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High light acclimation depends on retrograde control of nuclear gene expression.

Retrograde regulation uses multiple signalling pathways and thus exploits signal

patterns. To maximally challenge the acclimation system, Arabidopsis thaliana
plants were either adapted to 8 (low light (L-light)) or 80 mmol quanta m22 s21

(normal light (N-light)) and subsequently exposed to a 100- and 10-fold

light intensity increase, respectively, to high light (H-light, 800 mmol quanta

m22 s21), for up to 6 h. Both L! H- and N! H-light plants efficiently regulated

CO2 assimilation to a constant level without apparent damage and inhibition.

This experimental set-up was scrutinized for time-dependent regulation and effi-

ciency of adjustment. Transcriptome profiles revealed that N-light and L-light

plants differentially accumulated 2119 transcripts. After 6 h in H-light, only

205 remained differently regulated between the L! H- and N! H-light

plants, indicating efficient regulation allowing the plants to reach a similar tran-

scriptome state. Time-dependent analysis of transcripts as markers for signalling

pathways, and of metabolites and hormones as possibly involved transmitters,

suggests that oxylipins such as oxophytodienoic acid and jasmonic acid, metab-

olites and redox cues predominantly control the acclimation response, whereas

abscisic acid, salicylic acid and auxins play an insignificant or minor role.
1. Introduction
Acclimation to changing environmental conditions optimizes plant growth and

fitness. Plants encounter biotic and abiotic stress if such changes occur suddenly

and with large amplitude. Stress is defined as pronounced deviation from

optimum growth condition and is caused by direct effects of the stressor or as

indirect consequence of interference of the stressor with metabolism. The acclim-

ation response must be specific in order to react in an appropriate manner and to

preserve resources. This specificity is realized by signal integration in signalling

cascades that deploy distinct input signals.

High light (H-light) conditions trigger over-reduction of the photosynthetic

electron transport (PET) chain with subsequent formation of reactive oxygen

species (ROS) [1]. Non-photochemical quenching (NPQ) reduces light-driven

electron pressure and ROS generation at photosystems PSII and PSI [2,3]. Singlet

oxygen is generated at PSII and superoxide anions at PSI [4,5]. Detoxification of

ROS counteracts redox imbalances and maintains plant fitness. In the chloroplast,

superoxide dismutase catalyses the synthesis of H2O2 and O2 from two molecules

of O2
2. H2O2 is detoxified by the ascorbate-dependent pathway using ascorbate

peroxidase (Apx) [6,7] or the ascorbate-independent pathway using thiol oxidases

such as peroxiredoxins [8,9].

Acclimation to H-light or excess light has been studied in quite some

detail owing to its ecological significance, but also because it is experimentally

straightforward with a precisely defined starting point. Transcripts of Apx 1 and
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Figure 1. Time kinetics of photosynthetic parameters and the glutathione pool following the shift to H-light. (a) CO2 assimilation rate and (b) non-photochemical
quenching (NPQ) were determined in L-light and N-light plants after transfer to H-light. Prior to the measurement, plants had been dark-acclimatized for 30 min.
(c,d) Reduced glutathione (GSH) and oxidized glutathione (GSSG) were quantified in (c) (N! H)- and (d) (L! H) plants, respectively. Data are means+ s.d. of
n ¼ 3 independent experiments. In the case of glutathione, asterisks indicate significant differences to the controls, Student’s t-test, p , 0.05.
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Apx 2 are upregulated within short time periods [10]. Systemic

signalling is indicated by regulation of Apx in shaded distant

leaves [11]. ROS amounts determine whether ROS act as signal-

ling molecules or react with sensitive cell components, e.g.

