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This review focuses on feedback pathways that serve to match plant energy

acquisition with plant energy utilization, and thereby aid in the optimization

of chloroplast and whole-plant function in a given environment. First, the role

of source–sink signalling in adjusting photosynthetic capacity (light harvest-

ing, photochemistry and carbon fixation) to meet whole-plant carbohydrate

demand is briefly reviewed. Contrasting overall outcomes, i.e. increased

plant growth versus plant growth arrest, are described and related to respect-

ive contrasting environments that either do or do not present opportunities for

plant growth. Next, new insights into chloroplast-generated oxidative signals,

and their modulation by specific components of the chloroplast’s photo-

protective network, are reviewed with respect to their ability to block foliar

phloem-loading complexes, and, thereby, affect both plant growth and plant

biotic defences. Lastly, carbon export capacity is described as a newly ident-

ified tuning point that has been subjected to the evolution of differential

responses in plant varieties (ecotypes) and species from different geographical

origins with contrasting environmental challenges.
1. Introduction
Multiple pathways of communication, over both short and long distances,

between the various functional parts of the plant are being elucidated. It appears

self-evident that such communication pathways should enable the plant to

respond appropriately to opportunities as well as challenges in its physical and

biological environment. We place the communication between chloroplast

and the whole plant into a context of the adjustment in form and function via

physiological acclimation of individual plants to their growth environment as

well as genetic adaptation of species and varieties (ecotypes) to the climate and

other features of the habitats in which the respective lines evolved.
2. Matching energy acquisition with energy utilization:
established and emerging signalling pathways serving
to optimize chloroplast and whole-plant function in a
given environment

Here, we review the signalling pathways serving to match light availability, and

energy acquisition in photosynthesis, with energy utilization for plant growth,

development and defences—in the context of plant genetic make-up, develop-

mental status and a wide range of environmental conditions. Figure 1 presents

the principal functional sequence from solar energy acquisition and sugar pro-

duction to sugar distribution throughout the plant (solid arrows), starting with

light absorption in the light-harvesting complexes (light harvesting) and pri-

mary photochemistry (in photosystem II (PSII) and the oxygen-evolving

complex (OEC)) supporting photosynthetic electron transport and CO2 fixation
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Figure 1. Schematic depiction of principal steps involved in photosynthesis (light harvesting, photochemistry, involving photosystem II (PSII) and the oxygen-
evolving complex (OEC) and carbon fixation in the Calvin cycle (CC)) and in sugar export ( phloem loading and sugar transport) to the plant’s sinks (solid
arrows) as well as (dashed arrows) feedback loops from sugar export and the plant’s sinks to photosynthesis and (dotted arrows) feed-forward and feedback
loops related to the generation of reactive oxygen species (ROS) in light harvesting and photochemistry. Heat ¼ heat released via thermal dissipation of
excess excitation energy in light-harvesting antennae. (Online version in colour.)
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(in the Calvin cycle (CC)), followed by the loading of sugars

into the phloem conduits and the transport of sugars to the

plant’s sinks (sugar-consuming and sugar-storing tissues).

In addition, figure 1 features a host of feedback loops falling

into two principal categories of either (i) (dashed arrows

along the top) providing feedback from the plant’s sugar-

transport system and its sinks, via modulation of foliar

sugar/starch content, back to light harvesting, photochemis-

try and CO2 fixation or (ii) (dotted arrows along the bottom)

providing both feed-forward and feedback loops (dotted

arrows along the bottom) associated with chloroplast redox

balance (determined by the ratio, and action of, oxidants

and antioxidants) as influenced by the environment and by

the chloroplast’s photoprotective network. In the following,

we will examine examples of source- and sink-driven signal-

ling networks, and will argue that both source- and sink-

driven signals modulate phloem loading/transport, and

thereby impact plant response to environmental stresses.

