by the protonation

of the special residues, reversing the conformational changes

described above. Alternatively, and non-exclusively, the sig-

moidal character could reflect the mode of action of the

atypical member of the LHC stress-related protein family of

diatoms, LHCX1, a protein serving as a molecular gauge in

control of the level of NPQ [19,57].
4. Conclusion and perspectives
The kinetics of the relaxation of NPQ maximum variable fluor-

escence in diatoms result from the development of three

individual components, qNf, qNi and qNs (figure 2). The kin-

etics of qNf and qNs follow an exponential curve, whereas that

of qNi is sigmoidal in shape. This feature seems unique to dia-

toms. From the mechanism point of view, qNi relies on DpH

relaxation and Dtx epoxidation. More experiments have to be

performed to clarify the nature of the events involved in qNf

and qNs. qNf could be related to a fast conformational

change occurring within the thylakoid membranes at the

start of the relaxation process. The different (very fast in their

creation) qN components could be localized on PSII attached

or detached LHCs [58]. The former would be related to the

qN enhancing mechanism(s), whereas qNs could be hetero-

geneous from the mechanistic point of view and related to

photoinhibition and/or partial dissipation of the pH gradient.
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