proteins, DNA or cell walls [12]. In addition, all chloroplast

antioxidative enzymes are encoded in the nucleus [13] and

have to be transported to the organelles [14]. The separation

of the sites of ROS production and nuclear gene expression

reinforces the need for retrograde signalling for information

exchange to optimally balance gene activity with chloroplast

metabolic state [15–19]. In contrast to earlier concepts that

assumed the participation of only few signalling pathways,

nowadays a signalling pattern is discussed to indicate retro-

grade signalling. Among the interesting cues are abscisic acid

(ABA) [20], jasmonic acid (JA) [21], H2O2 [22,23] and �O2

[24], the PET redox state, including the plastoquinone pool

[25,26], and associated components such as STN7 [27]. Precur-

sors that are conditionally synthesized in the chloroplast and

afterwards transferred to the cytosol or other compartments

such as xanthoxin for ABA synthesis [28] or oxophytodienoic

acid (OPDA) for JA synthesis in the peroxisome [29] might

be good candidates for signal transmission. Up to now, a

‘plastid factor’ as a distinct signalling molecule with a master

function in retrograde signalling has not been identified.

Thus, retrograde signalling more likely is recognized as a com-

plex network of fine-tuned mechanisms with crosstalk and

different pathways of signal transmission [30].

In a previous study, Arabidopsis (A.) thaliana was grown

under normal light (N-light) or acclimatized to low light

(L-light), and both transferred to high light (H-light) that cor-

responded to a 10-fold or 100-fold light shift. Analyses were

performed after 6 and 24 h. The transcript abundances of the

water–water cycle enzymes were highly similar 6 h after
transfer, irrespective of whether plants were subjected to a

10-fold or 100-fold shift, despite extremely different starting

points from L- or N-light acclimatized conditions [31]. To

understand the dynamic nature of acclimation, we focused

our research on the involvement of possible signalling path-

ways, the time-resolved kinetics of responses and the degree

of acclimation at the global transcript scale.
2. Results
H-light acclimation proceeds in various steps and on different

time scales. In the first step, light-dependent photochemical

and metabolic events are converted into signalling cues. As

basic characterization, we measured CO2 assimilation, quan-

tum yield of PSII, photochemical quenching (qP) and NPQ in

a time period between 0 and 6 h after transfer to H-light [31].

The CO2 assimilation rate increased rapidly within 10 min

and reached a constant level after 30 min in the N! H-

light transfer, and after 60 min in the L! H-light transfer.

The rates per leaf area were about 30% lower in the pre-

viously L-light acclimatized plants, but were constant until

the end of the measuring time at 6 h (figure 1a). Apparently,

neither plant suffered severe inhibition. Likewise, the photo-

synthetic yield declined as expected directly after the H-light

shift, but remained mostly constant during the subsequent

6 h (see electronic supplementary material, figure S1).

The yield and qP were remarkably lower after the L! H

shift, accordingly NPQ was higher for the L-light plants

(figure 1b). Constant values were measured for the N! H-

light plants, whereas there was a peak between 60 and

120 min in the L! H plants, indicating some relaxation of

photoinhibition to maintain constant CO2-fixation rate.
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Reduced and oxidized ascorbate (ASC/DHA) and gluta-

thione (GSH/GSSG) are metabolites with functions as anti-

oxidants, cosubstrates and regulators [6,7]. Their levels provide

a basic characterization of cell redox state. Fresh-weight related

GSH levels of N-light plants exceeded that of L-light plants by

a factor of 3.5. Following the N! H shift and after a short

delay, GSH increased by about 20%, which at t¼ 180 and

360 min was significantly different from t¼ 0 min. GSSG levels

also increased slightly with time, thus the GSH/GSSG ratio

remained unaffected (figure 1c). In a converse manner, GSSG

increased more than GSH after L! H shift, and thus the

GSH/GSSG ratio increased from 14 to 20%. Total ascorbate

levels were more than twofold higher in N-light plants compared

with L-light plants. After N! H shift, only a slight increase until

t¼ 30 min could be detected. The proportion of DHA remai-

ned constant at 31% (see electronic supplementary material,

figure S1c), similar to L! H shifted plants. Both ASC and

DHA levels increased in L! H plants towards the end of the

experiment (see electronic supplementary material, figure S1d).