(a) Sink-to-source signalling in photosynthetic
adjustment

It has long been recognized that the leaf’s capacity for photo-

synthesis is adjusted in response to the level of demand

generated by the plant’s sinks for the products of photosyn-

thesis [1–3]. A plant’s inherent growth rate, developmental

status and the opportunity (or lack thereof) for plant

growth presented in the environment all contribute to setting

this ‘sink demand’ as the level of plant sink strength. For

example, (i) short-lived annual species tend to have higher

inherent growth rates than slowly growing evergreens, (ii) a

plant in its reproductive state tends to have greater sink

strength than a vegetative plant and (iii) soil conditions

(e.g. water and nutrient availability, temperature and soil
texture/structure), together with climatic features (e.g. light

availability, temperature, humidity), cumulatively generate

either plant growth-promoting or plant growth-impeding

environmental conditions. It has been shown that regulation

of foliar photosynthetic capacity occurs via modulation of the

expression of photosynthetic genes involved in e.g. light har-

vesting, photochemistry and other thylakoid processes, and

CO2 fixation (e.g. [4–6]). The negative feedback via limiting

carbon export was established by studying photosynthetic

repression in response to inhibition of carbon export from

leaves via e.g. girdling of branches or trees (e.g. [7–9]) or

cold-girdling of stems [1,5]; the negative feedback from limit-

ing sink strength was demonstrated e.g. via photosynthetic

repression in response to removal of fruit and other sinks

(e.g. [7,10–12]). Foliar sugar and/or starch accumulation

are typically observed under either limiting carbon export

at the leaf level or limiting plant sink strength [13].
(b) Contrasting overall outcomes in environments with
contrasting opportunities for plant growth:
increased plant growth versus plant growth arrest

Figure 2 illustrates that two principal scenarios with opposite

outcomes can be distinguished by examining the level of

‘opportunity’ for plant growth presented by the environment.

We will illustrate these scenarios for the example of overall

plant growth response to resource availability in the environ-

ment, while acknowledging that the same principles also

apply to other more complex features, including temporal

dynamics in the environment and in plant-organ-specific

growth patterns. Plant response to opportunity presented

by the environment presumably involves the feedback

loops detailed in §2a and some of those discussed in §2c.
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Figure 2. Schematic depiction of contrasting scenarios, representing increased, limiting or no opportunity for growth in the environment, and their respective effects
on photosynthesis, carbon export, plant growth and the flexibility of thermal dissipation. NPQ, non-photochemical quenching on chlorophyll fluorescence, as an
indicator for thermal dissipation of excess excitation energy; OEC, oxygen-evolving complex; PSII, photosystem II.
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On the one hand (figure 2, left-hand side), there is the scenario

of an increase in the opportunity for plant growth presented by

the environment. Such a scenario can arise via increased avail-

ability of previously limiting resources such as light, water and/

or nutrients, a shift to a more favourable temperature regime,

etc., experienced by a species with the appropriate genetic

adaptations and developmental state allowing it to upregulate

photosynthetic capacity, carbon export capacity (see §3) and

growth rate. As an additional response to increased light

availability, any plant not increasing its growth and photo-

synthesis rates enough to use all of the additional available

light will probably upregulate its capacity for thermal dissipa-

tion of any excess of absorbed light [14,15] and/or employ a

variety of mechanisms to decrease light interception, e.g. via

changes in leaf angle or leaf reflectance [16–19], or decrease

light absorption, via decreases in chlorophyll content and

light-harvesting capacity (e.g. [20,21]).

On the other hand (figure 2, right-hand side), limiting or no

opportunity for plant growth is presented in environments with

either limiting or excessive resources (like water, nutrients) or

unfavourable temperatures. Such environmental conditions

typically result in reduced growth or even growth arrest and a

resulting decrease in plant sink strength [13]. Furthermore, in

the latter environments, photosynthetic depression, with

decreased photosynthetic capacity and light-harvesting capacity

and/or inactivation of photochemistry (‘photoinhibition’), is

seen [13,22,23].

While decreased photosynthetic capacity and light-harvesting

capacity are features that have long been associated with

photosynthetic repression under sink limitation (see above),

the phenomenon of the ‘photoinhibition’ of photosynthesis—

involving an inactivation of PSII and/or OEC—is commonly

instead interpreted as a sign of ‘damage’ (e.g. [24–31]). We

have recently summarized evidence showing that, in all cases

in which photoinhibitory inactivation of photochemistry and

foliar carbohydrate levels were both assessed, photoinhibition
was found to be associated with greater accumulation of

foliar sugar and/or starch [13]. Viewing such responses in

the context of the whole plant in its environment thus offers

opportunities for a more holistic interpretation of responses

like the phenomenon of ‘photoinhibition’. The invariable

association of photoinhibition with foliar carbohydrate

accumulation in plants under field conditions suggests that

the tacit assumption that photoinhibition limits plant

productivity (e.g. [32–40]) should be re-assessed for the possi-

bility that limiting plant productivity instead triggers

photoinhibition [13]. Based on the above-described data, the

possibility that inactivation of PSII and/or OEC is, in fact, a

principal component (together with decreased light harvesting

and CO2 fixation) of photosynthetic repression under certain

sink limiting conditions should be seriously considered.