Transcriptome profiling was intended to define the acclim-

ation state after 6 h at a global scale. Thus, leaves from four

conditions were harvested at 15.00, 6 h after the onset of

H-light, namely L-, L! H, N- and N! H-light plants. Over-

all, approximately 12 times more genes were upregulated in

their expression after the 100-fold light shift compared with

the 10-fold light shift (see electronic supplementary material,

figure S2a), and the number of downregulated genes was

even 20-fold higher in the 100-fold shift (see electronic sup-

plementary material, figure S2b). Categorization in functional

groups with MAPMAN software [32] (see electronic supplemen-

tary material, figure S2e,f ) revealed that most upregulated

transcripts belong to the GO group of nucleic acid and protein

synthesis. Surprisingly, stress-dependent genes were upregu-

lated in N! H plants more than in L! H plants. The first

analysis focused on 67 genes involved in ROS detoxification

[33] and compared the transcript levels before the light-shift

(N/L), during the light-shift (N! H/N, L! H/L; both

compared with the untreated controls) and after the light

shift (N! H/L! H; electronic supplementary material,

figure S3). The transcript levels of water–water cycle enzymes

were higher in N-light compared with L-light plants and both

showed an upregulation after 6 h of H-light treatment. In com-

parison, NADPH oxidases showed mostly no changes in the

transcript levels. A downregulation of the transcript amount

was observed for cat3 and most glutathione peroxidases during

both shifts. Overall, only small differences in transcript levels

of the ROS network were detected 6 h after the light shift of

L-light and N-light plants.

Reference genes were selected from literature dealing with

retrograde signalling and possible messenger molecules. The

transcript abundances of these genes were assumed to give

hints to involved retrograde signalling pathways after 6 h at

H-light (figure 2). Only minor differential transcript accumula-

tion was detected for selected marker genes of plastoquinone-

and singlet oxygen-dependent signalling such as PetE and

Bap1, respectively. Strongest regulation occurred for markers

of sugar- and metabolite-signalling such as b-amylase and

chalcone synthase, and also for oxylipin-dependent signalling

as indicated by lipoxygenase LOX3. Some upregulation was

seen for salicylic acid (SA) and ascorbate markers. Unexpect-

edly, considerable downregulation was observed for marker

genes of ABA-, systemic and phytochrome-dependent signal-

ling. At the end of the 6 h period of H-light acclimation, only
19 of the 64 transcripts were still differentially accumulated

between former L-light and N-light plants; 12 were higher in

N! H compared with L! H plants.

Five selected markers were analysed in detail to gain

insights into the kinetics of regulation. Monodehydroascorbate
reductase (MDHAR, At1g63940) as marker for the water–

water cycle (figure 3a) doubled within 3 h after the L! H

transfer, whereas little transcriptional change occurred after

the N! H shift. The transcript level of the ABA-dependent

reference gene COR47 (At1g20440) (figure 3b) was down-

regulated after the L! H transfer and reached the level of

the N! H-shifted plants. The transcript of the H2O2-

dependent marker PKRP (At3g49160) was twofold upregulated

upon both light shifts (figure 3c). Interestingly, the response was

delayed in both plants by about 30 min, and the rate of increase

was slower in the L! H plants. The palmitoyl protein thioesterase
family protein (PPTE, At4g17470) used as reference transcript for

oxylipin signalling accumulated with ongoing H-light exposure

and reached a greater than 20-fold (N! H) or greater than

30-fold (L! H) higher level in comparison with N- or L-light

plants, respectively (figure 3d). The transcript level of the

sugar marker b-amylase (At4g15210) increased more than

40-fold after the 10-fold shift but only approximately fivefold

upon the 100-fold shift (figure 3e).

Phytohormones have been suggested to be involved in

light acclimation [15,30,45]. Therefore, phytohormone levels

were determined in order to identify candidate signals and

to mechanistically link or validate our observations. OPDA,

JA and its conjugate jasmonyl-isoleucine (JA-Ile) act as signal-

ling molecules to stress [52,53]. Their concentration changed

upon transfer to H-light with distinct kinetics and amplitude

(figure 4a–c). Upon L! H transfer, OPDA, JA and JA-Ile

increased until 60 min. Subsequently, JA and JA-Ile decreased

again, whereas OPDA remained at a twofold higher level. In

the N! H light experiment, OPDA increased fast, followed

by JA and JA-Ile. In comparison, the JA antagonist SA [54]

showed no significant regulation; if at all, there was a trend

to decrease which will be important for the discussion

(figure 4d ). ABA plays a crucial role in control of develop-

ment and stress acclimation [55,56]. The ABA level was

unchanged during the first 30 min following the transfer. A

significant increase by more than twofold was measured in

N! H plants (figure 4e). Indole-3-acetic acid (IAA) levels

were unaffected by H-light despite its connection to ROS

[57,58] (figure 4f ). The minor contribution of ROS signalling

was confirmed by comparing the transcriptional regulation

in our experiment with published ROS-related arrays using

the ROSMETER [59] (see electronic supplementary material,

figure S4). The heat map (please note that the colour scale

covers only 20.4 to 0.4) indicates that the transcriptional

differences between N/L, N! H/N and L! H/L were

alike and that they were slightly coregulated with transcripts

linked to H2O2 and singlet oxygen, but these differences were

levelled in the N! H/L! H comparison as described

above. It is also noteworthy that a negative correlation was

observed with signatures derived from mitochondrial ROS.
3. Discussion
The experimental set-up of shifting plants to the same H-light

condition from different preconditioning states was recently

designed to maximally challenge the acclimation machinery
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Figure 2. Transcript amounts of genes selected as markers for signalling pathways. Sixty-four reference genes known to respond to specific signalling cues were selected from
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of leaves [31]. L-light plants growing in less than 10 mmol

quanta m22 s21 for 10 days are completely shade-acclimatized

with only 25% electron transport capacity of N-light plants.

Focus of the previous study was directed to regulation of

the enzymes of the water–water cycle at the levels of transcript,

protein, enzyme activity and metabolite in N! H and L! H

plants at 0, 6 and 24 h. The observed remarkably high and

efficient plasticity prompted us to direct our attention to a

time-resolved analysis. Here, it is shown that the plants rea-

ched and maintained constant CO2 fixation rates in H-light

within 60 min. This result in combination with the kinetics of

NPQ and qP confirmed that activation of quenching mechan-

isms [60] was perfectly tuned to maintain efficient gross

photosynthesis while avoiding damage development.

(a) Conditional acclimation after 6 h of high light
treatment

Transcriptome analysis after 6 h H-light revealed differential

transcript accumulation of approximately 7.5% in N! H

plants and 20% in L! H plants, respectively. The high

number of differentially accumulated transcripts by far

exceeded that of paraquat-treated flu mutants [24] or H2O2-

treated A. thaliana wild-type [37] and indicates a profound

reprogramming of L-light plants. The set of differentially
(twofold or more) regulated transcripts between N- and

L-light plants comprised 2219 before the H-light transfer

and had decreased to 205 genes between N! H and L! H

plants at t ¼ 6 h. Apparently, the global transcriptome adjust-

ment of L-light plants upon H-light treatment occurred

extremely efficiently to a similar state as in N-light plants. In

contrast to previously analysed redox- and ROS-related tran-

scriptomes [33], here also a large set of transcripts among the

antioxidant network was upregulated. This indicates a role of

ROS in response regulation or the preparatory activation of a

programme for improved ROS scavenging in dependence on

light. Also, in the ROS network, the majority of the significant

differences were minimized after 6 h, leading to the hypothesis

that ROS-dependent signalling does not play a major role 6 h

or more after L! H transfer [31]. However, ROS signal-

ling might contribute to H-light response regulation at earlier

time points as suggested previously [10,11]. This is in line

with the upregulation of the ROS marker PKRP [24] between

30 and 60 min. The upregulation occurred faster in N! H

than in L! H plants (figure 3). The difference in response

speed tentatively correlated with lower expression of RbohD
and RbohF in L-light plants (figure 2). Likewise, the levels of

markers for cell signalling (figure 2) were highly similar between

N! H and L! H plants, completing the picture of efficient

transcriptional acclimation of A. thaliana to H-light.
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(c) 12-oxophytodienoic acid (OPDA), (d ) salicylic acid (SA), (e) abscisic acid (ABA) and ( f ) indole-3-acetic acid (IAA) were quantified in a time kinetics after transfer
to H-light. Data are means+ s.d. of n ¼ 3 independent experiments (IAA n ¼ 2), asterisks indicate significant differences to the controls, Student’s t-test, p , 0.1.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20130424