There is a third scenario (figure 2, middle), where light

availability is suddenly increased for a plant that is not geneti-

cally adapted for, and/or finds itself in an environment not

suitable for, increasing carbon export and/or plant sink

strength. Such a scenario is not common in natural settings,

but is a frequently used experimental approach to study photo-

inhibition in response to sudden transfer of shade-grown

plants to high light. We have shown that sudden transfer of

evergreens grown under non-fluctuating low light levels to

highly excessive light results in photoinhibition of PSII and

of photosynthetic capacity accompanied by foliar carbohydrate

accumulation [13,41]. Especially in evergreens, which, as

their name implies, do not commonly lower their chlorophyll

content (or their light-harvesting capacity), photoinhibition is

associated with a conversion of the otherwise rapidly revers-

ible, flexible thermal dissipation of excess light (assessed

from non-photochemical quenching (NPQ) of chlorophyll

fluorescence) to a less flexible form of thermal dissipation (sus-

tained NPQ) remaining continuously engaged for prolonged

time periods [14,15,22,41–43]. An analogous scenario for

annuals, as species presumably possessing sufficient carbon



Table 1. Summary of evidence for a role of the antioxidant tocopherol, the photosystem II protein PsbS and the xanthophyll zeaxanthin in modulating cell wall
ingrowths in phloem-loading complexes, herbivore resistance and oxylipin levels. While the npq1 mutant exhibited a trend for increased cell wall ingrowths that
was not significant, double mutant npq1 lut2 exhibited significantly greater wall ingrowths than wild-type when transferred from low to high growth light. The
PsbS-deficient npq4 mutant exhibited significantly greater oxylipin levels than wild-type under herbivore attack in the field but not in the absence of
herbivores.

mutant or treatment resulting effect sources

vte mutant (tocopherol-/‘vitamin E’-deficient) callose deposition resulting in enhanced wall ingrowths

in phloem-loading complexes

[57]

oxylipin (methyl jasmonate) treatment enhanced wall ingrowths in phloem-loading complexes [58]

npq1 lut2 mutants (zeaxanthin- and lutein-deficient) enhanced wall ingrowths in phloem-loading complexes [56]

npq4 mutant (PsbS-deficient) enhanced herbivore resistance [59]

vte mutant (tocopherol-/‘vitamin E’-deficient) enhanced oxylipin levels and enhanced ROS levels [60 – 63]

npq1 mutant (zeaxanthin-deficient) enhanced oxylipin levels [56]

npq4 mutant (PsbS-deficient) enhanced oxylipin levels and enhanced ROS levels [59,64]
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export capacity and sink strength to respond to increased light

availability, is a sudden transfer from low to high growth

light environment under limiting soil nitrogen supply, which

results in photoinhibition as well [44].

(c) Oxidative signals and phloem blocking/occlusion
as modulated by chloroplast photoprotection

In the lower portion of figure 1 (dotted arrows), selected

examples are featured for the generation of oxidative signals

associated with light-harvesting and primary photochemis-

try. In plants adapted and acclimated to environments

where leaves absorb a greater level of light than they are

able to use through electron transport, a large fraction of

the resulting excess excitation energy is safely dissipated (as

heat; figure 1) via thermal dissipation of excess excitation

energy [23]. The low remaining levels of excitation energy

in excess of what is used in electron transport lead to the for-

mation of reactive oxygen species (ROS; figure 1). At low

concentrations, ROS trigger formation of oxidative signals

(figure 1), while massive ROS formation presumably leads

to cellular damage [45,46]. In light-harvesting complexes,

excess excitation energy promotes the formation of (electroni-

cally excited) singlet oxygen as a form of ROS, while charge

separation in primary photochemistry can give rise to the

formation of singly reduced superoxide as the second major

form of ROS arising in the light reactions [47]. Chloroplast anti-

oxidant defences (figure 1) de-excite, and thereby detoxify,

both singlet oxygen and superoxide, but highly excessive

light levels presumably allow remaining ROS to trigger mul-

tiple redox-associated signalling pathways. For selected

reviews of various examples of the many different components

of the redox-signalling network originating in the chloroplast,

see the studies of Munné-Bosch et al. [48], Baginsky & Link [49],

Dietz et al. [50], Foyer et al. [51] and Mullineaux et al. [52].