6

(b) Involvement of oxylipins and redox regulators
Up-to-date concepts on retrograde control of nuclear gene

expression assume the activation of different signals that

combine to a specific pattern which in turn optimizes the

acclimation response [15,17,30]. This study presents the kin-

etic dissection of (i) marker transcript regulation, and

(ii) the accumulation of metabolite signals and phyto-

hormones. Except for JA and OPDA, ASC and GSH, which

increased readily in N! H plants, all other markers

showed a delay of at least 30–60 min. OPDA is synthesized

from a-linolenic acid in the chloroplast and exerts signalling

function independent of JA and JA-Ile regulation [61,62].

Following binding to cyclophilin 20-3, the Cyp20-3/OPDA

complex activates cysteine synthesis, increases thiol levels

and reduction state and induces defence gene expression

[53]. Accumulation of GSH may be explained by this regulat-

ory mechanism and could be part of a general acclimation

response. In line with this result, A. thaliana deficient of

Cyp20-3 revealed a H-light sensitive phenotype [63]. Further-

more, OPDA-triggered signalling involves activation of

TGA transcription factors [64]. The upregulation of PPTE, a

reference gene for oxylipin signalling [39], might be the

consequence of higher OPDA levels after the H-light transfer.

The JA-antagonist SA decreased during N! H and

remained constant during L! H, which argues against SA as

transmitter in H-light acclimation. SA suppresses JA signalling

[65] by inhibition of the E3 ubiquitin-ligase SCF (COI1) which is
required for JA signalling [66]. Suppression of SA may enable

oxylipin signalling in the H-light response [54,67]. RBOHD/F

activity, ROS accumulation and SA control systemic H-light

acclimation and the cell death programme [68]. The lack of up-

regulation in the L! H transfer experiments indicates that

retrograde signalling can use different signalling patterns.

In N! H plants, ABA increased to about twice the control

level after 3 h. The trend to increase was also seen in L! H

plants, but was insignificant and occurred with a slight

delay. Surprisingly, an anti-parallel response could be detected

between ABA-regulated COR47 [48] and ABA amount. The

discrepancy could be explained by alkaline trapping of depro-

tonated ABA in the stroma in H-light as modelled by Slovik &

Hartung [69] and discussed before [31]. As a consequence of

ABA anion accumulation in the alkaline stroma, the effective

ABA concentration in the nucleoplasm and cytosol could be

low despite the overall increase in ABA accumulation of the

leaves (figure 4e).

Acclimation to H-light involves diverse mechanisms at

different time scales such as rapid photoinhibition and antioxi-

dant expression, and long-term acclimation, including

adjustment of chlorophyll synthesis [3,10,70,71]. The complex

acclimation process, here underscored by reorganization of

20% of the transcriptome in L! H plants, suggests that no

single and exclusive pathway mediates the response. ROS

[10], SA [68], ABA [72], redox signals [46] and others have

been suggested to mediate the acclimation. Our study provides
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a detailed inventory after 6 h following the N! H and L! H

transfer and a framework of the timing of signalling events. The

increase in oxylipin levels was among the fast responses fol-

lowed by an increase in GSH levels in the N! H plants. The

glutathione increase was delayed in L-light acclimatized

plants, possibly owing to resource limitation and starvation.

Likely, L-light plants build up cell constituents such as carbo-

hydrates and proteins before investing in defence. This is also

indicated by the delayed upregulation in L! H plants of

b-amylase, a reliable sugar marker [34]. Interestingly, also the

ROS marker PKRP revealed the faster and more intense

response in the N! H plants. SA, ABA and IAA appear to

play no major role in our experimental system. We conclude

from this study that oxylipins, metabolites and redox cues,

but possibly less ROS, should be investigated in the future to

understand rapid processes in H-light acclimation.
.B
369:20130424
4. Methods
(a) Plant material and growth conditions
Arabidopsis thaliana ecotype Columbia (wild-type) was grown as

described in [31] (10 h light with 80 mmol quanta m22 s21, and

218C/14 h dark and 188C, 50% relative humidity). After three

weeks, plants were either transferred to 8 (low light, L-light) or

kept at 80 mmol quanta m22 s21 (normal light, N-light) for

10 days. Plants (4.5 week old) were transferred to high light

(800 mmol quanta m22 s21, H-light) for time periods as indicated,

or remained in L- or N-light. Rosettes were harvested at 15.00

(+30 min), frozen in liquid nitrogen and stored at 2808C.

(b) Assimilation rate and photosynthetic parameters
Assimilation rate, PSII quantum yield, qP and NPQ were deter-

mined with the gas exchange fluorescence system GFS-3000

according to the manufacturer’s instructions [31] (Walz, Germany)

with plants acclimatized to darkness for 30 min. Following 10 min

at 8 and 80 mmol quanta m22 s21 for L- and N-light controls,

respectively, the light intensity was increased to 800 mmol

quanta m22 s21 for H-light treatment.

(c) Whole genome ATH1 microarray
Total RNA was isolated using RNeasy mini kit (Qiagen). KFB

(Regensburg, Germany) was commissioned for hybridization of

the Affymetrix ATH1 genome array. Each condition was hybri-

dized three times from independent experiments. Microarray

data were imported into ROBIN (MPI Golm, Potsdam, Germany)

and normalized according to the RMA algorithm [73,74]. Differen-

tially regulated subsets were defined as those with twofold or

greater difference and an adjusted p-value cut-off of less than
or equal to 0.005 [75,76]. The gene list was imported into

the MAPMAN IMAGEANNOTATOR 1.6.3 [32] to analyse pathways.

The transcriptome data were analysed for ROS signatures by the

ROSMETER according to Rosenwasser et al. [59] as implemented

in the bioinformatics tool that is available at http://app.agri.gov.

il/noa/ROS_desc.php.

(d) Transcript profiling
RNA isolation and cDNA synthesis were performed as by

Wormuth et al. [77], and quantitative real-time PCR (qPCR) as

by Oelze et al. [31] with the single difference of using MESA

blue MasterMix plus SYBR assay (Eurogentec, Belgium). Actin2
(At3g18780) was used as reference gene.

(e) Ascorbate and glutathione content
Reduced (ASC) and oxidized ascorbic acid (DHA) were deter-

mined as by Horling et al. [78]. For the determination of reduced

and oxidized glutathione (GSH/GSSG), an enzyme cycling assay

based on sequential oxidation of GSH by 2,20-dinitro-505-dithiodi-

benzoic acid (DTNB) and reduction by NADPH in the presence of

glutathione reductase was performed as by Oelze et al. [31].

( f ) Analysis of oxylipins, salicylic acid, indole acetic acid
and abscisic acid in Arabidopsis thaliana

The analysis of hormones was performed according to Stingl et al.
[79]. Plant material was extracted with 950 ml ethyl acetate/

formic acid (99:1, v/v). Dihydrojasmonic acid (50 ng), JA-nor-Val

(50 ng), [18O2]OPDA (50 ng), [D6]ABA (50 ng), [D4]SA (50 ng)

and [D2]IAA (50 ng) were added as internal standards. Samples

were homogenized with a ball mill for 3 min at 20 Hz. Pellets

following centrifugation were re-extracted, and the pooled super-

natants were dried in a vacuum concentrator. After evaporation

of the solvent, samples were dissolved in 40 ml acetonitrile/

water (50:50, v/v) and analysed by liquid chromatography

(LC)–tandem mass spectrometry (MS/MS).

A. thaliana ID numbers: Actin (At3g18780), b-amylase
(At4g15210), COR47 (At1g20440), MDHAR (At1g63940), PKRP
(At3g49160), PPTE (At4g17470).
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