We will highlight a selected example of one such signalling

pathway, leading to the lipid-peroxidation-derived oxylipin

messengers (figure 1), that had previously been shown to

be involved in the regulation of the biosynthesis of chloroplast

antioxidants and facilitators of thermal dissipation [53–55] and

are now emerging as themselves being subjected to modulation

by some of these same chloroplast antioxidants and facilitators

of thermal dissipation [56] (table 1). We are highlighting this
specific example among the many redox-signalling networks

because of the connections that have been made between this

particular signalling pathway and phloem loading/transport.

Table 1 summarizes evidence for modulation of the for-

mation of oxylipin messengers by the antioxidant vitamin E

(tocopherols) and two factors directly associated with thermal

energy dissipation in the light-harvesting complexes, the

xanthophylls zeaxanthin and lutein and the PSII protein

PsbS. Mutants deficient in the antioxidant vitamin E, in the

xanthophylls zeaxanthin and lutein or in the PsbS protein gen-

erated greater levels of ROS [62,64] and greater levels of

oxylipin messengers compared with wild-type (table 1). The

key oxylipin studied in this work (figure 1 and table 1) was

the stress hormone jasmonic acid, known to regulate plant

growth and development as well as (biotic) defences against

pathogens and pests (e.g. [65]). In addition, the latter studies

also gave attention to actual evidence for altered biotic

defences; it was found that the PsbS-deficient mutant (with

lower levels of flexible NPQ and enhanced production of

ROS and jasmonic acid) was more resistant to herbivore attack

than the wild-type under field conditions (table 1). Similarly,

evidence was also accumulated for an alteration of plant

responses associated with defences against pathogens. An

occlusion of the leaf’s phloem-loading complexes and its

long-distance phloem conduits presumably blocks the internal

spreading of pathogens (like fungi and viruses that use these

transport channels) within the plant [66–68]. Mutants deficient

in the antioxidant vitamin E, and thus forming increased levels

of jasmonic acid (table 1), were shown to be impaired in

phloem loading, carbon export, and plant growth and accumu-

lated foliar carbohydrates (for a review, see [48] and also

[57,63,69–72]). Similarly, mutants deficient in zeaxanthin

exhibited not only enhanced oxylipin production but also

increased cell wall deposition in phloem-loading cells (table 1).

It has been recognized that cell wall architecture is a com-

ponent of plant biotic defence: ‘A rigid cell wall can fend off

pathogen attack by forming an impenetrable, physical barrier’

[73, p. 549]. The specific occlusion of the gateways involved in

phloem loading and carbon export from leaves is a defence

mechanism that presumably comes at a cost to plant growth

and thus has far-reaching implications. It is increasingly recog-

nized that combinations of abiotic and biotic stresses in a plant’s

environment can either exacerbate or ameliorate each other [74].
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Likewise, multiple plant-hormone-based signalling pathways

exhibit both antagonistic and cooperative interactions [75–77]. It

is feasible that trade-offs may exist not only between plant

growth versus defence and thus plant abiotic and biotic stress

resistance, but also between plant resistance to pests versus

pathogens, and/or between additional specific features. For

example, greater vitamin E content of certain pepper varieties

was associated with inhibition of the development of an insect
pest of pepper [78]—whereas decreased vitamin E content of

Arabidopsis mutants was associated with enhanced putative

pathogen defence via phloem occlusion (table 1). Future research

should examine combinations of individual plant species and

specific pests or pathogens in specific abiotic environments.
squash, Cucurbita pepo L. cv. Italian Zucchini Romanesco, both grown at
258C under a 9-h photoperiod of 1000 mmol photon m22 s21. ***p ,

0.001. For further details on methods and growing conditions, see Cohu
et al. [80,81].
3. Adaptation to contrasting environmental

challenges with respect to carbon
export-related features

In addition to being the site of the above-described occlusion

(table 1 and figure 1) in the possible service of defence against

pathogens that spread through the phloem, phloem-loading

complexes were recently proposed to be the target point for

overall adjustment of foliar carbon export capacity in response

to environmental change [79,80]. Differences in the adjustability

of phloem loading and carbon export were, furthermore, shown

to be excellent predictors for differences in photosynthetic
acclimation to the environment between plant varieties (eco-

types) and species from different geographical regions [81].

The latter work indicates that control points and within-plant

signalling networks are subjected to genetic adaptation of
plants to their environment over evolutionary time. These

responses are featured in figures 1 and 2 as (increased, decreased

or genetically limited) carbon export capacity (phloem loading/

sugar transport) and photosynthetic capacity.

Firstly, it was shown that number and size of the cells load-

ing sugars into the phloem’s sugar-transporting sieve tubes as

well as number and size of the sieve tubes are adjusted to

growth temperature in the winter annual species Arabidopsis
and spinach [79–81]. The characterized winter annuals

typically germinate in the autumn, overwinter as rosettes, and

complete their life cycle in the following spring. These winter

annuals exhibited larger and more numerous phloem cells in

foliar minor veins when grown under cool temperatures,

which was suggested to serve to maintain a high level of sugar
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export—and a high photosynthetic capacity—at cool growth

temperatures despite an increased viscosity of the phloem sap

(and other limitations to sugar transport) under these cool

temperatures. The latter concomitant upregulation of photosyn-

thetic capacity and phloem-loading capacity also co-occurs with

upregulation of other leaf anatomical features, e.g. increased leaf

thickness and, especially, an increase the number of the chloro-

plast-packed palisade layers of the leaf [82]. Future research

should elucidate which signalling networks are involved in

this concerted upregulation. Transcription factors, such as

CBF/DREB (C-repeat binding factor/dehydration-responsive-

element-binding protein), involved in plant adaptation/

acclimation to cold stress [83,84], are attractive candidates as

key components of such networks.

Furthermore, local varieties (ecotypes) of Arabidopsis
adapted to the latitudinal extremes (Sweden versus Italy) of

this species’ geographical range exhibited different sensi-

tivities to environmental cues. Only the Swedish ecotype

responded to a decrease in growth temperature (without an

increase in growth light intensity) with an increase in the

size of the sieve tubes of the leaves’ minor veins (figure 3;

see also [80,81]). A combination of both low temperature

and high light during plant growth was required to elicit a

similar response in the Italian ecotype (figure 3; see also

[80,81]). These findings suggest that the two ecotypes of

this winter annual species do not differ in the principal ability

to adjust leaf anatomy to cool growth temperature, but do

differ in the intensity of cues required to elicit such a response.

The greater responsiveness of the Swedish ecotype to cool

temperature makes intuitive sense. These responses are con-

sistent with putative genetic differences in the operation of

the signalling networks involved.

In addition to differential adaptations to the environ-

ment between members (ecotypes) of a given winter annual
species, different strategies are also seen between winter

annual and summer annual species. In contrast to winter

annuals, summer annuals typically germinate in the spring,

grow over the summer and complete their life cycle in the

autumn. Figure 4 shows similar photosynthetic capacities in

both the winter annual Arabidopsis and the summer annual

squash grown under warm temperatures and high light. Ana-

tomical adjustments to phloem-loading cells are made by

plants using either of the two major mechanisms for active

sugar loading into the sugar-transporting phloem (sieve)

tubes (see [85]), i.e. apoplastic loading via membrane transpor-

ters (as the phloem-loading mode used by Arabidopsis) and

symplastic loading through plasmodesmatal openings in the

cell wall (as the phloem-loading mode used by squash). How-

ever, while carbon export in Arabidopsis apparently relies on a

few large veins per area of leaf (large number of sieve tubes per

given sugar-loading vein and a low vein density per leaf area),

carbon export in squash instead apparently relies on many small
veins per area of leaf (small number of sieve tubes per given

sugar-loading vein and a high vein density per leaf area;

figure 4). Future research should address the implications of

this difference in number (density) and size of sugar-loading

and -exporting leaf veins between winter and summer annuals

(for data on additional species, see [79]) for sugar export and

phloem loading in source leaves (as well as, possibly, for

sugar import and phloem unloading in sink tissues), and e.g.

tolerance of cold versus hot temperatures as well as for abiotic

versus biotic stress tolerance.
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